83
Views
28
CrossRef citations to date
0
Altmetric
Review

Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies

&
Pages 1815-1836 | Published online: 09 Jan 2014

References

  • Burger P, Vogel F, Green S, Strike T. Glioblastoma multiforme and anaplastic astrocytoma pathologic criteria and prognostic implications. Cancer56, 1106–1111 (1985).
  • Iorns E, Lord CJ, Turner N, Ashworth A. Utilizing RNA interference to enhance cancer drug discovery. Nature6, 556–568 (2007).
  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science321, 1807–1812 (2008).
  • Rich JN, Bigner DD. Development of novel targeted therapies in treatment of malignant glioma. Nature3, 430–446 (2004).
  • Wang L, Wei Q, Wang L-E et al. Survival prediction in patients with glioblastoma multiforme by human telomerase genetic variation. J. Clin. Oncol.24, 1627–1632 (2006).
  • McLendon R, Friedman A, Bigner D et al.: Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455, 1061–1068 (2008).
  • Wen P, Kesari S. Malignant gliomas. Curr. Neurol. Neurosci. Rep.4, 218–227 (2004).
  • Kleihues P, Cavanee W. World Health Organization Classification of Tumors: Tumors of the Nervous System: Pathology and Genetics. IRAC Press, Lyon, France (2000).
  • Konopka G, Bonni A. Signaling pathways regulating gliomagenesis. Curr. Mol. Med.3, 73–84 (2003).
  • Kesari S, Ramakrishna N, Sauvageot C, Stiles C, Wen P. Targeted molecular therapy of malignant gliomas. Curr. Oncol. Rep.8, 58–70 (2006).
  • Collins VP. Mechanisms of disease: genetic predictors of response to treatment in brain tumors. Nat. Clin. Pract. Oncol.4, 362–374 (2007).
  • Sathornsumetree S, Rich J. New treatment strategies for malignant gliomas. Expert Rev. Anticancer Ther.6(7), 1087–1104 (2006).
  • Pollack IF. Molecularly targeted therapies for childhood gliomas. In: Molecularly Targeted Therapy for Childhood Cancer. Houghton P (Ed.). Springer, NY, USA (2009).
  • Sathornsumetree S, Reardon D, Desjardins A, Quinn J, Vredenburgh J, Rich J. Molecularly targeted therapy for malignant glioma. Cancer110, 13–24 (2007).
  • Kapoor G, O’Rourke D. Mitogenic signaling cascades in glial tumors. Neurosurgery52, 1425–1434 (2003).
  • Nister M, Claesson-Welsh L, Eriksson A, Heldin CH, Westermark B. Differential expression of platelet-derived growth factor receptors in human malignant glioma cell lines. J. Biol. Chem.266, 16755–16763 (1991).
  • Glick RP, Gettleman R, Patel K, Lakshman R, Tsibris JC. Insulin and insulin-like growth factor I in brain tumors: binding and in vitro effects. Neurosurgery24, 791–797 (1989).
  • Gross J, Morrison R, Eidsvoog K, Herblin W, Kornblith P, Dexter D. Basic fibroblast growth factor: a potential autocrine regulator of human glioma growth. J. Neurosci. Res.27, 689–696 (1990).
  • Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature359, 845–848 (1992).
  • Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A. Differential expression of transforming growth factor-β 1, -β 2, and -β 3 by glioblastoma cells, astrocytes, and microglia. J. Immunol.148, 1404–1410 (1992).
  • Kjellman C, Olofsson S, Hansson O et al. Expression of TGF-β isoforms, TGF-β receptors, and SMAD molecules at different stages of human glioma. Int. J. Cancer89, 251–258 (2000).
  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP. Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res.51, 2164–2172 (1991).
  • Libermann TA, Nusbaum HR, Razon N et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumors of glial origin. Nature313, 44–47 (1985).
  • Wong AJ, Ruppert JM, Bigner SH et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA89, 2965–2969 (1992).
  • Pelloski CE, Ballman KV, Furth AF et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J. Clin. Oncol.25, 2288–2294 (2007).
  • Wakeling AE, Guy SP, Woodburn JR et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res.62, 5749–5754 (2002).
  • Albanell J, Rojo F, Averbuch S et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J. Clin. Oncol.20, 110–124 (2002).
  • Baselga J, Rischin D, Ranson M et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J. Clin. Oncol.20, 4292–4302 (2002).
  • Fukuoka M, Yano S, Giaccone G et al. Multi-institutional randomized Phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J. Clin. Oncol.21, 2237–2246 (2003).
  • Herbst RS, Giaccone G, Schiller JH et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a Phase III trial – INTACT 2. J. Clin. Oncol.22, 785–794 (2004).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004).
  • Lieberman FS, Cloughesy T, Fine H et al. NABTC Phase I/II trial of ZD-1839 for recurrent malignant gliomas and unresectable meningiomas. J. Clin. Oncol.22, 1510 (2004).
  • Rich JN, Reardon DA, Peery T et al. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol.22, 133–142 (2004).
  • Uhm JH, Ballman KV, Giannini C et al. Phase II study of ZD1839 in patients with newly diagnosed grade 4 astrocytoma. J. Clin. Oncol.22, 1505 (2004).
  • Pollack VA, Savage DM, Baker DA et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther.291, 739–748 (1999).
  • Hidalgo M, Siu LL, Nemunaitis J et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol.19, 3267–3279 (2001).
  • Perez-Soler R. The role of erlotinib (Tarceva, OSI 774) in the treatment of non-small cell lung cancer. Clin. Cancer Res.10, S4238–S4240 (2004).
  • Prados MD, Lamborn KR, Chang S et al. Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro. Oncol.8, 67–78 (2006).
  • Cloughesy T, Yung A, Vrendenberg J et al. Phase II study of erlotinib in recurrent GBM: molecular predictors of outcome. J. Clin. Oncol.23, 1507 (2005).
  • van den Bent MJ, Brandes AA, Rampling R et al. Randomized Phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC Brain Tumor Group Study 26034. J. Clin. Oncol.27, 1268–1274 (2009).
  • Raizer J, Abrey L, Wen P et al. A Phase II trial of erlotinib (OSI-774) in patients (pts) with recurrent malignant gliomas (MG) not on EIAEDs. Proc. Am. Soc. Clin. Oncol.23, 1502 (2004).
  • Vogelbaum MA, Peereboom D, Stevens G, Barnett G, Brewer C. Phase II trial of the EGFR tyrosine kinase inhibitor erlotinib for single agent therapy of recurrent glioblastoma multiforme: interim results. J. Clin. Oncol.22, 1558 (2004).
  • Peereboom DM, Brewer CJ, Suh JH et al. Phase II trial of erlotinib with temozolomide and concurrent radiation therapy in patients with newly diagnosed glioblastoma multiforme: final results. Neuro. Oncol.8, 448 (2006).
  • Lassman AB, Rossi MR, Razier JR et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01. Clin. Cancer Res.11, 7841–7850 (2005).
  • Haas-Kogan DA, Prados MD, Tihan T et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J. Natl Cancer Inst.97, 880–887 (2005).
  • Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353, 2012–2024 (2005).
  • Burris H. Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist9, 10–15 (2004).
  • Rusnak DW, Affleck K, Cockerill SG et al. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Res.61, 7196–7203 (2001).
  • Kuhn J, Robins I, Mehta M et al. ET-05. Tumor sequestration of lapatinib. Neuro Oncol.10, 783 (2008) (NABTC 04-01).
  • Eller J, Longo S, Kyle M, Bassano D, Hicklin D, Canute G. Anti-epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in glioblastoma multiforme in vitro and in vivo. Neurosurgery56, 155–162 (2005).
  • Neyns B, Sadones J, Joosens E et al. Stratified Phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann. Oncol.20(9), 1596–1603 (2009).
  • Maher EA, Furnari FB, Bachoo RM et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev.15, 1311–1333 (2001).
  • Hermanson M, Funa K, Koopmann J et al. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor α receptor expression in human malignant gliomas. Cancer Res.56, 164–171 (1996).
  • Pollack IF, Randall MS, Kristofik MP, Kelly RH, Selker RG, Vertosick FT. Response of low-passage human malignant gliomas in vitro to stimulation and selective inhibition of growth factor-mediated pathways. J. Neurosurg.75, 284–293 (1991).
  • Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res.62, 3729–3735 (2002).
  • Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev.15, 275–286 (2004).
  • Kilic T, Alberta JA, Zdunek PR et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res.60, 5143–5150 (2000).
  • Geng L, Shinohara E, Kim D et al. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma. Int. J. Radiat. Oncol. Biol. Phys.64, 263–271 (2006).
  • Druker BJ, Talpaz M, Resta DJ et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1031–1037 (2001).
  • O’Brien SG, Guilhot F, Larson RA et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med.348, 994–1004 (2003).
  • Joensuu H, Roberts PJ, Sarlomo-Rikala M et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med.344, 1052–1056 (2001).
  • Buchdunger E, Cioffi CL, Law N et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther.295, 139–145 (2000).
  • Wen PY, Yung WKA, Lamborn KR et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin. Cancer Res.12, 4899–4907 (2006).
  • Pietras K, Ostman A, Sjoquist M et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res.61, 2929–2934 (2001).
  • Raymond E, Brandes AA, Dittrich C et al. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J. Clin. Oncol.26, 4659–4665 (2008).
  • Marosi C, Vedadinejad M, Haberler C et al. Imatinib mesylate in the treatment of patients with recurrent high grade gliomas expressing PDGF-R. J. Clin. Oncol.24, 1526 (2006).
  • Schmidt E, Ichimura K, Goike H, Moshref A, Liu L, Collins V. Mutational profile of the PTEN gene in primary human astrocytic tumors and cultivated xenografts. J. Neuropathol. Exp. Neurol.58, 1170–1183 (1999).
  • Cheney IW, Johnson DE, Vaillancourt M-T et al. Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer. Cancer Res.58, 2331–2334 (1998).
  • Choe G, Horvath S, Cloughesy TF et al. Analysis of the phosphatidylinositol 3´-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res.63, 2742–2746 (2003).
  • Steck PA, Pershouse MA, Jasser SA et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet.15, 356–362 (1997).
  • Pollack IF, Bredel M, Erff M. The application of signal transduction inhibition as a therapeutic strategy for central nervous system tumors. Pediatr. Neurosurg.29, 228–244 (1998).
  • Peddanna N, Mendis R, Holt S, Verma R. Genetics of colorectal cancer. Int. J. Oncol.9, 327–335 (1996).
  • Prigent SA, Nagane M, Lin H et al. Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-Shc-Grb2 pathway. J. Biol. Chem.271, 25639–25645 (1996).
  • Guha A, Feldkamp M, Lau N, Boss G, Pawson A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene15, 2755–2765 (1997).
  • Bredel M, Pollack IF, Freund JM, Hamilton AD, Sebti SM. Inhibition of Ras and related G-Proteins as a therapeutic strategy for blocking malignant glioma growth. Neurosurgery43, 124–131 (1998).
  • Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J. Clin. Oncol.17, 3631–3652 (1999).
  • Lebowitz P, Prendergast G. Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. Oncogene17, 1439–1445 (1998).
  • Jiang K, Coppola D, Crespo NC et al. The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol. Cell Biol.20, 139–148 (2000).
  • Feldkamp M, Lau N, Guha A. Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, pro-apoptotic and anti-angiogenic effects. Oncogene18, 7514–7526 (1999).
  • End DW, Smets G, Todd AV et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res.61, 131–137 (2001).
  • Alsina M, Fonseca R, Wilson E et al. Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood103, 3271–3277 (2004).
  • Rao S, Cunningham D, de Gramont A et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol.22, 3950–3957 (2004).
  • Van Cutsem E, van de Velde H, Karasek P et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol.22, 1430–1438 (2004).
  • Cloughesy TF, Wen PY, Robins HI et al. Phase II trial of tipifarnib in patients with recurrent malignant glioma either receiving or not receiving enzyme-inducing antiepileptic drugs: a North American Brain Tumor Consortium Study. J. Clin. Oncol.24, 3651–3656 (2006).
  • Lustig R, Mikkelsen T, Lesser G et al. Phase II preradiation R115777 (tipifarnib) in newly diagnosed GBM with residual enhancing disease. Neuro. Oncol.10(6), 1004–1009 (2008).
  • Kieran MW, Packer RJ, Onar A et al. Phase I and pharmacokinetic study of the oral farnesyltransferase inhibitor lonafarnib administered twice daily to pediatric patients with advanced central nervous system tumors using a modified continuous reassessment method: a pediatric brain tumor consortium study. J. Clin. Oncol.25, 3137–3143 (2007).
  • Sharma S, Kemeny N, Kelsen DP et al. A Phase II trial of farnesyl protein transferase inhibitor SCH 66336, given by twice-daily oral administration, in patients with metastatic colorectal cancer refractory to 5-fluorouracil and irinotecan. Ann. Oncol.13, 1067–1071 (2002).
  • Kim E, Kies M, Fossella F et al. Phase II study of the farnesyltransferase inhibitor lonafarnib with paclitaxel in patients with taxane-refractory/resistant nonsmall cell lung carcinoma. Cancer104, 561–569 (2005).
  • Fields AP, Tyler G, Kraft AS, May WS. Role of nuclear protein kinase C in the mitogenic response to platelet-derived growth factor. J. Cell Sci.96, 107–114 (1990).
  • Kolch W, Heidecker G, Kochs G et al. Protein kinase Cα activates RAF-1 by direct phosphorylation. Nature364, 249–252 (1993).
  • Marais R, Light Y, Mason C, Paterson H, Olson MF, Marshall CJ. Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science280, 109–112 (1998).
  • Couldwell WT, Uhm JH, Antel JP, Yong VW. Enhanced protein kinase C activity correlates with the growth rate of malignant gliomas in vitro. Neurosurgery29, 880–887 (1991).
  • Pollack IF, Kawecki S, Lazo JS. 7-hydroxystaurosporine (UCN-01), a selective protein kinase C inhibitor, exhibits cytotoxicity against cultured glioma cells and potentiates the antiproliferative effects of BCNU and cisplatin. J. Neurosurg.84, 1024–1032 (1996).
  • Hui A-M, Zhang W, Chen W et al. Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells. Cancer Res.64, 9115–9123 (2004).
  • Brandes AA, Ermani M, Turazzi S et al. Procarbazine and high-dose tamoxifen as a second-line regimen in recurrent high-grade gliomas: a Phase II study. J. Clin. Oncol.17, 645 (1999).
  • Spence AM, Peterson RA, Scharnhorst JD, Silbergeld DL, Rostomily RC. Phase II study of concurrent continuous temozolomide (TMZ) and tamoxifen (TMX) for recurrent malignant astrocytic gliomas. J. Neurooncol.70, 91–95 (2004).
  • Hercbergs A, Goyal L, Suh J et al. Propylthiouracil-induced chemical hypothyroidism with high-dose tamoxifen prolongs survival in recurrent high grade glioma: a Phase I/II study. Anticancer Res.23, 617–626 (2003).
  • Keyes K, Mann L, Sherman M et al. LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother. Pharmacol.53, 133–140 (2004).
  • Graff JR, McNulty AM, Hanna KR et al. The protein kinase Cβ-selective inhibitor, enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res.65, 7462–7469 (2005).
  • Carducci MA, Musib L, Kies MS et al. Phase I dose escalation and pharmacokinetic study of enzastaurin, an oral protein kinase C β inhibitor, in patients with advanced cancer. J. Clin. Oncol.24, 4092–4099 (2006).
  • Fine HA, Kim L, Royce C et al. Results from Phase II trial of enzastaurin (LY317615) in patients with recurrent high grade gliomas. J. Clin. Oncol.23, 1504 (2005).
  • Freed E, Symons M, Macdonald SG, McCormick F, Ruggieri R. Binding of 14-3–3 proteins to the protein kinase Raf and effects on its activation. Science265, 1713–1716 (1994).
  • Howe L, Leevers S, Gómez N, Nakielny S, Cohen P, Marshall C. Activation of the MAP kinase pathway by the protein kinase raf. Cell71, 335–342 (1992).
  • Wilhelm SM, Carter C, Tang L et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64, 7099–7109 (2004).
  • Jane EP, Premkumar DR, Pollack IF. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J. Pharmacol. Exp. Ther.319, 1070–1080 (2006).
  • Sathornsumetee S, Hjelmeland AB, Keir ST et al. AAL881, a novel small molecule inhibitor of RAF and vascular endothelial growth factor receptor activities, blocks the growth of malignant glioma. Cancer Res.66, 8722–8730 (2006).
  • Chakravarti A, Zhai G, Suzuki Y et al. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J. Clin. Oncol.22, 1926–1933 (2004).
  • Cross D, Alessi D, Cohen P, Andjelkovich M, Hemmings B. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785–9 (1995).
  • Cardone MH, Roy N, Stennicke HR et al. Regulation of cell death protease caspase-9 by phosphorylation. Science282, 1318–1321 (1998).
  • Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA96, 4240–4245 (1999).
  • Li D-M, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc. Natl Acad. Sci. USA95, 15406–15411 (1998).
  • Nakamura J, Karlsson A, Arvold N et al. PKB/Akt mediates radiosensitization by the signaling inhibitor LY294002 in human malignant gliomas. J. Neurooncol.71, 215–222 (2005).
  • Momota H, Nerio E, Holland EC. Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res.65, 7429–7435 (2005).
  • Newton H. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev. Anticancer Ther.4(1), 105–128 (2004).
  • Chang SM, Wen P, Cloughesy T et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest. New Drugs23, 357–361 (2005).
  • Geoerger B, Kerr K, Tang CB et al. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res.61, 1527–1532 (2001).
  • Galanis E, Buckner JC, Maurer MJ et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: A North Central Cancer Treatment Group Study. J. Clin. Oncol.23, 5294–5304 (2005).
  • Schnell CR, Stauffer F, Allegrini PR et al. Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res.68, 6598–6607 (2008).
  • Serra V, Markman B, Scaltriti M et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res.68, 8022–8030 (2008).
  • Cao P, Maira SM, Garcia-Echeverria C, Hedley DW. Activity of a novel, dual PI3-kinase/mTOR inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br. J. Cancer100, 1267–1276 (2009).
  • Maira S-M, Stauffer F, Brueggen J et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther.7, 1851–1863 (2008).
  • Kieran M. Anti-angiogenic chemotherapy in central nervous system tumors. Cancer Treat Res,117, 337–349 (2004).
  • Purow B, Fine H. Antiangiogenic therapy for primary and metastatic brain tumors. Hematol. Oncol. Clin. North Am.18, 1161–1181 (2004).
  • Nakada M, Nakada S, Demuth T, Tran N, Hoelzinger D, Berens M. Molecular targets of glioma invasion. Cell Mol. Life Sci.64, 458–478 (2007).
  • Kaur B, Tan C, Brat DJ, Van meir EG. Genetic and hypoxic regulation of angiogenesis in gliomas. J. Neurooncol.70, 229–243 (2004).
  • Maity A, Pore N, Lee J, Solomon D, O’Rourke DM. Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3´-kinase and distinct from that induced by hypoxia. Cancer Res.60, 5879–5886 (2000).
  • Ciardiello F, Caputo R, Bianco R et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res.7, 1459–1465 (2001).
  • Huang S-M, Li J, Armstrong EA, Harari PM. Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res.62, 4300–4306 (2002).
  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature407, 242–248 (2000).
  • Wang D, Huang HJS, Kazlauskas A, Cavenee WK. Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res.59, 1464–1472 (1999).
  • Conrad C, Friedman H, Reardon D et al. A Phase I/II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM). J. Clin. Oncol. (Meeting Abstracts)22(14S), 1512 (2004).
  • Conrad C, Friedman H, Reardon D et al. A Phase I/II trial of PTK787/ZK222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in combination with either temozolomide or lomustine for patients with recurrent glioblastoma multiforme (GBM). J. Clin. Oncol.22, 1512 (2004).
  • Batchelor TT, Sorensen AG, di Tomaso E et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11, 83–95 (2007).
  • Vredenburgh JJ, Desjardins A, Herndon JE et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res.13, 1253–1259 (2007).
  • Ignoffo RJ. Overview of bevacizumab: a new cancer therapeutic strategy targeting vascular endothelial growth factor. Am. J. Health Syst. Pharm.61, S21–S26 (2004).
  • Hurwitz H, Fehrenbache L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350, 2335–2342 (2004).
  • Yang JC, Haworth L, Sherry RM et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med.349, 427–434 (2003).
  • Vredenburgh JJ, Desjardins A, Herndon JE et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol.25, 4722–4729 (2007).
  • Cloughesy TF, Prados MD, Wen PY et al. A Phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM). J. Clin. Oncol. (Meeting Abstracts)26, 2010b (2008).
  • Kreisl TN, Kim L, Moore K et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol.27, 740–745 (2009).
  • Holash J, Davis S, Papadopoulos N et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA99, 11393–11398 (2002).
  • Fine HA, Figg WD, Jaeckle K et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J. Clin. Oncol.18, 708–715 (2000).
  • Fine HA, Wen PY, Maher EA et al. Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J. Clin. Oncol.21, 2299–2304 (2003).
  • Plate K. Mechanisms of angiogenesis in the brain. J. Neuropathol. Exp. Neurol.58, 313–320 (1999).
  • Reardon DA, Fink KL, Mikkelsen T et al. Randomized Phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol.26, 5610–5617 (2008).
  • Reardon DA, Wen PY. Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist11, 152–164 (2006).
  • Reardon D, Quinn J, Vredenburgh J et al. Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer103, 329–338 (2005).
  • Tuettenberg J, Grobholz R, Korn T, Wenz F, Erber R, Vajkoczy P. Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. J. Cancer Res. Clin. Oncol.131, 31–40 (2005).
  • Badie B, Schartner J, Hagar A et al. Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation. Clin. Cancer Res.9, 872–877 (2003).
  • Barnett FH, Scharer-Schuksz M, Wood M, Yu X, Wagner TE, Friedlander M. Intra-arterial delivery of endostatin gene to brain tumors prolongs survival and alters tumor vessel ultrastructure. Gene Ther.11, 1283–1289 (2004).
  • Phuphanich S, Carson K, Grossman S et al. A Phase I evaluation of the safety of escalating doses of atrasentan in adults with recurrent malignant glioma (MG). J. Clin. Oncol.23, 1526 (2005).
  • Taga T, Suzuki A, Gonzalez-Gomez I et al. A v-integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int. J. Cancer98, 690–697 (2002).
  • Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl Cancer Inst.92, 1210–1216 (2000).
  • Gray S, Ekström T. The human histone deacetylase family. Exp. Cell Res.262, 75–83 (2001).
  • Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays17, 423–430 (1995).
  • Gilbert J, Baker SD, Bowling MK et al. A Phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin. Cancer Res.7, 2292–2300 (2001).
  • Baker MJ, Brem S, Daniels S, Sherman B, Phuphanich S. Complete response of a recurrent, multicentric malignant glioma in a patient treated with phenylbutyrate. J. Neurooncol.59, 239–242 (2002).
  • Plumb JA, Finn PW, Williams RJ et al. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol. Cancer Ther.2, 721–728 (2003).
  • Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang S-M, Harari P. Modulation of radiation response by histone deacetylase inhibition. Int. J. Radiat. Oncol. Biol. Phys.62, 223–229 (2005).
  • Galanis E, Jaeckle KA, Maurer MJ et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group study. J. Clin. Oncol.27, 2052–2058 (2009).
  • Adams J. The proteasome: a suitable antineoplastic target. Nat. Rev. Cancer4, 349–360 (2004).
  • Yin D, Zhou H, Kumagai T et al. Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene24, 344–354 (2004).
  • Phuphanich S, Supko J, Carson KA et al. Phase I trial of bortezomib in adults with recurrent malignant glioma. J. Clin. Oncol.24, 1567 (2006).
  • Graner MW, Bigner DD. Chaperone proteins and brain tumors: potential targets and possible therapeutics. Neuro. Oncol.7, 260–278 (2005).
  • Premkumar D, Arnold B, Pollack I. Cooperative inhibitory effect of ZD1839 (Iressa) in combination with 17-AAG on glioma cell growth. Mol. Carcinog.45, 288–301 (2006).
  • Hutchinson L. Targeted therapies: the answer to individualized treatment? Nature4, 323 (2007).
  • Stommel JM, Kimmelman AC, Ying H et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science318, 287–290 (2007).
  • Gan H, Kaye A, Luwor R. The EGFRvIII variant in glioblastoma multiforme. J. Clin. Neurosci.16, 748–754 (2009).
  • Giaccone G. EGFR point mutation confers resistance to gefitinib in a patient with non-small-cell lung cancer. Nat. Clin. Prac. Oncol.2, 296–297 (2005).
  • Shih J, Gow C, Yang P. EGFR mutation conferring primary resistance to gefitinib in non-small-cell lung cancer. N. Engl. J. Med.353, 207–208 (2005).
  • Goudar RK, Shi Q, Hjelmeland MD et al. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol. Cancer Ther.4, 101–112 (2005).
  • Rich JN, Sathornsumetee S, Keir ST et al. ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin. Cancer Res.11, 8145–8157 (2005).
  • Schueneman AJ, Himmelfarb E, Geng L et al. SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res.63, 4009–4016 (2003).
  • Neyns B, Chaskis C, Dujardin M et al. Phase II trial of sunitinib malate in patients with temozolomide refractory recurrent high-grade glioma. J. Clin. Oncol. (Meeting Abstracts)27, 2038 (2009).
  • Liu T-J, Koul D, LaFortune T et al. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol. Cancer Ther.8(8), 2204–2210 (2009).
  • Kamoun WS, Ley CD, Farrar CT et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J. Clin. Oncol.27, 2542–2552 (2009).
  • Laurie SA, Gauthier I, Arnold A et al. Phase I and pharmacokinetic study of daily oral AZD2171, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with carboplatin and paclitaxel in patients with advanced non-small-cell lung cancer: the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol.26, 1871–1878 (2008).
  • Learn CA, Hartzell TL, Wikstrand CJ et al. Resistance to tyrosine kinase inhibition by mutant epidermal growth factor receptor variant III contributes to the neoplastic phenotype of glioblastoma multiforme. Clin. Cancer Res.10, 3216–3224 (2004).
  • Wang MY, Lu KV, Zhu S et al. Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res.66, 7864–7869 (2006).
  • Nguyen TD, Lassman AB, Lis E et al. A pilot study to assess the tolerability and efficacy of RAD-001 (everolimus) with gefitinib in patients with recurrent glioblastoma multiforme (GBM). J. Clin. Oncol.24, 1507 (2006).
  • Fan QW, Cheng C, Knight ZA et al. EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci. Signal.2(55), ra4 (2009).
  • Reardon DA, Quinn JA, Vredenburgh JJ et al. Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin. Cancer Res.12, 860–868 (2006).
  • Doherty L, Gigas DC, Kesari S et al. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology67, 156–158 (2006).
  • Chang SM, Kuhn J, Lamborn K et al. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas (MG) (NABTC 04-02). J. Clin. Oncol. (Meeting Abstracts)27, 2004 (2009).
  • Wen PY, Cloughesy T, Kuhn J et al. Phase I/II study of sorafenib and temsirolimus for patients with recurrent glioblastoma (GBM) (NABTC 05-02). J. Clin. Oncol. (Meeting Abstracts)27, 2006 (2009).
  • Prados M, Gilbert M, Kuhn J et al. Phase I/II study of sorefenib and erlotinib for patients with recurrent glioblastoma (GBM) (NABTC 05–02). J. Clin. Oncol. (Meeting Abstracts)27, 2005 (2009).
  • Baselga J, Pfister D, Cooper MR et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol.18, 904 (2000).
  • Bruns CJ, Harbison MT, Davis DW et al. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin. Cancer Res.6, 1936–1948 (2000).
  • Ciardiello F, Caputo R, Bianco R et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res.6, 2053–2063 (2000).
  • Topaly J, Zeller W, Fruehauf S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia15, 342–347 (2001).
  • Pietras K, Rubin K, Sjoblom T et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res.62, 5476–5484 (2002).
  • Ellis L. Epidermal growth factor receptor in tumor angiogenesis. Hematol. Oncol. Clin. North Am.18, 1007–1021 (2004).
  • O-charoenrat P, Rhys-Evans P, Archer D, Eccles S. C-erbB receptors in squamous cell carcinomas of the head and neck: clinical significance and correlation with matrix metalloproteinases and vascular endothelial growth factors. Oral Oncol.38, 73–80 (2002).
  • Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol. Biol. Cell, 4, 121–133 (1993).
  • Ravindranath N, Wion D, Brachet P, Djakiew D. Epidermal growth factor modulates the expression of vascular endothelial growth factor in the human prostate. J. Androl.22, 432–443 (2001).
  • Frederick B, Gustafson D, Bianco C, Ciardiello F, Dimery I, Raben D. ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.64, 33–37 (2006).
  • Bianco R, Rosa R, Damiano V et al. Vascular endothelial growth factor receptor-1 contributes to resistance to anti-epidermal growth factor receptor drugs in human cancer cells. Clin. Cancer Res.14, 5069–5080 (2008).
  • Petit A, Rak J, Hung M et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am. J. Pathol.151, 1523–1530 (1997).
  • Perrotte P, Matsumoto T, Inoue K et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res.5, 257–264 (1999).
  • Ciardiello F, Bianco R, Damiano V et al. Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin. Cancer Res.6, 3739–3747 (2000).
  • Inoue K, Slaton JW, Perrotte P et al. Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin. Cancer Res.6, 4874–4884 (2000).
  • Tortora G, Ciardiello F, Gasparini G. Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications. Nat. Clin. Prac. Oncol.5, 521–530 (2008).
  • Lamszus K, Brockmann MA, Eckerich C et al. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin. Cancer Res.11, 4934–4940 (2005).
  • Sathornsumetee S, Desjardins A, Vredenburgh JJ et al. Phase II study of bevacizumab plus erlotinib for recurrent malignant gliomas. J. Clin. Oncol. (Meeting Abstracts)27, 2045 (2009).
  • Baumann F, Bjeljac M, Kollias S et al. Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J. Neurooncol.67, 191–200 (2004).
  • Abdollahi A, Lipson K, Sckell A et al. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res.63, 8890–8898 (2003).
  • Friday B, Yu C, Yang L, Wigle D, Sarkaria J. Potentiation of proteasome inhibitor-induced apoptosis in glioma cells by histone deacetylase inhibitors. J. Clin. Oncol.25, 2038 (2007).
  • Chen T, Su S, Fry D, Liebes L. Combination therapy with irinotecan and protein kinase C inhibitors in malignant glioma. Cancer97, 2363–2373 (2003).
  • Butowski NA, Sneed PK, Chang SM. Diagnosis and treatment of recurrent high-grade astrocytoma. J. Clin. Oncol.24, 1273–1280 (2006).
  • Chakravarti A, Chakladar A, Delaney MA, Latham DE, Loeffler JS. The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Res.62, 4307–4315 (2002).
  • Huang S-M, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res.59, 1935–1940 (1999).
  • Milas L, Mason K, Hunter N et al.In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin. Cancer Res.6, 701–708 (2000).
  • O’Rourke DM, Kao GD, Singh N et al. Conversion of a radioresistant phenotype to a more sensitive one by disabling erbB receptor signaling in human cancer cells. Proc. Natl Acad. Sci. USA95, 10842–10847 (1998).
  • Brown PD, Krishnan S, Sarkaria JN et al. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group study N0177. J. Clin. Oncol.26, 5603–5609 (2008).
  • Prados MD, Chang SM, Butowski N et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J. Clin. Oncol.27, 579–584 (2009).
  • Chakravarti A, Berkey B, Robins H et al. An update of Phase II results from RTOG 0211: a Phase I/II study of gefitinib with radiotherapy in newly diagnosed glioblastoma. Program and Abstracts of the American Association for Cancer Research 97th Annual Meeting. Washington, DC, USA, 1–5 April 2006.
  • Carsten N, Nicole W, Nicolaus A, Michael M. Current status of angiogenesis inhibitors combined with radiation therapy. Cancer Treat. Rev.32, 348–364 (2006).
  • Winkler F, Kozin SV, Tong RT et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell6, 553–563 (2004).
  • Barcellos-Hoff M, Newcomb E, Zagzag D, Narayana A. Therapeutic targets in malignant glioblastoma microenvironment. Semin. Radiat. Oncol.19, 163–170 (2009).
  • Aharinejad S, Sioud M, Lucas T, Abraham D. Targeting stromal-cancer cell interactions with siRNAs. Methods Mol. Biol.487, 243–266 (2009).
  • Stukel JM, Caplan MR. Targeted drug delivery for treatment and imaging of glioblastoma multiforme. Expert Opin. Drug Deliv.,6, 705–718 (2009).
  • Jain KK. Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Rev. Neurother.7, 363–372 (2007).
  • Barbu E, Molnar E, Tsibouklis J, Gorecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin. Drug Deliv.6, 553–565 (2009).
  • DeAngelis C. Side effects related to systemic cancer treatment: are we changing the Promethean experience with molecularly targeted therapies? Curr. Oncol.15, 198–199 (2008).
  • Mulder S, Punt C. Managing toxicities of targeted therapies. Eur. J. Cancer Suppl.15, 394–397 (2007).
  • Sleijfer S, Verweij J. The price of success: cost–effectiveness of molecularly targeted agents. Clin. Pharmacol. Ther.85, 136–138 (2009).
  • Schrag D. The price tag on progress – chemotherapy for colorectal cancer. N. Engl. J. Med.351, 317–319 (2004).
  • Le Meur N, Gentleman R. Modeling synthetic lethality. Genome Biol.9, R135 (2008).
  • Turner NC, Lord CJ, Iorns E et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J.27, 1368–1377 (2008).
  • Whitehurst AW, Bodemann BO, Cardenas J et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature446, 815–819 (2007).
  • Luo J, Emanuele MJ, Li D et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell137, 835–848 (2009).
  • Hegi ME, Diserens A-C, Gorlia T et al.MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med.352, 997–1003 (2005).
  • Lassen U, Grunnet K, Kosteljanetz M, Hasselbalch B, Laursen H, Poulsen H. Bevacizumab, a monoclonal antibody to the vascular endothelial growth factor (VEGF), and irinotecan for treatment of recurrent primary malignant brain tumors in adults J. Clin. Oncol.25, 12503 (2007).
  • Krishnan S, Brown PD, Ballman KV et al. Phase I trial of erlotinib with radiation therapy in patients with glioblastoma multiforme: results of North Central Cancer Treatment Group protocol N0177. Int. J. Radiat. Oncol. Biol. Phys.65, 1192–1199 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.