284
Views
62
CrossRef citations to date
0
Altmetric
Special Report

Activated astrocytes: a therapeutic target in Alzheimer’s disease?

, &
Pages 1585-1594 | Published online: 09 Jan 2014

References

  • Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging16(3), 271–278 (1995).
  • Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid β-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging23(5), 655–664 (2002).
  • Smith M, Richey Harris P, Sayre L, Beckman J, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci.17(8), 2653–2657 (1997).
  • Halliday G, Robinson S, Shepherd C, Kril J. Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin. Exp. Pharmacol. Physiol.27(1–2), 1–8 (2000).
  • Griffin WS, Sheng JG, Roberts GW, Mrak RE. Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol.54(2), 276–281 (1995).
  • Meda L, Cassatella MA, Szendrei GI et al. Activation of microglial cells by β-amyloid protein and interferon-α. Nature374(6523), 647–650 (1995).
  • Pachter JS. Inflammatory mechanisms in Alzheimer disease: the role of β-amyloid/glial interactions. Mol. Psychiatry2(2), 91–95 (1997).
  • Wang D, Bordey A. The astrocyte odyssey. Prog. Neurobiol.86(4), 342–367 (2008).
  • Gavillet M, Allaman I, Magistretti PJ. Modulation of astrocytic metabolic phenotype by proinflammatory cytokines. Glia56(9), 975–989 (2008).
  • Frederickson R. Astroglia in Alzheimer’s disease. Neurobiol. Aging13(2), 239–253 (1992).
  • Bouzier-Sore AK, Serres S, Canioni P, Merle M. Lactate involvement in neuron–glia metabolic interaction: 13C-NMR spectroscopy contribution. Biochimie85(9), 841–848 (2003).
  • Benarroch E. Neuron–astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin. Proc.80, 1326–1338 (2005).
  • Oz G, Seaquist ER, Kumar A et al. Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am. J. Physiol. Endocrinal. Metab.292(3), 946–951 (2006).
  • Pellerin L, Magistretti P. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA91(22), 10625–10629 (1994).
  • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J. Cereb. Blood Flow Metab.16(6), 1079–1089 (1996).
  • Sokoloff L. Measurement of local cerebral glucose utilization and its relation to local functional activity in the brain. Adv. Exp. Med. Biol.291, 21–42 (1991).
  • Pascual JM, van Heertum RL, Wang D, Engelstald K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann. Neurol.52(4), 458–464 (2002).
  • Aubert A, Costalat R. Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J. Cereb. Blood Flow Metabol.25(11), 1476–1490 (2005).
  • Magistretti PJ. Cellular bases of functional brain imaging: insights from neuron–glia metabolic coupling. Brain Res.886(1–2), 108–112 (2000).
  • Magistretti P, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil. Trans. Biol. Sci.354, 1155–1163 (1999).
  • Magistretti P, Pellerin L, Rothman D, Shulman R. Energy on demand. Science283(5401), 496–497 (1999).
  • Aubert A, Costalat R, Magistretti PJ, Pellerin L. Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc. Natl Acad. Sci. USA102(45), 16448–16453 (2005).
  • Bernardinelli Y, Magistretti P, Chatton J. Astrocytes generate Na+-mediated metabolic waves. Proc. Natl Acad. Sci. USA101(41), 14937–14942 (2004).
  • Hertz L, Dringen R, Schousboe A, Robinson SR. Astrocytes: glutamate producers for neurons. J. Neurosci. Res.57(4), 417–428 (1999).
  • Anderson C, Swanson R. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia32(1), 1–14 (2000).
  • Pellerin L, Pellegri G, Bittar P et al. Evidence supporting the existence of an activity-dependent astrocyte–neuron lactate shuttle. Dev. Neurosci.20, 291–299 (1998).
  • Kirchhoff F, Dringen R, Giaume C. Pathways of neuron–astrocyte interactions and their possible role in neuroprotection. Eur. Arch. Psychiatry Clin. Neurosci.251(4), 159–169 (2001).
  • Aschner M. Neuron–astrocyte interactions: implications for cellulalr energetics and antioxidant levels. Neurotoxicology21(6), 1101–1107 (2000).
  • Sagara JI, Miura K, Bannai S. Maintenance of neuronal glutathione by glial cells. J. Neurochem.61(5), 1672–1676 (1993).
  • Dringen R, Gutterer JM, Gros C, Hirrlinger J. Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J. Neurosci. Res.66(5), 1003–1008 (2001).
  • Dringen R. Metabolism and functions of glutathione in brain. Prog. Neurobiol.62(6), 649–671 (2000).
  • Deuther-Conrad W, Loske C, Schinzel R, Dringen R, Riederer P, Münch G. Advanced glycation endproducts change glutathione redox status in SH–SY5Y human neuroblastoma cells by a hydrogen peroxide dependent mechanism. Neurosci. Lett.312(1), 29–32 (2001).
  • Reilly JF, Maher PA, Kumari VG. Regulation of astrocyte GFAP expression by TGF-β1 and FGF-2. Glia22(2), 202–210 (1998).
  • Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci.20(12), 570–577 (1997).
  • Akiyama H, Barger S, Barnum S et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging21(3), 383–421 (2000).
  • Simpson J, Ince P, Lace G et al. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol. Aging DOI: 10.1016/j.neurobiolaging.2008.05.015 (2008) (Epub ahead of print).
  • Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J. Neurosci.18(20), 8126–8132 (1998).
  • Paris D, Townsend KP, Obregon DF, Humphrey J, Mullan M. Pro-inflammatory effect of freshly solubilized β-amyloid peptides in the brain. Prostaglandins Other Lipid Mediat.70(1–2), 1–12 (2002).
  • Sheng JG, Mrak RE, Griffin WS. Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1α+ microglia and S100β+ astrocytes with neurofibrillary tangle stages. J. Neuropathol. Exp. Neurol.56(3), 285–290 (1997).
  • Ikeda K, Haga C, Akiyama H, Kase K, Iritani S. Coexistence of paired helical filaments and glial filaments in astrocytic processes within ghost tangles. Neurosci. Lett.148(1–2), 126–128 (1992).
  • Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol.17(4), 359–365 (2005).
  • Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM. Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia53(7), 688–695 (2006).
  • Bowman CC, Rasley A, Tranguch SL, Marriott I. Cultured astrocytes express Toll-like receptors for bacterial products. Glia43(3), 281–291 (2003).
  • Wanner IB, Deik A, Torres M et al. A new in vitro model of the glial scar inhibits axon growth. Glia56(15), 1691–1709 (2008).
  • Pulver M, Carrel S, Mach JP, de Tribolet N. Cultured human fetal astrocytes can be induced by interferon-g to express HLA-DR. J. Neuroimmunol.14(2), 123–133 (1987).
  • Skias DD, Kim DK, Reder AT, Antel JP, Lancki DW, Fitch FW. Susceptibility of astrocytes to class I MHC antigen-specific cytotoxicity. J. Immunol.138(10), 3254–3258 (1987).
  • Hickey WF, Osborn JP, Kirby WM. Expression of Ia molecules by astrocytes during acute experimental allergic encephalomyelitis in the Lewis rat. Cell. Immunol.91(2), 528–535 (1985).
  • Male DK, Pryce G, Hughes CC. Antigen presentation in brain: MHC induction on brain endothelium and astrocytes compared. Immunology60(3), 453–459 (1987).
  • Grenier Y, Ruijs TC, Robitaille Y, Olivier A, Antel JP. Immunohistochemical studies of adult human glial cells. J. Neuroimmunol.21(2–3), 103–115 (1989).
  • Dong Y, Benveniste EN. Immune function of astrocytes. Glia36(2), 180–190 (2001).
  • Benveniste E. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev.9(3–4), 259–275 (1998).
  • Tuppo E, Arias H. The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol.37(2), 289–305 (2005).
  • Dong Y, Benveniste E. Immune function of astrocytes. Glia36(2), 180–190 (2001).
  • Pasternack J, Abraham C, Van Dyke B, Potter H, Younkin S. Astrocytes in Alzheimer’s disease gray matter express a 1-antichymotrypsin mRNA. Am. J. Pathol.135(5), 827–834 (1989).
  • Beach T, McGeer E. Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex. Brain Res.463(2), 357–361 (1988).
  • Marshak DR, Pesce SA, Stanley LC, Griffin W. Increased S100 b neurotrophic activity in Alzheimer’s disease temporal lobe. Neurobiol. Aging13(1), 1–7 (1992).
  • Yan SD, Bierhaus A, Nawroth PP, Stern DM. RAGE and Alzheimer’s disease: a progression factor for amyloid-β-induced cellular perturbation? J. Alzheimers Dis.16(4), 833–843 (2009).
  • Wang Z, Li DD, Liang YY, Wang DS, Cai NS. Activation of astrocytes by advanced glycation end products: cytokines induction and nitric oxide release. Acta Pharmacol. Sin.23(11), 974–980 (2002).
  • Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B. How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell3(4), 169–176 (2004).
  • Mrak RE, Sheng JG, Griffin WS. Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum. Pathol.26(8), 816–823 (1995).
  • Retz W, Gsell W, Münch G, Rosler M, Riederer P. Free radicals in Alzheimer’s disease. J. Neural Transm. Suppl.54, 221–236 (1998).
  • McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann. NY Acad. Sci.1035, 104–116 (2004).
  • Simonian N, Coyle J. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol.36(1), 83–106 (1996).
  • Behl C. Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Prog. Neurobiol.57(3), 301–323 (1999).
  • Christen Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr.71(2), S621–S629 (2000).
  • Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J. Neurochem.74(6), 2520–2527 (2000).
  • Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience103(2), 373–383 (2001).
  • Castegna A, Aksenov M, Aksenova M et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med.33(4), 562–571 (2002).
  • Castegna A, Aksenov M, Thongboonkerd V et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J. Neurochem.82(6), 1524–1532 (2002).
  • Castegna A, Thongboonkerd V, Klein J, Lynn B, Markesbery W, Butterfield D. Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J. Neurochem.85(6), 1394 (2003).
  • Gow A, Duran D, Malcolm S, Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett.385(1–2), 63–66 (1996).
  • Sultana R, Poon H, Cai J et al. Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol. Dis.22(1), 76–87 (2006).
  • Butterfield D, Kanski J. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech. Ageing Dev.122(9), 945–962 (2001).
  • Butterfield D, Stadtman E. Protein oxidation processes in aging brain. Adv. Cell Aging Gerontol.2, 161–191 (1997).
  • Lüth HJ, Münch G, Arendt T. Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation. Brain Res.953(1–2), 135–143 (2002).
  • Fernandez-Vizarra P, Fernandez A, Castro-Blanco S et al. Expression of nitric oxide system in clinically evaluated cases of Alzheimer’s disease. Neurobiol. Dis.15(2), 287–305 (2004).
  • Pacher P, Beckman J, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev.87(1), 315 (2007).
  • Good P, Werner P, Hsu A, Olanow C, Perl D. Evidence of neuronal oxidative damage in Alzheimer’s disease. Am. J. Pathol.149(1), 21–28 (1996).
  • Vodovotz Y, Lucia M, Flanders K et al. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease. J. Exp. Med.184(4), 1425–1433 (1996).
  • Freemantle E, Vandal M, Tremblay-Mercier J et al. Omega-3 fatty acids, energy substrates, and brain function during aging. Prostaglandins Leukot. Essent. Fatty Acids75(3), 213–220 (2006).
  • Alexander G, Chen K, Pietrini P, Rapopor S, Reiman E. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am. J Psychiatry159(5), 738–745 (2002).
  • Small GW, Ercoli LM, Silverman DH et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA97(11), 6037–6042 (2000).
  • Li S, Mallory M, Alford M, Tanaka S, Masliah E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J. Neuropathol. Exp. Neurol.56(8), 901–911 (1997).
  • Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann. Neurol.40(5), 759–766 (1996).
  • Scott H, Pow D, Tannenberg A, Dodd P. Aberrant expression of the glutamate transporter excitatory amino acid transporter 1 (EAAT1) in Alzheimer’s disease. J. Neurosci.22(3), RC206 (2002).
  • Smith GM, Miller RH. Immature type-1 astrocytes suppress glial scar formation, are motile and interact with blood vessels. Brain Res.543(1), 111–122 (1991).
  • Butterfield DA, Hensley K, Cole P et al. Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J. Neurochem.68(6), 2451–2457 (1997).
  • Calabrese V, Sultana R, Scapagnini G et al. Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid. Redox Signal.8, 1975–1986 (2006).
  • Reed T, Perluigi M, Sultana R et al. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol. Dis.30(1), 107–120 (2008).
  • Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic. Biol. Med.32(11), 1050–1060 (2002).
  • Butterfield DA, Sultana R. Redox proteomics identification of oxidatively modified brain proteins in Alzheimer’s disease and mild cognitive impairment: insights into the progression of this dementing disorder. J. Alzheimers Dis.12(1), 61–72 (2007).
  • Karelson E, Bogdanovic N, Garlind A et al. The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem. Res.26(4), 353–361 (2001).
  • Butterfield DA, Boyd-Kimball D. Proteomics analysis in Alzheimer’s disease: new insights into mechanisms of neurodegeneration. Int. Rev. Neurobiol.61, 159–188 (2004).
  • Newman S, Sultana R, Perluigi M et al. An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J. Neurosci. Res.85(7), 1506–1514 (2007).
  • Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I. S-glutathionylation: from redox regulation of protein functions to human diseases. J. Cell. Mol. Med.8(2), 201–212 (2004).
  • Dalle-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R. Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid. Redox Signal.10(3), 445–473 (2008).
  • Hensley K, Robinson K, Gabbita S, Salsman S, Floyd R. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med.28(10), 1456–1462 (2000).
  • Babior B. NADPH oxidase: an update. Blood, 93(5), 1464–1476 (1999).
  • Holland J, O’Donnell R, Chang M, Johnson D, Ziegler L. Endothelial cell oxidant production: effect of NADPH oxidase inhibitors. Endothelium7(2), 109–119 (2000).
  • Pahan K, Sheikh F, Namboodiri A, Singh I. Inhibitors of protein phosphatase 1 and 2A differentially regulate the expression of inducible nitric-oxide synthase in rat astrocytes and macrophages. J. Biol. Chem.273(20), 12219–12226 (1998).
  • Issels RD, Nagele A, Eckert KG, Wilmanns W. Promotion of cystine uptake and its utilization for glutathione biosynthesis induced by cysteamine and N-acetylcysteine. Biochem. Pharmacol.37(5), 881–888 (1988).
  • Issels RD, Nagele A. Promotion of cystine uptake, increase of glutathione biosynthesis, and modulation of glutathione status by S-2-(3-aminopropylamino)ethyl phosphorothioic acid (WR-2721) in Chinese hamster cells. Cancer Res.49(8), 2082–2086 (1989).
  • Adair JC, Knoefel JE, Morgan N. Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology57(8), 1515–1517 (2001).
  • Begni B, Brighina L, Sirtori E et al. Oxidative stress impairs glutamate uptake in fibroblasts from patients with Alzheimer’s disease. Free Radic. Biol. Med.37(6), 892–901 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.