342
Views
10
CrossRef citations to date
0
Altmetric
Review

Genetic background of idiopathic pulmonary fibrosis

, , , , &
Pages 389-406 | Published online: 09 Jan 2014

References

  • Raghu G, Collard HR, Egan JJ et al.; ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 183(6), 788–824 (2011).
  • Grutters JC, du Bois RM. Genetics of fibrosing lung diseases. Eur. Respir. J. 25(5), 915–927 (2005).
  • Castriotta RJ, Eldadah BA, Foster WM et al. Workshop on idiopathic pulmonary fibrosis in older adults. Chest 138(3), 693–703 (2010).
  • Meltzer EB, Noble PW. Idiopathic pulmonary fibrosis. Orphanet J. Rare Dis. 3, 8 (2008).
  • Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 345(7), 517–525 (2001).
  • Baumgartner KB, Samet JM, Stidley CA, Colby TV, Waldron JA. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 155(1), 242–248 (1997).
  • Hubbard R, Lewis S, Richards K, Johnston I, Britton J. Occupational exposure to metal or wood dust and aetiology of cryptogenic fibrosing alveolitis. Lancet 347(8997), 284–289 (1996).
  • Jakab GJ. Sequential virus infection, bacterial superinfections and fibrogenesis. Am Rev Respir. Dis. 142, 374–379 (1990).
  • Pinsker KL, Schneyer B, Becker N, Kamholz SL. Usual interstitial pneumonia following Texas A2 influenza infection. Chest 80(2), 123–126 (1981).
  • Bremer LA, Blackman SM, Vanscoy LL et al. Interaction between a novel TGFB1 haplotype and CFTR genotype is associated with improved lung function in cystic fibrosis. Hum. Mol. Genet. 17(14), 2228–2237 (2008).
  • Vasakova M, Striz I, Slavcev A, Jandova S, Kolesar L, Sulc J. Th1/Th2 cytokine gene polymorphisms in patients with idiopathic pulmonary fibrosis. Tissue Antigens 67(3), 229–232 (2006).
  • García-Sancho C, Buendía-Roldán I, Fernández-Plata MR et al. Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respir. Med. 105(12), 1902–1907 (2011).
  • Weaver TE, Conkright JJ. Function of surfactant proteins B and C. Annu. Rev. Physiol. 63, 555–578 (2001).
  • Fisher JH, Emrie PA, Drabkin HA et al. The gene encoding the hydrophobic surfactant protein SP-C is located on 8p and identifies an EcoRI RFLP. Am. J. Hum. Genet. 43(4), 436–441 (1988).
  • Glasser SW, Korfhagen TR, Perme CM, Pilot-Matias TJ, Kister SE, Whitsett JA. Two SP-C genes encoding human pulmonary surfactant proteolipid. J. Biol. Chem. 263(21), 10326–10331 (1988).
  • Nogee LM, Dunbar AE 3rd, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N. Engl. J. Med. 344(8), 573–579 (2001).
  • Thomas AQ, Lane K, Phillips J 3rd et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am. J. Respir. Crit. Care Med. 165(9), 1322–1328 (2002).
  • Brasch F, Griese M, Tredano M et al. Interstitial lung disease in a baby with a de novo mutation in the SFTPC gene. Eur. Respir. J. 24(1), 30–39 (2004).
  • van Moorsel CH, van Oosterhout MF, Barlo NP et al. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a dutch cohort. Am. J. Respir. Crit. Care Med. 182(11), 1419–1425 (2010).
  • Lawson WE, Grant SW, Ambrosini V et al. Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax 59(11), 977–980 (2004).
  • Markart P, Ruppert C, Wygrecka M et al. Surfactant protein C mutations in sporadic forms of idiopathic interstitial pneumonias. Eur. Respir. J. 29(1), 134–137 (2007).
  • Selman M, Lin HM, Montaño M et al. Surfactant protein A and B genetic variants predispose to idiopathic pulmonary fibrosis. Hum. Genet. 113(6), 542–550 (2003).
  • Wang Y, Kuan PJ, Xing C et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am. J. Hum. Genet. 84(1), 52–59 (2009).
  • Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N. Engl. J. Med. 350(13), 1296–1303 (2004).
  • Bullard JE, Wert SE, Whitsett JA, Dean M, Nogee LM. ABCA3 mutations associated with pediatric interstitial lung disease. Am. J. Respir. Crit. Care Med. 172(8), 1026–1031 (2005).
  • Young LR, Nogee LM, Barnett B, Panos RJ, Colby TV, Deutsch GH. Usual interstitial pneumonia in an adolescent with ABCA3 mutations. Chest 134(1), 192–195 (2008).
  • Armanios MY, Chen JJ, Cogan JD et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356(13), 1317–1326 (2007).
  • Tsakiri KD, Cronkhite JT, Kuan PJ et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc. Natl Acad. Sci. USA 104(18), 7552–7557 (2007).
  • Alder JK, Chen JJ, Lancaster L et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl Acad. Sci. USA 105(35), 13051–13056 (2008).
  • Mushiroda T, Wattanapokayakit S, Takahashi A et al.; Pirfenidone Clinical Study Group. A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis. J. Med. Genet. 45(10), 654–656 (2008).
  • Hodgson U, Pulkkinen V, Dixon M et al. ELMOD2 is a candidate gene for familial idiopathic pulmonary fibrosis. Am. J. Hum. Genet. 79(1), 149–154 (2006).
  • Pulkkinen V, Bruce S, Rintahaka J et al. ELMOD2, a candidate gene for idiopathic pulmonary fibrosis, regulates antiviral responses. FASEB J. 24(4), 1167–1177 (2010).
  • Seibold MA, Wise AL, Speer MC et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N. Engl. J. Med. 364(16), 1503–1512 (2011).
  • Zhang Y, Noth I, Garcia JG, Kaminski N. A variant in the promoter of MUC5B and idiopathic pulmonary fibrosis. N. Engl. J. Med. 364(16), 1576–1577 (2011).
  • Hall FC, Bowness P. HLA and disease: From molecular function to disease association? In: HLA and MHC: Genes, Molecules, and Function. Browning MJ, McMichael AJ (Eds). BIOS Scientific Publishers Ltd, Oxford, UK, 353–381 (1996).
  • de Bakker PI, McVean G, Sabeti PC et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 38(10), 1166–1172 (2006).
  • Katzenstein AL, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am. J. Respir. Crit. Care Med. 157(4 Pt 1), 1301–1315 (1998).
  • Stewart CA, Horton R, Allcock RJ et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res. 14(6), 1176–1187 (2004).
  • Falfán-Valencia R, Camarena A, Juárez A et al. Major histocompatibility complex and alveolar epithelial apoptosis in idiopathic pulmonary fibrosis. Hum. Genet. 118(2), 235–244 (2005).
  • Aquino-Galvez A, Pérez-Rodríguez M, Camarena A et al. MICA polymorphisms and decreased expression of the MICA receptor NKG2D contribute to idiopathic pulmonary fibrosis susceptibility. Hum. Genet. 125(5-6), 639–648 (2009).
  • Xue J, Gochuico BR, Alawad AS et al. The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis. PLoS ONE 6(2), e14715 (2011).
  • Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-β 1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 122(1), 103–111 (1993).
  • Bartram U, Speer CP. The role of transforming growth factor β in lung development and disease. Chest 125(2), 754–765 (2004).
  • Willis BC, Liebler JM, Luby-Phelps K et al. Induction of epithelial–mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 166(5), 1321–1332 (2005).
  • Khalil N, O’Connor RN, Unruh HW et al. Increased production and immunohistochemical localization of transforming growth factor-β in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 5(2), 155–162 (1991).
  • Santana A, Saxena B, Noble NA, Gold LI, Marshall BC. Increased expression of transforming growth factor β isoforms (β 1, β 2, β 3) in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 13(1), 34–44 (1995).
  • Xaubet A, Marin-Arguedas A, Lario S et al. Transforming growth factor-β1 gene polymorphisms are associated with disease progression in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 168(4), 431–435 (2003).
  • Li XX, Li N, Ban CJ, Zhu M, Xiao B, Dai HP. Idiopathic pulmonary fibrosis in relation to gene polymorphisms of transforming growth factor-ß1 and plasminogen activator inhibitor 1. Chin. Med. J. 124(13), 1923–1927 (2011).
  • Mattei MG, Mattei JF, Bernard R, Giraud F. Partial trisomy 4 resulting from a complex maternal rearrangement of chromosomes 2, 4, and 18 with interstitial translocation. Hum. Genet. 51(1), 55–61 (1979).
  • Sadoshima J, Izumo S. Molecular characterization of angiotensin 2-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of AT1 receptor subtype. Circ. Res. 97, 1952–1959 (1993).
  • Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ. Res. 72(6), 1245–1254 (1993).
  • Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 88(6), 2849–2861 (1993).
  • Otsuka M, Takahashi H, Shiratori M, Chiba H, Abe S. Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax 59(1), 31–38 (2004).
  • Nadrous HF, Ryu JH, Douglas WW, Decker PA, Olson EJ. Impact of angiotensin-converting enzyme inhibitors and statins on survival in idiopathic pulmonary fibrosis. Chest 126(2), 438–446 (2004).
  • Cambien F, Alhenc-Gelas F, Herbeth B et al. Familial resemblance of plasma angiotensin-converting enzyme level: the Nancy Study. Am. J. Hum. Genet. 43(5), 774–780 (1988).
  • Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86(4), 1343–1346 (1990).
  • Fatini C, Gensini F, Sticchi E et al. High prevalence of polymorphisms of angiotensin-converting enzyme (I/D) and endothelial nitric oxide synthase (Glu298Asp) in patients with systemic sclerosis. Am. J. Med. 112(7), 540–544 (2002).
  • Morrison CD, Papp AC, Hejmanowski AQ, Addis VM, Prior TW. Increased D allele frequency of the angiotensin-converting enzyme gene in pulmonary fibrosis. Hum. Pathol. 32(5), 521–528 (2001).
  • Li X, Molina-Molina M, Abdul-Hafez A, Uhal V, Xaubet A, Uhal BD. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 295(1), L178–L185 (2008).
  • Whyte M, Hubbard R, Meliconi R et al. Increased risk of fibrosing alveolitis associated with interleukin-1 receptor antagonist and tumor necrosis factor-α gene polymorphisms. Am. J. Respir. Crit. Care Med. 162(2 Pt 1), 755–758 (2000).
  • Hutyrová B, Pantelidis P, Drábek J et al. Interleukin-1 gene cluster polymorphisms in sarcoidosis and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 165(2), 148–151 (2002).
  • du Bois RM. The genetic predisposition to interstitial lung disease: functional relevance. Chest 121(Suppl. 3), 14S–20S (2002).
  • Pantelidis P, Fanning GC, Wells AU, Welsh KI, Du Bois RM. Analysis of tumor necrosis factor-α, lymphotoxin-α, tumor necrosis factor receptor II, and interleukin-6 polymorphisms in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 163(6), 1432–1436 (2001).
  • Whittington HA, Freeburn RW, Godinho SI, Egan J, Haider Y, Millar AB. Analysis of an IL-10 polymorphism in idiopathic pulmonary fibrosis. Genes Immun. 4(4), 258–264 (2003).
  • Vasakova M, Striz I, Slavcev A, Jandova S, Kolesar L, Scand J. Th1/ Th2 cytokine gene polymorphisms in patients with idiopathic pulmonary fibrosis. Immunol. 65, 265–270 (2007).
  • Vasakova M, Striz I, Slavcev A et al. Correlation of IL-1α and IL-4 gene polymorphisms and clinical parameters in idiopathic pulmonary fibrosis. Clin. Exp. Immunol. 166, 346–351 (2011).
  • Barlo NP, van Moorsel CH, Korthagen NM et al. Genetic variability in the IL1RN gene and the balance between interleukin (IL)-1 receptor agonist and IL-1ß in idiopathic pulmonary fibrosis. Clin. Exp. Immunol. 166(3), 346–351 (2011).
  • Korthagen NM, van Moorsel CH, Kazemier KM, Ruven HJ, Grutters JC. IL1RN genetic variations and risk of IPF: a meta-analysis and mRNA expression study. Immunogenetics 64(5), 371–377 (2012).
  • Southcott AM, Jones KP, Li D et al. Interleukin-8. Differential expression in lone fibrosing alveolitis and systemic sclerosis. Am. J. Respir. Crit. Care Med. 151(5), 1604–1612 (1995).
  • Keane MP, Belperio JA, Moore TA et al. Neutralization of the CXC chemokine, macrophage inflammatory protein-2, attenuates bleomycin-induced pulmonary fibrosis. J. Immunol. 162(9), 5511–5518 (1999).
  • Mukaida N, Shiroo M, Matsushima K. Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8. J. Immunol. 143(4), 1366–1371 (1989).
  • Hillian AD, Londono D, Dunn JM et al.; CF Gene Modifier Study Group. Modulation of cystic fibrosis lung disease by variants in interleukin-8. Genes Immun. 9(6), 501–508 (2008).
  • Renzoni E, Lympany P, Sestini P et al. Distribution of novel polymorphisms of the interleukin-8 and CXC receptor 1 and 2 genes in systemic sclerosis and cryptogenic fibrosing alveolitis. Arthritis Rheum. 43(7), 1633–1640 (2000).
  • Ahn MH, Park BL, Lee SH et al. A promoter SNP rs4073T>A in the common allele of the interleukin 8 gene is associated with the development of idiopathic pulmonary fibrosis via the IL-8 protein enhancing mode. Respir. Res. 12, 73 (2011).
  • Zorzetto M, Bombieri C, Ferrarotti I et al. Complement receptor 1 gene polymorphisms in sarcoidosis. Am. J. Respir. Cell Mol. Biol. 27(1), 17–23 (2002).
  • Kubistova Z, Mrazek F, Lympany PA et al. The CR1 C5507G polymorphism is not involved in susceptibility to idiopathic pulmonary fibrosis in two European populations. Tissue Antigens 72(5), 483–486 (2008).
  • Yuan YD, Zhao MX, Yu J. Association between genetic polymorphism of erythrocyte CR1 and the susceptibility of idiopathic pulmonary fibrosis. 34, 841–845 (2011).
  • Bournazos S, Woof JM, Hart SP, Dransfield I. Functional and clinical consequences of Fc receptor polymorphic and copy number variants. Clin. Exp. Immunol. 157(2), 244–254 (2009).
  • Bournazos S, Grinfeld J, Alexander KM et al. Association of FcgRIIa R131H polymorphism with idiopathic pulmonary fibrosis severity and progression. BMC Pulm. Med. 10, 51 (2010).
  • Woessner JF Jr. The family of matrix metalloproteinase family. Ann. NY Acad. Sci. 732, 11–21 (1994).
  • Rutter JL, Mitchell TI, Butticè G et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res. 58(23), 5321–5325 (1998).
  • Checa M, Ruiz V, Montaño M, Velázquez-Cruz R, Selman M, Pardo A. MMP-1 polymorphisms and the risk of idiopathic pulmonary fibrosis. Hum. Genet. 124(5), 465–472 (2008).
  • Zuo F, Kaminski N, Eugui E et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc. Natl Acad. Sci. USA 99(9), 6292–6297 (2002).
  • Kaminski N. Microarray analysis of idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 29(Suppl. 3), S32–S36 (2003).
  • Selman M, Ruiz V, Cabrera S et al. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am. J. Physiol. Lung Cell Mol. Physiol. 279(3), L562–L574 (2000).
  • Lemjabbar H, Gosset P, Lechapt-Zalcman E et al. Overexpression of alveolar macrophage gelatinase B (MMP-9) in patients with idiopathic pulmonary fibrosis: effects of steroid and immunosuppressive treatment. Am. J. Respir. Cell Mol. Biol. 20(5), 903–913 (1999).
  • Swiderski RE, Dencoff JE, Floerchinger CS, Shapiro SD, Hunninghake GW. Differential expression of extracellular matrix remodeling genes in a murine model of bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 152(3), 821–828 (1998).
  • Ramos C, Montaño M, García-Alvarez J et al. Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am. J. Respir. Cell Mol. Biol. 24(5), 591–598 (2001).
  • Wei LQ, Dong Y, Li ZH. [Effect of atorvastatin on MMP-9 and TIMP-1 levels in bronchoalveolar lavage fluid and serum of rats with bleomycin-induced pulmonary fibrosis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 40(1), 64–70 (2011).
  • Ginsburg D, Zeheb R, Yang AY et al. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J. Clin. Invest. 78(6), 1673–1680 (1986).
  • Mehta R, Shapiro AD. Plasminogen activator inhibitor type 1 deficiency. Haemophilia 14(6), 1255–1260 (2008).
  • Harold A. Disorders of lung matrix remodeling. J. Clin. Invest. 113, 148–157 (2004).
  • Fujii M, Hayakawa H, Urano T et al. Relevance of tissue factor and tissue factor pathway inhibitor for hypercoagulable state in the lungs of patients with idiopathic pulmonary fibrosis. Thromb. Res. 99(2), 111–117 (2000).
  • Kotani I, Sato A, Hayakawa H, Urano T, Takada Y, Takada A. Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb. Res. 77(6), 493–504 (1995).
  • Henry M, Tregouët DA, Alessi MC et al. Metabolic determinants are much more important than genetic polymorphisms in determining the PAI-1 activity and antigen plasma concentrations: a family study with part of the Stanislas Cohort. Arterioscler. Thromb. Vasc. Biol. 18(1), 84–91 (1998).
  • Johanna GB, Michiel LB, Frits H, Cornelis K, Diederick EG. The 4G5G plymorphism in the gene for PAI-1 and the circadian oscillation of plasma PAI-1. Blood 101, 1841–1844 (2003).
  • Kim KK, Flaherty KR, Long Q et al. A plasminogen activator inhibitor-1 promoter polymorphism and idiopathic interstitial pneumonia. Mol. Med. 9(1–2), 52–56 (2003).
  • Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543), 858–862 (2001).
  • Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer 94(6), 776–780 (2006).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004).
  • Pandit KV, Corcoran D, Yousef H et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 182(2), 220–229 (2010).
  • Kass DJ, Kaminski N. Evolving genomic approaches to idiophatic pulmonary fibrosis: moving beyond genes. Clin. Transl. Sci. 4, 372–379 (2011).
  • Liu G, Friggeri A, Yang Y et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 207(8), 1589–1597 (2010).
  • Cushing L, Kuang PP, Qian J et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 45(2), 287–294 (2011).
  • Rabinovich EI, Kapetanaki MG, Steinfeld I et al. Global methylation patterns in idiopathic pulmonary fibrosis. PLoS ONE 7(4), e33770 (2012).
  • Sanders YY, Ambalavanan N, Halloran B et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 186(6), 525–535 (2012).
  • Lawson WE, Loyd JE, Degryse AL. Genetics in pulmonary fibrosis–familial cases provide clues to the pathogenesis of idiopathic pulmonary fibrosis. Am. J. Med. Sci. 341(6), 439–443 (2011).
  • Coultas DB, Zumwalt RE, Black WC, Sobonya RE. The epidemiology of interstitial lung diseases. Am. J. Respir. Crit. Care Med. 150(4), 967–972 (1994).
  • Ju W, Kim JW, Park NH et al. Matrix metalloproteinase-1 promoter polymorphism and epithelial ovarian cancer: does ethnicity matter? J. Obstet. Gynaecol. Res. 33(2), 155–160 (2007).
  • Botto M, Theodoridis E, Thompson EM et al. Fc gamma RIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease. Clin. Exp. Immunol. 104(2), 264–268 (1996).
  • Chen JY, Wang CM, Wu JM, Ho HH, Luo SF. Association of rheumatoid factor production with FcgammaRIIIa polymorphism in Taiwanese rheumatoid arthritis. Clin. Exp. Immunol. 144(1), 10–16 (2006).
  • Vij R, Noth I. Peripheral blood biomarkers in idiopathic pulmonary fibrosis. Transl. Res. 159(4), 218–227 (2012).
  • Couch FJ, Weber BL. Mutations and polymorphisms in the familial early-onset breast cancer (BRCA1) gene. Breast Cancer Information Core. Hum. Mutat. 8(1), 8–18 (1996).
  • Dakhlallah D, Batte K, Wang Y et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 187(4), 397–405 (2013).
  • Hagaman JT, Kinder BW, Eckman MH. Thiopurine S- methyltransferase [corrected] testing in idiopathic pulmonary fibrosis: a pharmacogenetic cost-effectiveness analysis. Lung 188(2), 125–132 (2010).
  • Center DM, Schwartz DA, Solway J et al. Genomic medicine and lung diseases. Am. J. Respir. Crit. Care Med. 186(3), 280–285 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.