141
Views
25
CrossRef citations to date
0
Altmetric
Review

The glycobiology of brain tumors: disease relevance and therapeutic potential

, &
Pages 1529-1545 | Published online: 09 Jan 2014

References

  • Louis DN, Posner J, Jacobs T et al; National Cancer Institute/National Institute of Neurological Disorders and Stroke. Report of the Brain Tumor Progress Review Group. NIH, MD, USA (2000).
  • Asher A, Burger PC, Demes J et al. Facts and statistics. In: A Primer of Brain Tumors: a Patient’s Reference Manual (8th Edition). American Brain Tumor Association, IL, USA (2008).
  • CBTRUS (2007–2008). Primary Brain Tumors in the United States Statistical Report 2000–2004. Central Brain Tumor Registry of the United States, IL, USA (2008).
  • SEER Pediatric Monograph, 1975–94, Table XXVII–7.
  • Jemal A, Siegel R, Ward E et al. American Cancer Society: cancer statistics. CA Cancer J. Clin.58(2) 71–96 (2008).
  • Kleihues P, Louis DN, Scheithauer BW et al. The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol.61(3), 215–225 (2002).
  • Cancer Facts and Figures 2000. American Cancer Society, GA, USA (2000).
  • Yung A, Sawaya R, Curran W, Fuller G. Intracranial metastatic central nervous system tumors. In: Cancer in the Nervous System. Levin V (Ed.). Churchill Livingstone Inc., NY, USA (1996).
  • CBTRUS (2002–2003). Primary Brain Tumors in the United States Statistical Report 1995–1999. Central Brain Tumor Registry of the United States, IL, USA (2003).
  • Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl Acad. Sci. USA99(16), 10231–10233 (2002).
  • Traylor TD, Hogan EL. Gangliosides of human cerebral astrocytomas. J. Neurochem.34(1), 126–131 (1980).
  • Fredman P, von Holst H, Collins VP et al. Potential ganglioside antigens associated with human gliomas. Neurol. Res.8(2), 123–126 (1986).
  • Wikstrand CJ, He XM, Fuller GN et al. Occurrence of lacto series gangliosides 3’-isoLM1 and 3’,6’-isoLD1 in human gliomas in vitro and in vivo. J. Neuropathol. Exp. Neurol.50(6), 756–769 (1991).
  • Jennemann R, Mennel HD, Bauer BL, Wiegandt H. Glycosphingolipid component profiles of human gliomas correlate with histological tumour types: analysis of inter-individual and tumour-regional distribution. Acta Neurochir.126(2–4), 170–178 (1994).
  • Jennemann R, Rodden A, Bauer BL, Mennel HD, Wiegandt H. Glycosphingolipids of human gliomas. Cancer Res.50(23), 7444–7449 (1990).
  • Shinoura N, Dohi T, Kondo T, Yoshioka M, Takakura K, Oshima M. Ganglioside composition and its relation to clinical data in brain tumors. Neurosurgery31(3), 541–549 (1992).
  • Pan XL, Izumi T, Yamada H, Akiyoshi K, Suenobu S, Yokoyama S. Ganglioside patterns in neuroepithelial tumors of childhood. Brain Dev.22(3), 196–198 (2000).
  • Chang F, Li R, Noon K, Gage D, Ladisch S. Human medulloblastoma gangliosides. Glycobiology7(4), 523–530 (1997).
  • Markowska-Woyciechowska A, Bronowicz A, Ugorski M, Gamian E, Jablonski P. Study on ganglioside composition in brain tumours supra- and infratentorial. Neurol. Neurochir. Pol.34(6 Suppl.), 124–130 (2000).
  • Comas TC, Tai T, Kimmel D et al. Immunohistochemical staining for ganglioside GD1b as a diagnostic and prognostic marker for primary human brain tumors. Neuro. Oncol.1(4), 261–267 (1999).
  • Popko B, Pearl DK, Walker DM et al. Molecular markers that identify human astrocytomas and oligodendrogliomas. J. Neuropathol. Exp. Neurol.61(4), 329–338 (2002).
  • Hamasaki H, Aoyagi M, Kasama T, Handa S, Hirakawa K, Taki T. GT1b in human metastatic brain tumors: GT1b as a brain metastasis-associated ganglioside. Biochim. Biophys. Acta1437(1), 93–99 (1999).
  • Mennel HD, Lell B. Ganglioside (GD2) expression and intermediary filaments in astrocytic tumors. Clin. Neuropathol.24(1), 13–18 (2005).
  • Ladisch S, Chang F, Li R, Cogen P, Johnson D. Detection of medulloblastoma and astrocytoma-associated ganglioside GD3 in cerebrospinal fluid. Cancer Lett.120(1), 71–78 (1997).
  • Ladisch S, Wu ZL, Feig S et al. Shedding of GD2 ganglioside by human neuroblastoma. Int. J. Cancer39(1), 73–76 (1987).
  • Nakamura O, Iwamori M, Matsutani M, Takakura K. Ganglioside GD3 shedding by human gliomas. Acta Neurochir.109(1–2), 34–36 (1991).
  • Li R, Gage D, McKallip R, Ladisch S. Structural characterization and in vivo immunosuppressive activity of neuroblastoma GD2. Glycoconj. J.13(3), 385–389 (1996).
  • Wiranowska M, Ladd S, Smith SR, Gottschall PE. CD44 adhesion molecule and neuro-glial proteoglycan NG2 as invasive markers of glioma. Brain Cell Biol.35(2–3), 159–172 (2006).
  • Prag S, Lepekhin EA, Kolkova K et al. NCAM regulates cell motility. J. Cell Sci.115(Pt 2), 283–292 (2002).
  • Sasaki H, Yoshida K, Ikeda E et al. Expression of the neural cell adhesion molecule in astrocytic tumors: an inverse correlation with malignancy. Cancer82(10), 1921–1931 (1998).
  • Perego C, Vanoni C, Massari S et al. Invasive behaviour of glioblastoma cell lines is associated with altered organisation of the cadherin-catenin adhesion system. J. Cell. Sci.115(Pt 16), 3331–3340 (2002).
  • Asano K, Duntsch CD, Zhou Q et al. Correlation of N-cadherin expression in high grade gliomas with tissue invasion. J. Neurooncol.70(1), 3–15 (2004).
  • Utsuki S, Sato Y, Oka H, Tsuchiya B, Suzuki S, Fujii K. Relationship between the expression of E-, N-cadherins and β-catenin and tumor grade in astrocytomas. J. Neurooncol.57(3), 187–192 (2002).
  • Rorive S, Belot N, Decaestecker C et al. Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia33(3), 241–255 (2001).
  • Jung TY, Jung S, Ryu HH et al. Role of galectin-1 in migration and invasion of human glioblastoma multiforme cell lines. J. Neurosurg.109(2), 273–284 (2008).
  • Gratsa A, Rooprai HK, Rogers JP, Martin KK, Pilkington GJ. Correlation of expression of NCAM and GD3 ganglioside to motile behaviour in neoplastic glia. Anticancer Res.17(6B), 4111–4117 (1997).
  • Hasan SS, Ashraf GM, Banu N. Galectins – potential targets for cancer therapy. Cancer Lett.253(1), 25–33 (2007).
  • Tucker GC. Integrins: molecular targets in cancer therapy. Curr. Oncol. Rep.8(2), 96–103 (2006).
  • Paulus W, Baur I, Beutler AS, Reeves SA. Diffuse brain invasion of glioma cells requires b 1 integrins. Lab. Invest.75(6), 819–826 (1996).
  • Gu J, Taniguchi N. Regulation of integrin functions by N-glycans. Glycoconj. J.21(1–2), 9–15 (2004).
  • Zhao Y, Sato Y, Isaji T et al. Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J.275(9), 1939–1948 (2008).
  • Yamamoto H, Kaneko Y, Rebbaa A, Bremer EG, Moskal JR. α2,6-Sialyltransferase gene transfection into a human glioma cell line (U373 MG) results in decreased invasivity. J. Neurochem.68(6), 2566–2576 (1997).
  • Yamamoto H, Oviedo A, Sweeley C, Saito T, Moskal JR. α2,6-sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Cancer Res.61(18), 6822–6829 (2001).
  • Viapiano MS, Matthews RT, Hockfield S. A novel membrane-associated glycovariant of BEHAB/brevican is up-regulated during rat brain development and in a rat model of invasive glioma. J. Biol. Chem.278(35), 33239–33247 (2003).
  • Viapiano MS, Bi WL, Piepmeier J, Hockfield S, Matthews RT. Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. Cancer Res.65(15), 6726–6733 (2005).
  • Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R. Epidermal growth factor receptor-mediated signal transduction in the development and therapy of gliomas. Clin. Cancer Res.12(24), 7261–7270 (2006).
  • Huang PH, Mukasa A, Bonavia R et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc. Natl Acad. Sci. USA104(31), 12867–12872 (2007).
  • Rao RD, Uhm JH, Krishnan S, James CD. Genetic and signaling pathway alterations in glioblastoma: relevance to novel targeted therapies. Front Biosci.8, E270–E280 (2003).
  • Guo HB, Randolph M, Pierce M. Inhibition of a specific N-glycosylation activity results in attenuation of breast carcinoma cell invasiveness-related phenotypes: inhibition of epidermal growth factor-induced dephosphorylation of focal adhesion kinase. J. Biol. Chem.282(30), 22150–22162 (2007).
  • Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J. Biol. Chem.281(5), 2572–2577 (2006).
  • Scott AM, Lee FT, Tebbutt N et al. A Phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc. Natl Acad. Sci.USA104(10), 4071–4076 (2007).
  • Nister M, Claesson-Welsh L, Eriksson A, Heldin CH, Westermark B. Differential expression of platelet-derived growth factor receptors in human malignant glioma cell lines. J. Biol. Chem.266(25), 16755–16763 (1991).
  • Fish RG. Role of gangliosides in tumour progression: a molecular target for cancer therapy? Med. Hypotheses46(2), 140–144 (1996).
  • Pilkington GJ. Glioma heterogeneity in vitro: the significance of growth factors and gangliosides. Neuropathol. Appl. Neurobiol.18(5), 434–442 (1992).
  • Yates AJ. Glycolipids and gliomas: a review. Neurochem. Pathol.8(3), 157–180 (1988).
  • Brain Tumor Invasion. Mikkelsen T, Bjerkvig R, Laerum O, Rosenblum ML (Eds). Wiley Liss, New York, USA (1998).
  • Burchell B. Genetic variation of human UDP-glucuronosyltransferase: implications in disease and drug glucuronidation. Am. J. Pharmacogenomics3(1), 37–52 (2003).
  • Chakraborty AK, Pawelek JM. GnT-V, macrophage and cancer metastasis: a common link. Clin. Exp. Metastasis20(4), 365–373 (2003).
  • Dall’Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj. J.18(11–12), 841–850 (2001).
  • Drinnan NB, Halliday J, Ramsdale T. Inhibitors of sialyltransferases: potential roles in tumor growth and metastasis. Mini Rev. Med. Chem.3(6), 501–517 (2003).
  • Kaneko Y, Yamamoto H, Kersey DS, Colley KJ, Leestma JE, Moskal JR. The expression of Gal β 1,4GlcNAc α 2,6 sialyltransferase and a 2,6-linked sialoglycoconjugates in human brain tumors. Acta Neuropathol.91(3), 284–292 (1996).
  • Yamamoto H, Saito T, Kaneko Y et al. α2,3-sialyltransferase mRNA and α2,3-linked glycoprotein sialylation are increased in malignant gliomas. Brain Res.755(1), 175–179 (1997).
  • Yamamoto H, Swoger J, Greene S et al. β1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity. Cancer Res.60(1), 134–142 (2000).
  • Dawson G, Moskal JR, Dawson SA. Transfection of 2,6 and 2,3-sialyltransferase genes and GlcNAc-transferase genes into human glioma cell line U-373 MG affects glycoconjugate expression and enhances cell death. J. Neurochem.89(6), 1436–1444 (2004).
  • Xu S, Zhu X, Zhang S et al. Over-expression of β-1,4-galactosyltransferase I, II, and V in human astrocytoma. J. Cancer Res. Clin. Oncol.127(8), 502–506 (2001).
  • Hoon DS, Kuo CT, Wen S et al. Ganglioside GM2/GD2 synthetase mRNA is a marker for detection of infrequent neuroblastoma cells in bone marrow. Am. J. Pathol.159(2), 493–500 (2001).
  • Bevilacqua M, Butcher E, Furie B et al. Selectins: a family of adhesion receptors. Cell67(2), 233 (1991).
  • Kjellen L, Lindahl U. Proteoglycans: structures and interactions. Annu. Rev. Biochem.60, 443–475 (1991).
  • Goss PE, Reid CL, Bailey D, Dennis JW. Phase IB clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin. Cancer Res.3(7), 1077–1086 (1997).
  • Becker R, Eichler MK, Jennemann R, Bertalanffy H. Phase I clinical trial on adjuvant active immunotherapy of human gliomas with GD2-conjugate. Br. J. Neurosurg.16(3), 269–275 (2002).
  • Fujimoto Y, Izumoto S, Suzuki T et al. Ganglioside GM3 inhibits proliferation and invasion of glioma. J. Neurooncol.71(2), 99–106 (2005).
  • Ishikawa D, Kikkawa H, Ogino K, Hirabayashi Y, Oku N, Taki T. GD1α-replica peptides functionally mimic GD1α, an adhesion molecule of metastatic tumor cells, and suppress the tumor metastasis. FEBS Lett.441(1), 20–24 (1998).
  • Hanessian S, Zhan L, Bovey R, Saavedra OM, Juillerat-Jeanneret L. Functionalized glycomers as growth inhibitors and inducers of apoptosis in human glioblastoma cells. J. Med. Chem.46(17), 3600–3611 (2003).
  • Abad-Rodriguez J, Bernabe M, Romero-Ramirez L, Vallejo-Cremades M, Fernandez-Mayoralas A, Nieto-Sampedro M. Purification and structure of neurostatin, an inhibitor of astrocyte division of mammalian brain. J. Neurochem.74(6), 2547–2556 (2000).
  • Aguilera B, Romero-Ramirez L, Abad-Rodriguez J, Corrales G, Nieto-Sampedro M, Fernandez-Mayoralas A. Novel disaccharide inhibitors of human glioma cell division. J. Med. Chem.41(23), 4599–4606 (1998).
  • Vallejo-Cremades M, Nieto-Sampedro M. Neurostatin: cellular sources and cellular targets of the inhibitor. Neuron Glia. Biol.2(2), 115–123 (2006).
  • Rebbaa A, Chou PM, Bremer EG. Modulation of growth factor response in brain tumors by complex carbohydrates. Bull. Cancer91(4), E15–E60 (2004).
  • Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res.56(23), 5309–5318 (1996).
  • Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology15(8), 805–817 (2005).
  • Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P. The human sialyltransferase family. Biochimie83(8), 727–737 (2001).
  • Kitagawa H, Paulson JC. Differential expression of five sialyltransferase genes in human tissues. J. Biol. Chem.269(27), 17872–17878 (1994).
  • Recchi MA, Hebbar M, Hornez L, Harduin-Lepers A, Peyrat JP, Delannoy P. Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res.58(18), 4066–4070 (1998).
  • Peyrat JP, Recchi MA, Hebbar M et al. Regulation of sialyltransferase expression by estradiol and 4-OH-tamoxifen in the human breast cancer cell MCF-7. Mol. Cell Biol. Res. Commun.3(1), 48–52 (2000).
  • Julien S, Krzewinski-Recchi MA, Harduin-Lepers A et al. Expression of sialyl-Tn antigen in breast cancer cells transfected with the human CMP-Neu5Ac: GalNAc α2,6-sialyltransferase (ST6GalNac I) cDNA. Glycoconj. J.18(11–12), 883–893 (2001).
  • Marcos NT, Pinho S, Grandela C et al. Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res.64(19), 7050–7057 (2004).
  • Grimes WJ. Glycosyltransferase and sialic acid levels of normal and transformed cells. Biochemistry12(5), 990–996 (1973).
  • Nicolson GL. Cancer metastasis. Organ colonization and the cell-surface properties of malignant cells. Biochim. Biophys. Acta695(2), 113–176 (1982).
  • Roth J. Cellular sialoglycoconjugates: a histochemical perspective. Histochem. J.25(10), 687–710 (1993).
  • Schirrmacher V, Altevogt P, Fogel M et al. Importance of cell surface carbohydrates in cancer cell adhesion, invasion and metastasis: does sialic acid direct metastatic behaviour? Invasion Metastasis2, 313–360 (1982).
  • Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology3(2), 97–130 (1993).
  • Warren L, Fuhrer JP, Buck CA. Surface glycoproteins of normal and transformed cells: a difference determined by sialic acid and a growth-dependent sialyl transferase. Proc. Natl Acad. Sci. USA69(7), 1838–1842 (1972).
  • Collard JG, Schijven JF, Bikker A, La Riviere G, Bolscher JG, Roos E. Cell surface sialic acid and the invasive and metastatic potential of T-cell hybridomas. Cancer Res.46(7), 3521–3527 (1986).
  • Passaniti A, Hart GW. Cell surface sialylation and tumor metastasis: metastatic potential of B16 melanoma variants correlates with their relative numbers of specific penultimate oligosaccharide structures. J. Biol. Chem.263(16), 7591–7603 (1988).
  • Werkmeister JA, Pross HF, Roder JC. Modulation of K562 cells with sodium butyrate: association of impaired NK susceptibility with sialic acid and analysis of other parameters. Int. J. Cancer32(1), 71–78 (1983).
  • Broquet P, Baubichon-Cortay H, George P, Peschard MJ, Louisot P. Effect of desipramine on a glycoprotein sialyltransferase activity in C6 cultured glioma cells. J. Neurochem.54(2), 388–394 (1990).
  • Broquet P, George P, Geoffroy J, Reboul P, Louisot P. Study of O-glycan sialylation in C6 cultured glioma cells: evidence for post-translational regulation of a β-galactoside α 2,3 sialyltransferase activity by N-glycosylation. Biochem. Biophys. Res. Commun.178(3), 1437–1443 (1991).
  • Moskal JR, Gardner DA, Basu S. Changes in glycolipid glycosyltransferases and glutamate decarboxylase and their relationship to differentiation in neuroblastoma cells. Biochem. Biophys. Res. Commun.61(2), 751–758 (1974).
  • Reboul P, Broquet P, George P, Louisot P. Effect of retinoic acid on two glycosyltransferase activities in C6 cultured glioma cells. Int. J. Biochem.22(8), 889–893 (1990).
  • Stoykova LI, Glick MC. Purification of an α-2,8-sialyltransferase, a potential initiating enzyme for the biosynthesis of polysialic acid in human neuroblastoma cells. Biochem. Biophys. Res. Commun.217(3), 777–783 (1995).
  • Shen AL, Chou MD, Chi CW, Lee LS. Alterations in serum sialyltransferase activities in patients with brain tumors. Surg. Neurol.22(5), 509–514 (1984).
  • Gornati R, Basu S, Montorfano G, Berra B. Glycosyltransferase activities in human meningiomas: preliminary results. Cancer Biochem. Biophys.15(1), 1–10 (1995).
  • Yamamoto H, Kaneko Y, Vandermulen D et al. The expression of CMP-NeuAc: Gal β 1,4GlcNAc α 2,6 sialyltransferase [EC 2.4.99.1] and glycoproteins bearing αp 2,6-linked sialic acids in human brain tumours. Glycoconj. J.12(6), 848–856 (1995).
  • Wen DX, Livingston BD, Medzihradszky KF, Kelm S, Burlingame AL, Paulson JC. Primary structure of Gal β 1,3(4)GlcNAc α 2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. Evidence for a protein motif in the sialyltransferase gene family. J. Biol. Chem.267(29), 21011–21019 (1992).
  • Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta1473(1), 21–34 (1999).
  • Varki A. Glycosylation changes in cancer. In: Essentials of Glycobiology. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J. (Eds). Cold Spring Harbor Laboratory Press, NY, USA 535–549 (1999).
  • Luo J, Isaacs WB, Trent JM, Duggan DJ. Looking beyond morphology: cancer gene expression profiling using DNA microarrays. Cancer Invest.21(6), 937–949 (2003).
  • Luo Z, Geschwind DH. Microarray applications in neuroscience. Neurobiol. Dis.8(2), 183–193 (2001).
  • Russo G, Zegar C, Giordano A. Advantages and limitations of microarray technology in human cancer. Oncogene22(42), 6497–6507 (2003).
  • Kemmner W, Roefzaad C, Haensch W, Schlag PM. Glycosyltransferase expression in human colonic tissue examined by oligonucleotide arrays. Biochim. Biophys. Acta1621(3), 272–279 (2003).
  • Kroes RA, Panksepp J, Burgdorf J, Otto NJ, Moskal JR. Modeling depression: social dominance-submission gene expression patterns in rat neocortex. Neuroscience137(1), 37–49 (2006).
  • Russell & Rubinstein’s; Pathology of Tumors of the Nervous System, Sixth Edition. Bigner DD, McLendon RE, Bruner JM (Eds). Arnold, NY, USA (1998).
  • Churchill GA. Fundamentals of experimental design for cDNA microarrays. Nat. Genet.32(Suppl.), 490–495 (2002).
  • Kroes RA, Dawson G, Moskal JR. Focused microarray analysis of glycogene expression in human glioblastomas. J. Neurochem.103(Suppl. 1), 14–24 (2007).
  • Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature395(6697), 89–93 (1998).
  • Gonzalo S, Jaco I, Fraga MF et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat. Cell Biol.8(4), 416–424 (2006).
  • Hansen RS, Wijmenga C, Luo P et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA96(25), 14412–14417 (1999).
  • Maraschio P, Zuffardi O, Dalla Fior T, Tiepolo L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J. Med. Genet.25(3), 173–180 (1988).
  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99(3), 247–257 (1999).
  • Trasler JM, Trasler DG, Bestor TH, Li E, Ghibu F. DNA methyltransferase in normal and Dnmtn/Dnmtn mouse embryos. Dev. Dyn.206(3), 239–247 (1996).
  • Xu GL, Bestor TH, Bourc’his D et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature402(6758), 187–191 (1999).
  • Costello JF. DNA methylation in brain development and gliomagenesis. Front. Biosci.8, S175–S184 (2003).
  • Fan G, Beard C, Chen RZ et al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J. Neurosci.21(3), 788–797 (2001).
  • Kawai J, Hirotsune S, Hirose K, Fushiki S, Watanabe S, Hayashizaki Y. Methylation profiles of genomic DNA of mouse developmental brain detected by restriction landmark genomic scanning (RLGS) method. Nucleic Acids Res.21(24), 5604–5608 (1993).
  • Kazazian HH Jr, Moran JV. The impact of L1 retrotransposons on the human genome. Nat. Genet.19(1), 19–24 (1998).
  • Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69(6), 915–926 (1992).
  • Takizawa T, Nakashima K, Namihira M et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell1(6), 749–758 (2001).
  • Baylin S, Bestor TH. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell1(4), 299–305 (2002).
  • Costello JF, Plass C. Methylation matters. J. Med. Genet.38(5), 285–303 (2001).
  • Feinberg AP. Cancer epigenetics is no mickey mouse. Cancer Cell8(4), 267–268 (2005).
  • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6), 415–428 (2002).
  • Kawamura YI, Toyota M, Kawashima R et al. DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology135(1), 142–151 E143 (2008).
  • Kunwar S, Prados MD, Chang SM et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal study group. J. Clin. Oncol.25(7), 837–844 (2007).
  • Sonabend AM, Ulasov IV, Lesniak MS. Conditionally replicative adenoviral vectors for malignant glioma. Rev. Med. Virol.16(2), 99–115 (2006).
  • Piao Y, Jiang H, Alemany R et al. Oncolytic adenovirus retargeted to δ-EGFR induces selective antiglioma activity. Cancer Gene Ther.16(3), 256–265 (2009).
  • Fueyo J, Alemany R, Gomez-Manzano C et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J. Natl Cancer Inst.95(9), 652–660 (2003).
  • Fueyo J, Gomez-Manzano C, Alemany R et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene19(1), 2–12 (2000).
  • Paulson JC, Weinstein J, Schauer A. Tissue-specific expression of sialyltransferases. J. Biol. Chem.264(19), 10931–10934 (1989).
  • Alavi A, Axford JS. Sweet and sour: the impact of sugars on disease. Rheumatology (Oxford)47(6), 760–770 (2008).
  • Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov.8(3), 226–234 (2009).
  • Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta1780(3), 546–563 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.