461
Views
69
CrossRef citations to date
0
Altmetric
Review

Mediators of tau phosphorylation in the pathogenesis of Alzheimer’s disease

, &
Pages 1647-1666 | Published online: 09 Jan 2014

References

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement.3, 186–191 (2007).
  • Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural Transm.113, 1625–1644 (2006).
  • Kirvell SL, Esiri M, Francis PT. Downregulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer’s disease. J. Neurochem.98, 939–950 (2006).
  • Selkoe DJ. Clearing the brain’s amyloid cobwebs. Neuron32, 177–180 (2001).
  • Wilquet V, De SB. Amyloid-β precursor protein processing in neurodegeneration. Curr. Opin. Neurobiol.14, 582–588 (2004).
  • Vetrivel KS, Zhang X, Meckler X et al. Evidence that CD147 modulation of β-amyloid (Aβ) levels is mediated by extracellular degradation of secreted Aβ. J. Biol. Chem.283, 19489–19498 (2008).
  • Strittmatter WJ, Saunders AM, Schmechel D et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA90, 1977–1981 (1993).
  • abraham R, Moskvina V, Sims R et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med. Genomics1, 44 (2008).
  • Harold D, abraham R, Hollingworth P et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet.41(10), 1088–1093 (2009).
  • Lambert JC, Heath S, Even G et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet.41(10), 1094–1099 (2009).
  • Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med.15, 112–119 (2009).
  • Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog. Neurobiol.85, 148–175 (2008).
  • Reynolds CH, Garwood CJ, Wray S et al. Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cγ1, Grb2, and Src family kinases. J. Biol. Chem.283, 18177–18186 (2008).
  • Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett.399, 344–349 (1996).
  • Li W, Wang XS, Qu MH, Liu Y, He RQ. Human protein tau represses DNA replication in vitro.Biochim. Biophys. Acta1726, 280–286 (2005).
  • Takashima A, Murayama M, Murayama O et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc. Natl Acad. Sci. USA95, 9637–9641 (1998).
  • Sontag E, Nunbhakdi-Craig V, Lee G et al. Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J. Biol. Chem.274, 25490–25498 (1999).
  • Wolfe MS. Tau mutations in neurodegenerative diseases. J. Biol. Chem.284, 6021–6025 (2009).
  • Hardy J, Orr H. The genetics of neurodegenerative diseases. J. Neurochem.97, 1690–1699 (2006).
  • Hutton M. Molecular genetics of chromosome 17 tauopathies. Ann. NY Acad. Sci.920, 63–73 (2000).
  • Terwel D, Lasrado R, Snauwaert J et al. Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J. Biol. Chem.280, 3963–3973 (2005).
  • Lewis J, McGowan E, Rockwood J et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet.25, 402–405 (2000).
  • Gendron TF, Petrucelli L. The role of tau in neurodegeneration. Mol. Neurodegener.4, 13 (2009).
  • Gallo JM, Noble W, Martin TR. RNA and protein-dependent mechanisms in tauopathies: consequences for therapeutic strategies. Cell. Mol. Life Sci.64, 1701–1714 (2007).
  • Dorval V, Fraser PE. SUMO on the road to neurodegeneration. Biochim. Biophys. Acta1773, 694–706 (2007).
  • Santacruz K, Lewis J, Spires T et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science309, 476–481 (2005).
  • Berger Z, Roder H, Hanna A et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J. Neurosci.27, 3650–3662 (2007).
  • Hanger DP, Betts JC, Loviny TL, Blackstock WP, Anderton BH. New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry. J. Neurochem.71, 2465–2476 (1998).
  • Hanger DP, Byers HL, Wray S et al. Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J. Biol. Chem.282, 23645–23654 (2007).
  • Vega IE, Cui L, Propst JA, Hutton ML, Lee G, Yen SH. Increase in tau tyrosine phosphorylation correlates with the formation of tau aggregates. Brain Res. Mol. Brain Res.138, 135–144 (2005).
  • Derkinderen P, Scales TM, Hanger DP et al. Tyrosine 394 is phosphorylated in Alzheimer’s paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J. Neurosci.25, 6584–6593 (2005).
  • Garver TD, Harris KA, Lehman RAW, Lee VMY, Trojanowski JQ, Billingsley ML. Tau phosphorylation in human, primate, and rat brain: evidence that a pool of Tau is highly phosphorylated in vivo and is rapidly dephosphorylated in vitro.J. Neurochem.63, 2279–2287 (1994).
  • Watanabe A, Hasegawa M, Suzuki M et al.In vivo phosphorylation sites in fetal and adult rat tau. J. Biol. Chem.268, 25712–25717 (1993).
  • Mercken M, Grynspan F, Nixon RA. Differential sensitivity to proteolysis by brain calpain of adult human tau, fetal human tau and PHF-tau. FEBS Lett.368, 10–14 (1995).
  • Sun Q, Gamblin TC. Pseudo-hyperphosphorylation causing AD-like changes in tau has significant effects on its polymerization. Biochemistry48, 6002–6011 (2009).
  • Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow EM. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry38, 3549–3558 (1999).
  • Cho JH, Johnson GV. Glycogen synthase kinase 3β phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J. Biol. Chem.278, 187–193 (2003).
  • Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature399, 784–788 (1999).
  • Alonso AD, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med.2, 783–787 (1996).
  • Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol. Aging.24, 1079–1085 (2003).
  • Cuchillo-Ibanez I, Seereeram A, Byers HL et al. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J.22, 3186–3195 (2008).
  • Yuan A, Kumar A, Peterhoff C, Duff K, Nixon RA. Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J. Neurosci.28, 1682–1687 (2008).
  • Ittner LM, Fath T, Ke YD et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc. Natl Acad. Sci. USA105, 15997–16002 (2008).
  • Ittner LM, Ke YD, Gotz J. Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J. Biol. Chem.284, 20909–20916 (2009).
  • Zhu X, Lee HG, Perry G, Smith MA. Alzheimer disease, the two-hit hypothesis: an update. Biochim. Biophys. Acta1772, 494–502 (2007).
  • Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR et al. Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol. Aging26, 1015–1022 (2005).
  • Alonso AD, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K. Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J. Biol. Chem.276, 37967–37973 (2001).
  • Perez M, Ribe E, Rubio A et al. Characterization of a double (amyloid precursor protein-tau) transgenic: tau phosphorylation and aggregation. Neuroscience130, 339–347 (2005).
  • Wang JZ, Grundke-Iqbal I, Iqbal K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci.25, 59–68 (2007).
  • Noble W, Planel E, Zehr C et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo.Proc. Natl Acad. Sci. USA102, 6990–6995 (2005).
  • Le Corre S, Klafki HW, Plesnila N et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc. Natl Acad. Sci. USA20, 103, 9673–9678 (2006).
  • Caccamo A, Oddo S, Tran LX, LaFerla FM. Lithium reduces tau phosphorylation but not A β or working memory deficits in a transgenic model with both plaques and tangles. Am. J. Pathol.170, 1669–1675 (2007).
  • Sternberger NH, Sternberger LA, Ulrich J. aberrant neurofilament phosphorylation in Alzheimer disease. Proc. Natl. Acad. Sci. USA82, 4274–4276 (1985).
  • Ulloa L, De Garcini EM, Gómez-Ramos P, Morán MA, Avila J. Microtubule-associated protein MAP1B showing a fetal phosphorylation pattern is present in sites of neurofibrillary degeneration in brains of Alzheimer‘s disease patients. Mol. Brain Res.26, 113–122 (1994).
  • Vijayan S, El-Akkad E, Grundke-Iqbal I, Iqbal K. A pool of β-tubulin is hyperphosphorylated at serine residues in Alzheimer disease brain. FEBS Lett.509, 375–381 (2001).
  • Muntane G, Dalfo E, Martinez A, Ferrer I. Phosphorylation of tau and α-synuclein in synaptic-enriched fractions of the frontal cortex in Alzheimer’s disease, and in Parkinson’s disease and related α-synucleinopathies. Neuroscience.152, 913–923 (2008).
  • Petersen RC, Trojanowski JQ. Use of Alzheimer disease biomarkers: potentially yes for clinical trials but not yet for clinical practice. JAMA302, 436–437 (2009).
  • Formichi P, Battisti C, Radi E, Federico A. Cerebrospinal fluid tau, A β, and phosphorylated tau protein for the diagnosis of Alzheimer’s disease. J. Cell Physiol.208, 39–46 (2006).
  • Buerger K, Ewers M, Pirttila T et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain129, 3035–3041 (2006).
  • Hanger DP, Hughes K, Woodgett JR, Brion J-P, Anderton BH. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett.147, 58–62 (1992).
  • Mandelkow E-M, Drewes G, Biernat J et al. Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett.314, 315–321 (1992).
  • Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol.56, 70–78 (1997).
  • Giese KP. GSK-3: a key player in neurodegeneration and memory. IUBMB. Life.61, 516–521 (2009).
  • Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J.9, 2431–2438 (1990).
  • Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature406, 86–90 (2000).
  • Patel S, Woodgett J. Glycogen synthase kinase-3 and cancer: good cop, bad cop? Cancer Cell14, 351–353 (2008).
  • Ruel L, Bourouis M, Heitzler P, Pantesco V, Simpson P. Drosophila shaggy kinase and rat glycogen synthase kinase-3 have conserved activities and act downstream of Notch. Nature362, 557–560 (1993).
  • Lee HC, Tsai JN, Liao PY et al. Glycogen synthase kinase 3 α and 3 β have distinct functions during cardiogenesis of zebrafish embryo. BMC. Dev. Biol.7, 93–93 (2007).
  • Garrido JJ, Simon D, Varea O, Wandosell F. GSK3 α and GSK3 β are necessary for axon formation. FEBS Lett.581, 1579–1586 (2007).
  • Thornton TM, Pedraza-Alva G, Deng B et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation. Science320, 667–670 (2008).
  • Frame S, Cohen P, Biondi RM. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell7, 1321–1327 (2001).
  • Woods YL, Cohen P, Becker W et al. The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem. J.355, 609–615 (2001).
  • Liu SJ, Zhang JY, Li HL et al. Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J. Biol. Chem.279, 50078–50088 (2004).
  • Hoshi M, Sato M, Matsumoto S et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl. Acad. Sci. USA100, 6370–6375 (2003).
  • Aplin AE, Gibb GM, Jacobsen JS, Gallo JM, Anderton BH. In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3β. J. Neurochem.67, 699–707 (1996).
  • Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature423, 435–439 (2003).
  • Stambolic V, Woodgett JR. Mitogen inactivation of glycogen synthase kinase-3β in intact cells via serine 9 phosphorylation. Biochem. J.303, 701–704 (1994).
  • Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785–789 (1995).
  • Chatterjee S, Sang TK, Lawless GM, Jackson GR. Dissociation of tau toxicity and phosphorylation: role of GSK-3β, MARK and Cdk5 in a Drosophila model. Hum. Mol. Genet.18, 164–177 (2009).
  • Li M, Wang X, Meintzer MK, Laessig T, Birnbaum MJ, Heidenreich KA. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3β. Mol. Cell. Biol.20, 9356–9363 (2000).
  • Ding Q, Xia W, Liu JC et al. Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin. Mol. Cell19, 159–170 (2005).
  • Armstrong JL, Bonavaud SM, Toole BJ, Yeaman SJ. Regulation of glycogen synthesis by amino acids in cultured human muscle cells. J. Biol. Chem.276, 952–956 (2001).
  • Gomez-Ramos A, Dominguez J, Zafra D et al. Sodium tungstate decreases the phosphorylation of tau through GSK3 inactivation. J. Neurosci. Res.83, 264–273 (2006).
  • Ballou LM, Tian PY, Lin HY, Jiang YP, Lin RZ. Dual regulation of glycogen synthase kinase-3β by the α1A-adrenergic receptor. J. Biol. Chem.276, 40910–40916 (2001).
  • Takahashi-Yanaga F, Shiraishi F, Hirata M, Miwa Y, Morimoto S, Sasaguri T. Glycogen synthase kinase-3β is tyrosine-phosphorylated by MEK1 in human skin fibroblasts. Biochem. Biophys. Res. Commun.316, 411–415 (2004).
  • Bhat RV, Shanley J, Correll MP et al. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration. Proc. Natl Acad. Sci. USA97, 11074–11079 (2000).
  • Bikkavilli RK, Feigin ME, Malbon CC. p38 mitogen-activated protein kinase regulates canonical Wnt-β-catenin signaling by inactivation of GSK3β. J. Cell Sci.121, 3598–3607 (2008).
  • Patrick GN, Zukerberg L, Nikolic M, de la MS, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature402, 615–622 (1999).
  • Cruz JC, Tsai LH. Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol. Med.10, 452–458 (2004).
  • Tandon A, Yu H, Wang L et al. Brain levels of CDK5 activator p25 are not increased in Alzheimer’s or other neurodegenerative diseases with neurofibrillary tangles. J. Neurochem.86, 572–581 (2003).
  • Zukerberg LR, Patrick GN, Nikolic M et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron26, 633–646 (2000).
  • Cancino GI, Perez de Arce K, Castro PU, Toledo EM, von Bernhardi R, Alvarez AR. c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice. Neurobiol. Aging (2009) DOI: 10.1016/j.neurobiolaging.2009.07.007 (Epub ahead of print).
  • Cruz JC, Kim D, Moy LY et al. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid β in vivo.J. Neurosci.26, 10536–10541 (2006).
  • Lopes JP, Oliveira CR, Agostinho P. Role of cyclin-dependent kinase 5 in the neurodegenerative process triggered by amyloid-Beta and prion peptides: implications for Alzheimer’s disease and prion-related encephalopathies. Cell. Mol. Neurobiol.27, 943–957 (2007).
  • Sun KH, de Pablo Y, Vincent F, Johnson EO, Chavers AK, Shah K. Novel genetic tools reveal Cdk5’s major role in Golgi fragmentation in Alzheimer’s disease. Mol. Biol. Cell.19, 3052–3069 (2008).
  • Nakagomi S, Barsoum MJ, Bossy-Wetzel E, Sutterlin C, Malhotra V, Lipton SA. A Golgi fragmentation pathway in neurodegeneration. Neurobiol. Dis.29, 221–231 (2008).
  • Wen Y, Yu WH, Maloney B et al. Transcriptional regulation of β-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron57, 680–690 (2008).
  • Noble W, Olm V, Takata K et al. Cdk5 is a key factor in tau aggregation and tangle formation in vivo.Neuron38, 555–565 (2003).
  • Plattner F, Angelo M, Giese KP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem.281, 25457–25465 (2006).
  • Wen Y, Planel E, Herman M et al. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 β mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J. Neurosci.28, 2624–2632 (2008).
  • Morfini G, Szebenyi G, Brown H et al. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J.23, 2235–2245 (2004).
  • Beeler N, Riederer BM, Waeber G, abderrahmani A. Role of the JNK-Interacting Protein 1/Islet Brain 1 in cell degeneration in Alzheimer disease and Diabetes. Brain Res. Bull.28, 80(4–5), 274–281 (2009).
  • Sahara N, Murayama M, Lee B et al. Active c-jun N-terminal kinase induces caspase cleavage of tau and additional phosphorylation by GSK-3β is required for tau aggregation. Eur. J. Neurosci.27, 2897–2906 (2008).
  • Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta1773, 1358–1375 (2007).
  • Pyo H, Jou I, Jung S, Hong S, Joe EH. Mitogen-activated protein kinases activated by lipopolysaccharide and β-amyloid in cultured rat microglia. Neuroreport9, 871–874 (1998).
  • Kriem B, Sponne I, Fifre A et al. Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-β peptide. FASEB J.19, 85–87 (2005).
  • Drewes G, Lichtenberg-Kraag B, Doring F et al. Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J.11, 2131–2138 (1992).
  • Drechsel DN, Hyman AA, Cobb MH, Kirschner MW. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell3, 1141–1154 (1992).
  • Ferrer I, Blanco R, Carmona M, Puig B. Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J. Neural Transm.108, 1397–1415 (2001).
  • Sawamura N, Gong JS, Garver WS et al. Site-specific phosphorylation of tau accompanied by activation of mitogen-activated protein kinase (MAPK) in brains of Niemann-Pick type C mice. J. Biol. Chem.276, 10314–10319 (2001).
  • Matenia D, Mandelkow EM. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem. Sci.34, 332–342 (2009).
  • Nishimura I, Yang Y, Lu B. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila.Cell116, 671–682 (2004).
  • Dickey CA, Koren J, Zhang YJ et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc. Natl Acad. Sci. USA105, 3622–3627 (2008).
  • Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal.17, 675–689 (2005).
  • Yasojima K, Kuret J, DeMaggio AJ, McGeer E, McGeer PL. Casein kinase 1 delta mRNA is upregulated in Alzheimer disease brain. Brain Res.865, 116–120 (2000).
  • Kannanayakal TJ, Tao H, Vandre DD, Kuret J. Casein kinase-1 isoforms differentially associate with neurofibrillary and granulovacuolar degeneration lesions. Acta Neuropathol. (Berl.)111, 413–421 (2006).
  • Jicha GA, O’Donnell A, Weaver C, Angeletti R, Davies P. Hierarchical phosphorylation of recombinant tau by the paired-helical filament-associated protein kinase is dependent on cyclic AMP-dependent protein kinase. J. Neurochem.72, 214–224 (1999).
  • Ghoshal N, Smiley JF, DeMaggio AJ et al. A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. Am. J. Pathol.155, 1163–1172 (1999).
  • Li G, Yin H, Kuret J. Casein kinase 1 δ phosphorylates tau and disrupts its binding to microtubules. J. Biol. Chem.279, 15938–15945 (2004).
  • Sato S, Cerny RL, Buescher JL, Ikezu T. Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation. J. Neurochem.98, 1573–1584 (2006).
  • Flajolet M, He G, Heiman M, Lin A, Nairn AC, Greengard P. Regulation of Alzheimer’s disease amyloid- formation by casein kinase I. Proc. Natl Acad. Sci. USA104, 4159–4164 (2007).
  • Walter J, Fluhrer R, Hartung B et al. Phosphorylation regulates intracellular trafficking of β-secretase. J. Biol. Chem.276, 14634–14641 (2001).
  • Robertson J, Loviny TL, Goedert M et al. Phosphorylation of tau by cyclic-AMP-dependent protein kinase. Dementia4, 256–263 (1993).
  • Liu F, Li B, Tung EJ, Grundke-Iqbal I, Iqbal K, Gong CX. Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur. J. Neurosci.26, 3429–3436 (2007).
  • Creighton J, Zhu B, Alexeyev M, Stevens T. Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation. J. Cell Sci.121, 110–119 (2008).
  • Zhang Y, Li HL, Wang DL, Liu SJ, Wang JZ. A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells-imply a new mechanism in Alzheimer pathology. J. Neural Transm.113, 1487–1497 (2006).
  • Lebel M, Patenaude C, Allyson J, Massicotte G, Cyr M. Dopamine D1 receptor activation induces tau phosphorylation via cdk5 and GSK3 signaling pathways. Neuropharmacology57(4), 392–402 (2009).
  • Kumar U, Patel SC. Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer’s disease brain. Brain Res.1131, 187–196 (2007).
  • Su Y, Ryder J, Ni B. Inhibition of Aβ production and APP maturation by a specific PKA inhibitor. FEBS Lett.546, 407–410 (2003).
  • Tian Q, Zhang JX, Zhang Y et al. Biphasic effects of forskolin on tau phosphorylation and spatial memory in Rats. J. Alzheimers Dis. (2009) (Epub ahead of print).
  • Liang Z, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Downregulation of cAMP-dependent protein kinase by over-activated calpain in Alzheimer disease brain. J. Neurochem.103, 2462–2470 (2007).
  • Furukawa K, Wang Y, Yao PJ et al. Alteration in calcium channel properties is responsible for the neurotoxic action of a familial frontotemporal dementia tau mutation. J. Neurochem.87, 427–436 (2003).
  • Liu F, Liang Z, Shi J et al. PKA modulates GSK-3β- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Lett.580, 6269–6274 (2006).
  • Lebouvier T, Scales TM, Williamson R et al. The microtubule-associated protein tau is also phosphorylated on tyrosine. J. Alzheimers Dis. (2009) (In press).
  • Vazquez MC, Vargas LM, Inestrosa NC, Alvarez AR. c-Abl modulates AICD dependent cellular responses: transcriptional induction and apoptosis. J. Cell Physiol.220, 136–143 (2009).
  • Tamayev R, Zhou D, D’Adamio L. The interactome of the amyloid β precursor protein family members is shaped by phosphorylation of their intracellular domains. Mol. Neurodegener.4, 28 (2009).
  • Ho GJ, Hashimoto M, Adame A et al. Altered p59Fyn kinase expression accompanies disease progression in Alzheimer’s disease: implications for its functional role. Neurobiol. Aging.26, 625–635 (2005).
  • Bhaskar K, Yen SH, Lee G. Disease-related modifications in tau affect the interaction between Fyn and Tau. J. Biol. Chem.280, 35119–35125 (2005).
  • Lee G, Thangavel R, Sharma VM et al. Phosphorylation of tau by fyn: implications for Alzheimer’s disease. J. Neurosci.24, 2304–2312 (2004).
  • Williamson R, Scales T, Clark BR et al. Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-β peptide exposure: involvement of Src family protein kinases. J. Neurosci22, 10–20 (2002).
  • Alvarez AR, Sandoval PC, Leal NR, Castro PU, Kosik KS. Activation of the neuronal c-Abl tyrosine kinase by amyloid-β-peptide and reactive oxygen species. Neurobiol. Dis.17, 326–336 (2004).
  • Cancino GI, Toledo EM, Leal NR et al. STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer’s β-amyloid deposits. Brain131, 2425–2442 (2008).
  • Williamson R, Usardi A, Hanger DP, Anderton BH. Membrane-bound β-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J.22, 1552–1559 (2008).
  • Lambert MP, Barlow AK, Chromy BA et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA95, 6448–6453 (1998).
  • Chin J, Palop JJ, Yu GQ, Kojima N, Masliah E, Mucke L. Fyn kinase modulates synaptotoxicity, but not aberrant sprouting, in human amyloid precursor protein transgenic mice. J. Neurosci.24, 4692–4697 (2004).
  • Planel E, Yasutake K, Fujita SC, Ishiguro K. Inhibition of protein phosphatase 2A overrides tau protein kinase I/glycogen synthase kinase 3 β and cyclin-dependent kinase 5 inhibition and results in tau hyperphosphorylation in the hippocampus of starved mouse. J. Biol. Chem.276, 34298–34306 (2001).
  • Sun X, Cole GM, Chu T et al. Intracellular Aβ is increased by okadaic acid exposure in transfected neuronal and non-neuronal cell lines. Neurobiol. Aging23, 195–203 (2002).
  • Kim D, Su J, Cotman CW. Sequence of neurodegeneration and accumulation of phosphorylated tau in cultured neurons after okadaic acid treatment. Brain Res.839, 253–262 (1999).
  • Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, Lee VM. PP2A mRNA expression is quantitatively decreased in Alzheimer’s disease hippocampus. Exp. Neurol.168, 402–412 (2001).
  • Tanimukai H, Grundke-Iqbal I, Iqbal K. Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am. J. Pathol.166, 1761–1771 (2005).
  • Liu R, Wang JZ. Protein phosphatase 2A in Alzheimer’s disease. Pathophysiology16(4), 273–277 (2009).
  • Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci.22, 1942–1950 (2005).
  • Planel E, Miyasaka T, Launey T et al. Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer’s disease. J. Neurosci.24, 2401–2411 (2004).
  • Li L, Sengupta A, Haque N, Grundke-Iqbal I, Iqbal K. Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett.566, 261–269 (2004).
  • Chohan MO, Khatoon S, Iqbal IG, Iqbal K. Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett.580, 3973–3979 (2006).
  • Lefebvre T, Ferreira S, Dupont-Wallois L et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins – a role in nuclear localization. Biochim. Biophys. Acta1619, 167–176 (2003).
  • Dias WB, Hart GW. O-GlcNAc modification in diabetes and Alzheimer’s disease. Mol. Biosyst.3, 766–772 (2007).
  • Wells L, Kreppel LK, Comer FI, Wadzinski BE, Hart GW. O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J. Biol. Chem.279, 38466–38470 (2004).
  • Yuzwa SA, Macauley MS, Heinonen JE et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo.Nat. Chem. Biol.4, 483–490 (2008).
  • Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation. J. Alzheimers Dis.9, 1–12 (2006).
  • Lim J, Lu KP. Pinning down phosphorylated tau and tauopathies. Biochim. Biophys. Acta1739, 311–322 (2005).
  • Galas MC, Dourlen P, Begard S et al. The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease. J. Biol. Chem.281, 19296–19304 (2006).
  • Lim J, Balastik M, Lee TH et al. Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J. Clin. Invest.118, 1877–1889 (2008).
  • Bulbarelli A, Lonati E, Cazzaniga E, Gregori M, Masserini M. Pin1 affects Tau phosphorylation in response to Aβ oligomers. Mol. Cell. Neurosci.42, 75–80 (2009).
  • Pastorino L, Sun A, Lu PJ et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature440, 528–534 (2006).
  • Wang S, Simon BP, Bennett DA, Schneider JA, Malter JS, Wang DS. The significance of Pin1 in the development of Alzheimer’s disease. J. Alzheimers Dis.11, 13–23 (2007).
  • Anderton BH, Betts J, Blackstock WP et al. Sites of phosphorylation in tau and factors affecting their regulation. Biochem. Soc. Symp.73–80 (2001).
  • Tatebayashi Y, Miyasaka T, Chui DH et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc. Natl Acad. Sci. USA99, 13896–13901 (2002).
  • Stoothoff WH, Johnson GV. Tau phosphorylation: physiological and pathological consequences. Biochim. Biophys. Acta1739, 280–297 (2005).
  • Town T, Zolton J, Shaffner R et al. p35/Cdk5 pathway mediates soluble amyloid-β peptide-induced tau phosphorylation in vitro.J. Neurosci. Res.69, 362–372 (2002).
  • Spires TL, Orne JD, Santacruz K et al. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am. J. Pathol.168, 1598–1607 (2006).
  • Fath T, Eidenmuller J, Brandt R. Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease. J. Neurosci.22, 9733–9741 (2002).
  • Shahani N, Subramaniam S, Wolf T, Tackenberg C, Brandt R. Tau aggregation and progressive neuronal degeneration in the absence of changes in spine density and morphology after targeted expression of Alzheimer’s disease-relevant tau constructs in organotypic hippocampal slices. J. Neurosci.26, 6103–6114 (2006).
  • Hundelt M, Fath T, Selle K et al. Altered phosphorylation but no neurodegeneration in a mouse model of tau hyperphosphorylation. Neurobiol. Aging (2009) DOI: 10.1016/j.neurobiolaging.2009.06.007 (Epub ahead of print).
  • Brion JP, Tremp G, Octave JN. Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer’s disease. Am. J. Pathol.154, 255–270 (1999).
  • Spittaels K, Van den HC, Van Dorpe J et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am. J. Pathol.155, 2153–2165 (1999).
  • Probst A, Gotz J, Wiederhold KH et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol.99, 469–481 (2000).
  • Higuchi M, Ishihara T, Zhang B et al. Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron35, 433–446 (2002).
  • Lambourne SL, Sellers LA, Bush TG et al. Increased tau phosphorylation on mitogen-activated protein kinase consensus sites and cognitive decline in transgenic models for Alzheimer’s disease and FTDP-17: evidence for distinct molecular processes underlying tau abnormalities. Mol. Cell. Biol.25, 278–293 (2005).
  • Yoshiyama Y, Higuchi M, Zhang B et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron53, 337–351 (2007).
  • Duff K, Knight H, Refolo LM et al. Characterization of pathology in transgenic mice overexpressing human genomic and cDNA tau transgenes. Neurobiol. Dis.7, 87–98 (2000).
  • Andorfer C, Kress Y, Espinoza M et al. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J. Neurochem.86, 582–590 (2003).
  • Clavaguera F, Bolmont T, Crowther RA et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol.11, 909–913 (2009).
  • Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. Decreased nuclear ss-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3ss conditional transgenic mice. EMBO J.20, 27–39 (2001).
  • Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J. Neurochem.83, 1529–1533 (2002).
  • Engel T, Hernandez F, Avila J, Lucas JJ. Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J. Neurosci.26, 5083–5090 (2006).
  • Jackson GR, Wiedau-Pazos M, Sang T-K et al. Human wild-type Tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila.Neuron34, 509–519 (2002).
  • Ahlijanian MK, Barrezueta NX, Williams RD et al. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc. Natl Acad. Sci. USA97, 2910–2915 (2000).
  • Bian F, Nath R, Sobocinski G et al. Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J. Comp Neurol.446, 257–266 (2002).
  • Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron40, 471–483 (2003).
  • Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron48, 825–838 (2005).
  • Oddo S, Caccamo A, Shepherd JD et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron39, 409–421 (2003).
  • Arias E, Gallego-Sandin S, Villarroya M, Garcia AG, Lopez MG. Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors. J. Pharmacol. Exp. Ther.315, 1346–1353 (2005).
  • Noh MY, Koh SH, Kim Y, Kim HY, Cho GW, Kim SH. Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-β-induced neuronal cell death. J. Neurochem.108, 1116–1125 (2009).
  • Bitner RS, Nikkel AL, Markosyan S, Otte S, Puttfarcken P, Gopalakrishnan M. Selective α7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3β and decreases tau phosphorylation in vivo.Brain Res.1265, 65–74 (2009).
  • Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz Aβ. β-amyloid(1–42) binds to α7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J. Biol. Chem.275, 5626–5632 (2000).
  • Dziewczapolski G, Glogowski CM, Masliah E, Heinemann SF. Deletion of the α7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J. Neurosci.29, 8805–8815 (2009).
  • Bitner RS, Bunnelle WH, Anderson DJ et al. Broad-spectrum efficacy across cognitive domains by α7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J. Neurosci.27, 10578–10587 (2007).
  • Hampel H, Ewers M, Burger K et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry70, 922–931 (2009).
  • Noble W, Garwood CJ, Hanger DP. Minocycline as a potential therapeutic agent in neurodegenerative disorders characterised by protein misfolding. Prion3, 78–83 (2009).
  • Noble W, Garwood C, Stephenson J, Kinsey AM, Hanger DP, Anderton BH. Minocycline reduces the development of abnormal tau species in models of Alzheimer’s disease. FASEB J.23, 739–750 (2009).
  • Kontsekova E, Ivanovova N, Handzusova M, Novak M. Chaperone-like antibodies in neurodegenerative tauopathies: implication for immunotherapy. Cell. Mol. Neurobiol.29, 793–798 (2009).
  • Rosenmann H, Grigoriadis N, Karussis D et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch. Neurol.63, 1459–1467 (2006).
  • Fox NC, Black RS, Gilman S et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology64, 1563–1572 (2005).
  • Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci.27, 9115–9129 (2007).
  • Kayed R, Jackson GR. Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Curr. Opin. Immunol.21, 359–363 (2009).
  • Zilka N, Kontsekova E, Novak M. Chaperone-like antibodies targeting misfolded tau protein: new vistas in the immunotherapy of neurodegenerative foldopathies. J. Alzheimers Dis.15, 169–179 (2008).
  • Wilcock DM, Gharkholonarehe N, Van Nostrand WE, Davis J, Vitek MP, Colton CA. Amyloid reduction by amyloid-β vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer’s disease. J. Neurosci.29, 7957–7965 (2009).
  • Thakker DR, Weatherspoon MR, Harrison J et al. Intracerebroventricular amyloid-β antibodies reduce cerebral amyloid angiopathy and associated micro-hemorrhages in aged Tg2576 mice. Proc. Natl Acad. Sci. USA106, 4501–4506 (2009).
  • Gotz J, Tolnay M, Barmettler R, Chen F, Probst A, Nitsch RM. Oligodendroglial tau filament formation in transgenic mice expressing G272V tau. Eur. J. Neurosci.13, 2131–2140 (2001).
  • Taniguchi T, Doe N, Matsuyama S et al. Transgenic mice expressing mutant (N279K) human tau show mutation dependent cognitive deficits without neurofibrillary tangle formation. FEBS Lett.579, 5704–5712 (2005).
  • Eckermann K, Mocanu MM, Khlistunova I et al. The β-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J. Biol. Chem.282, 31755–31765 (2007).
  • Allen B, Ingram E, Takao M et al. abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J. Neurosci.22, 9340–9351 (2002).
  • Tanemura K, Akagi T, Murayama M et al. Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol. Dis.8, 1036–1045 (2001).
  • Goedert M, Ghetti B, Spillantini MG. Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Their relevance for understanding the neurogenerative process. Ann. NY Acad. Sci.920, 74–83 (2000).
  • Hasegawa M, Smith MJ, Goedert M. Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett.437, 207–210 (1998).
  • Liu F, Gong CX. Tau exon 10 alternative splicing and tauopathies. Mol. Neurodegener.3, 8 (2008).
  • de Silva R, Lashley T, Strand C et al. An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathol.111, 329–340 (2006).
  • Kertesz A. Clinical features and diagnosis of frontotemporal dementia. Front. Neurol. Neurosci.24, 140–148 (2009).
  • Takashima A, Honda T, Yasutake K et al. Activation of tau protein kinase I/glycogen synthase kinase-3β by amyloid β peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci. Res.31, 317–323 (1998).
  • Takashima A, Noguchi K, Sato K, Hoshino T, Imahori K. Tau protein kinase I is essential for amyloid β-protein- induced neurotoxicity. Proc. Natl Acad. Sci. USA90, 7789–7793 (1993).
  • Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature405, 360–364 (2000).
  • Alvarez A, Toro R, Caceres A, Maccioni RB. Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death. FEBS Lett.459, 421–426 (1999).
  • Ryder J, Su Y, Liu F, Li B, Zhou Y, Ni B. Divergent roles of GSK3 and CDK5 in APP processing. Biochem. Biophys. Res. Commun.312, 922–929 (2003).
  • Mills J, Laurent CD, Lam F et al. Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J. Neurosci.17, 9415–9422 (1997).
  • Bozyczko-Coyne D, O’Kane TM, Wu ZL et al. CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with Aβ-induced cortical neuron apoptosis. J. Neurochem.77, 849–863 (2001).
  • Webster NJ, Green KN, Settle VJ, Peers C, Vaughan PF. Altered processing of the amyloid precursor protein and decreased expression of ADAM 10 by chronic hypoxia in SH-SY5Y: no role for the stress-activated JNK and p38 signalling pathways. Brain Res. Mol. Brain Res.130, 161–169 (2004).
  • Chauhan A, Chauhan VP, Murakami N, Brockerhoff H, Wisniewski HM. Amyloid β-protein stimulates casein kinase I and casein kinase II activities. Brain Res.629, 47–52 (1993).
  • Zhao L, Qian ZM, Zhang C, Wing HY, Du F, Ya K. Amyloid β-peptide 31–35-induced neuronal apoptosis is mediated by caspase-dependent pathways via cAMP-dependent protein kinase A activation. Aging Cell7, 47–57 (2008).
  • Hoe HS, Minami SS, Makarova A et al. Fyn modulation of Dab1 effects on amyloid precursor protein and ApoE receptor 2 processing. J. Biol. Chem.283, 6288–6299 (2008).
  • McDonald DR, Brunden KR, Landreth GE. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J. Neurosci.17, 2284–2294 (1997).
  • Song MS, Rauw G, Baker GB, Kar S. Memantine protects rat cortical cultured neurons against β-amyloid-induced toxicity by attenuating tau phosphorylation. Eur. J. Neurosci.28, 1989–2002 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.