245
Views
28
CrossRef citations to date
0
Altmetric
Perspective

Treatment of Parkinson’s disease by cortical stimulation

Pages 1755-1771 | Published online: 09 Jan 2014

References

  • Woolsey CN, Erickson TC, Gilson WE. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J. Neurosurg.51, 476–506 (1979).
  • Nguyen JP, Pollin B, Feve A, Geny C, Cesaro P. Improvement of action tremor by chronic cortical stimulation. Mov. Disord.13, 84–88 (1998).
  • Franzini A, Ferroli P, Servello D, Broggi G. Reversal of thalamic hand syndrome by long term motor cortex stimulation. J. Neurosurg.93, 873–875 (2000).
  • Katayama Y, Oshima H, Fukaya C, Kawamata T, Yamamoto T. Control of post-stroke movement disorders using chronic motor cortex stimulation. Acta Neurochir. Suppl.79, 89–92 (2002).
  • Lefaucheur JP. Repetitive transcranial magnetic stimulation (rTMS): insights into the treatment of Parkinson’s disease by cortical stimulation. Neurophysiol. Clin.36, 125–133 (2006).
  • Priori A, Lefaucheur JP. Chronic epidural motor cortical stimulation for movement disorders. Lancet Neurol.6, 279–286 (2007).
  • Brooks DJ. Neuroimaging in Parkinson’s disease. NeuroRx1, 243–254 (2004).
  • Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ. Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann. Neurol.32, 151–161 (1992).
  • Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain118, 913–933 (1995).
  • Rascol O, Sabatini U, Chollet F et al. Supplementary and primary sensory motor area activity in Parkinson’s disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch. Neurol.49, 144–148 (1992).
  • Rascol O, Sabatini U, Chollet F et al. Normal activation of the supplementary motor area in patients with Parkinson’s disease undergoing long-term treatment with levodopa. J. Neurol. Neurosurg. Psychiatry57, 567–571 (1994).
  • Sabatini U, Boulanouar K, Fabre N et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain123, 394–403 (2000).
  • Haslinger B, Erhard P, Kampfe N et al. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain124, 558–570 (2001).
  • Picard N, Strick PL. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex6, 342–353 (1996).
  • Dick JP, Rothwell JC, Day BL et al. The Bereitschaftspotential is abnormal in Parkinson’s disease. Brain112, 233–244 (1989).
  • Rossini PM, Babiloni F, Bernardi G et al. Abnormalities of short-latency somatosensory evoked potentials in parkinsonian patients. Electroencephalogr. Clin. Neurophysiol.74, 277–289 (1989).
  • Pulvermuller F, Lutzenberger W, Muller V, Mohr B, Dichgans J, Birbaumer N. P3 and contingent negative variation in Parkinson’s disease. Electroencephalogr. Clin. Neurophysiol.98, 456–467 (1996).
  • Cunnington R, Iansek R, Johnson KA, Bradshaw JL. Movement-related potentials in Parkinson’s disease. Motor imagery and movement preparation. Brain120, 1339–1353 (1997).
  • Bostantjopoulou S, Katsarou Z, Zafiriou D et al. Abnormality of N30 somatosensory evoked potentials in Parkinson’s disease: a multidisciplinary approach. Neurophysiol. Clin.30, 368–376 (2000).
  • Cunnington R, Lalouschek W, Dirnberger G et al. A medial to lateral shift in pre-movement cortical activity in hemi-Parkinson’s disease. Clin. Neurophysiol.112, 608–618 (2001).
  • Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C. Pharmacologically modulated fMRI – cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain126, 451–461 (2003).
  • Rascol O, Sabatini U, Brefel C et al. Cortical motor overactivation in parkinsonian patients with l-dopa-induced peak-dose dyskinesia. Brain121, 527–533 (1998).
  • Cantello R, Tarletti R, Civardi C. Transcranial magnetic stimulation and Parkinson’s disease. Brain Res. Rev.38, 309–327 (2002).
  • Lefaucheur JP. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin. Neurophysiol.116, 244–253 (2005).
  • Chen R, Kumar S, Garg RR, Lang AE. Impairment of motor cortex activation and deactivation in Parkinson’s disease. Clin. Neurophysiol.112, 600–607 (2001).
  • Watts RL, Mandir AS. The role of motor cortex in the pathophysiology of voluntary movement deficits associated with parkinsonism. Neurol. Clin.10, 451–469 (1992).
  • Kagerer FA, Summers JJ, Byblow WD, Taylor B. Altered corticomotor representation in patients with Parkinson’s disease. Mov. Disord.18, 919–927 (2003).
  • Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol.8, 67–81 (2009).
  • Hammond C, Ammari R, Bioulac B, Garcia L. Latest view on the mechanism of action of deep brain stimulation. Mov. Disord.23, 2111–2121 (2008).
  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science324, 354–359 (2009).
  • Ceballos-Baumann AO, Boecker H, Bartenstein P et al. A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch. Neurol.56, 997–1003 (1999).
  • Hershey T, Revilla FJ, Wernle AR et al. Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology61, 816–821 (2003).
  • Payoux P, Remy P, Damier P et al. Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch. Neurol.61, 1307–1313 (2004).
  • Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Ann. Neurol.42, 283–291 (1997).
  • Gerschlager W, Alesch F, Cunnington R et al. Bilateral subthalamic nucleus stimulation improves frontal cortex function in Parkinson’s disease. An electrophysiological study of the contingent negative variation. Brain122, 2365–2373 (1999).
  • Pierantozzi M, Mazzone P, Bassi A et al. The effect of deep brain stimulation on the frontal N30 component of somatosensory evoked potentials in advanced Parkinson’s disease patients. Clin. Neurophysiol.110, 1700–1707 (1999).
  • Sestini S, Scotto di Luzio A, Ammannati F et al. Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson’s disease. J. Nucl. Med.43, 725–732 (2002).
  • Thobois S, Dominey P, Fraix V et al. Effects of subthalamic nucleus stimulation on actual and imagined movement in Parkinson’s disease: a PET study. J. Neurol.249, 1689–1698 (2002).
  • Haslinger B, Kalteis K, Boecker H, Alesch F, Ceballos-Bauman AO. Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson’s disease. Neuroimage28, 598–606 (2005).
  • MacKinnon CD, Webb RM, Silberstein P et al. Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of the cerebral cortex in patients with Parkinson’s disease. Eur. J. Neurosci.21, 1394–1402 (2005).
  • Cunic D, Roshan L, Khan FI, Lozano AM, Lang AE, Chen R. Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease. Neurology58, 1665–1672 (2002).
  • Däuper J, Peschel T, Schrader C et al. Effects of subthalamic nucleus (STN) stimulation on motor cortex excitability. Neurology59, 700–706 (2002).
  • Pierantozzi M, Palmieri MG, Mazzone P et al. Deep brain stimulation of both subthalamic nucleus and internal globus pallidus restores intracortical inhibition in Parkinson’s disease paralleling apomorphine effects: a paired magnetic stimulation study. Clin. Neurophysiol.113, 108–113 (2002).
  • Devos D, Labyt E, Derambure P et al. Subthalamic nucleus stimulation modulates motor cortex oscillatory activity in Parkinson’s disease. Brain127, 408–419 (2004).
  • Meissner W, Leblois A, Hansel D et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain128, 2372–2382 (2005).
  • Garcia L, D’Alessandro G, Bioulac B, Hammond C. High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci.28, 209–216 (2005).
  • Foffani G, Ardolino G, Egidi M, Caputo E, Bossi B, Priori A. Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson’s disease. Brain Res. Bull.69, 123–130 (2006).
  • Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci.21, RC157 (2001).
  • Strafella AP, Paus T, Fraraccio M, Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain126, 2609–2615 (2003).
  • Strafella AP, Ko JH, Grant J, Fraraccio M, Monchi O. Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C]raclopride PET study. Eur. J. Neurosci.22, 2946–2952 (2005).
  • Kim JY, Chung EJ, Lee WY et al. Therapeutic effect of repetitive transcranial magnetic stimulation in Parkinson’s disease: analysis of [11C] raclopride PET study. Mov. Disord.23, 207–211 (2008).
  • Strafella AP, Ko JH, Monchi O. Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. Neuroimage31, 1666–1672 (2006).
  • Strafella AP, Vanderwerf Y, Sadikot AF. Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur. J. Neurosci.20, 2245–2249 (2004).
  • Taber MT, Fibiger HC. Electrical stimulation of the medial prefrontal cortex increases dopamine release in the striatum. Neuropsychopharmacology9, 271–275 (1993).
  • Takada M, Tokuno H, Nambu A, Inase M. Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp. Brain Res.120, 114–128 (1998).
  • Nambu A, Tokuno H, Hamada I et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J. Neurophysiol.84, 289–300 (2000).
  • Morari M, Marti M, Sbrenna S, Fuxe K, Bianchi C, Beani L. Reciprocal dopamine-glutamate modulation release in the basal ganglia. Neurochem. Int.33, 383–397 (1998).
  • Magill PJ, Bolam JP, Bevan MD. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience106, 313–330 (2001).
  • Goldberg JA, Boraud T, Maraton S, Haber SN, Vaadia E, Bergman H. Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease. J. Neurosci.22, 4639–4653 (2002).
  • Williams D, Tijssen M, Van Bruggen G et al. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain125, 1558–1569 (2002).
  • Drouot X, Oshino S, Jarraya B et al. Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation. Neuron4, 769–778 (2004).
  • Lefaucheur JP. Principles of therapeutic use of transcranial and epidural cortical stimulation. Clin. Neurophysiol.119, 2179–2184 (2008).
  • Lefaucheur JP. Methods of therapeutic cortical stimulation. Neurophysiol. Clin.39, 1–14 (2009).
  • Ranck JB Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res.98, 417–440 (1975).
  • Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp. Brain Res.118, 477–488 (1998).
  • McIntyre CC, Grill WM. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol.88, 1592–1604 (2002).
  • Manola L, Holsheimer J, Veltink P, Buitenweg JR. Anodal vs cathodal stimulation of motor cortex: a modeling study. Clin. Neurophysiol.118, 464–474 (2007).
  • Wang Y, Toledo-Rodriguez M, Gupta A et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of juvenile rat. J. Physiol. (Lond.)561, 65–90 (2004).
  • Shlosberg D, Patrick SL, Buskila Y, Amitai Y. Inhibitory effect of mouse neocortex layer I on the underlying cellular network. Eur. J. Neurosci.18, 2751–2759 (2003).
  • von Keyserlingk DG, Schramm U. Diameter of axons and thickness of myelin sheaths of the pyramidal tract fibres in the adult human medullary pyramid. Anat. Anz. (Jena)157, 97–111 (1984).
  • Post RM, Kimbrell TA, McCann UD et al. Repetitive transcranial magnetic stimulation as a neuropsychiatric tool: present status and future potential. J. ECT15, 39–59 (1999).
  • Kleiner-Fisman G, Fisman DN, Kahn FI, Sime E, Lozano AM, Lang AE. Motor cortical stimulation for parkinsonism in multiple system atrophy. Arch. Neurol.60, 1554–1558 (2003).
  • Manola L, Roelofsen BH, Holsheimer J, Marani E, Geelen J. Modelling motor cortex stimulation for chronic pain control: electrical potential field, activating functions and responses of simple nerve fibre models. Med. Biol. Eng. Comput.43, 335–343 (2005).
  • Saitoh Y, Kato A, Ninomiya H et al. Primary motor cortex stimulation within the central sulcus for treating deafferentation pain. Acta Neurochir. Suppl.87, 149–152 (2003).
  • Delavallée M, Abu-Serieh B, de Tourchaninoff M, Raftopoulos C. Subdural motor cortex stimulation for central and peripheral neuropathic pain: a long-term follow-up study in a series of eight patients. Neurosurgery63, 101–108 (2008).
  • Bezard E, Boraud T, Nguyen JP, Velasco F, Keravel Y, Gross C. Cortical stimulation and epileptic seizure: a study of the potential risk in primates. Neurosurgery45, 346–350 (1999).
  • Nguyen J-P, Lefaucheur J-P, Decq P et al. Chronic motor cortex stimulation in the treatment of central and neuropathic pain. Correlations between clinical, electrophysiological and anatomical data. Pain82, 245–251 (1999).
  • Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cammarota A, Grafman J, Hallett M. Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology44, 892–898 (1994).
  • Ghabra MB, Hallett M, Wassermann EM. Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology52, 768–770 (1999).
  • Siebner HR, Rossmeier C, Mentschel C, Peinemann A, Conrad B. Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J. Neurol. Sci.178, 91–94 (2000).
  • de Groot M, Hermann W, Steffen J, Wagner A, Grahmann F. Contralateral and ipsilateral repetitive transcranial magnetic stimulation in Parkinson patients. Nervenarzt72, 932–938 (2001).
  • Bornke Ch, Schulte T, Przuntek H, Muller T. Clinical effects of repetitive transcranial magnetic stimulation versus acute levodopa challenge in Parkinson’s disease. J. Neural Transm. Suppl.68, 61–67 (2004).
  • Lefaucheur JP, Drouot X, Von Raison F, Ménard-Lefaucheur I, Cesaro P, Nguyen JP. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin. Neurophysiol.115, 2530–2541 (2004).
  • Rothkegel H, Sommer M, Rammsayer T, Trenkwalder C, Paulus W. Training effects outweigh effects of single-session conventional rTMS and q burst stimulation in PD patients. Neurorehabil. Neural Repair23, 373–381 (2009).
  • Khedr EM, Farweez HM, Islam H. Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur. J. Neurol.10, 567–572 (2003).
  • Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Hamdy A. Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease. Mov. Disord.21, 2201–2205 (2006).
  • Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Foly N, Hamdy A. Dopamine levels after repetitive transcranial magnetic stimulation of motor cortex in patients with Parkinson’s disease: preliminary results. Mov. Disord.22, 1046–1050 (2007).
  • van Dijk KD, Møst EI, Van Someren EJ, Berendse HW, van der Werf YD. Beneficial effect of transcranial magnetic stimulation on sleep in Parkinson’s disease. Mov. Disord.24, 878–884 (2009).
  • Rektorova I, Sedlackova S, Telecka S, Hlubocky A, Rektor I. Repetitive transcranial stimulation for freezing of gait in Parkinson’s disease. Mov. Disord.22, 1518–1519 (2007).
  • Rektorova I, Sedlackova S, Telecka S, Hlubocky A, Rektor I. Dorsolateral prefrontal cortex: a possible target for modulating dyskinesias in Parkinson’s disease by repetitive transcranial magnetic stimulation. Int. J. Biomed. Imaging2008, 372125 (2008).
  • Filipovic SR, Rothwell JC, van de Warrenburg BP, Bhatia K. Repetitive transcranial magnetic stimulation for levodopa-induced dyskinesias in Parkinson’s disease. Mov. Disord.24, 246–253 (2009).
  • Shimamoto H, Takasaki K, Shigemori M, Imaizumi T, Ayabe M, Shoji H. Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson’s disease. J. Neurol.248, 48–52 (2001).
  • Ikeguchi M, Touge T, Nishiyama Y, Takeuchi H, Kuriyama S, Ohkawa M. Effects of successive repetitive transcranial magnetic stimulation on motor performances and brain perfusion in idiopathic Parkinson’s disease. J. Neurol. Sci.209, 41–46 (2003).
  • Okabe S, Ugawa Y, Kanazawa I, Effectiveness of rTMS on Parkinson’s Disease Study Group. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov. Disord.18, 382–388 (2003).
  • Tergau F, Wassermann EM, Paulus W, Ziemann U. Lack of clinical improvement in patients with Parkinson’s disease after low and high frequency repetitive transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. Suppl.51, 281–288 (1999).
  • Mally J, Stone TW. Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation. J. Neurol. Sci.162, 179–184 (1999).
  • Mally J, Stone TW. Therapeutic and “dose-dependent” effect of repetitive microelectroshock induced by transcranial magnetic stimulation in Parkinson’s disease. J. Neurosci. Res.57, 935–940 (1999).
  • Mally J, Farkas R, Tothfalusi L, Stone TW. Long-term follow-up study with repetitive transcranial magnetic stimulation (rTMS) in Parkinson’s disease. Brain Res. Bull.64, 259–263 (2004).
  • Siebner HR, Mentschel C, Auer C, Conrad B. Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson’s disease. Neuroreport10, 589–594 (1999).
  • Sommer M, Kamm T, Tergau F, Ulm G, Paulus W. Repetitive paired-pulse transcranial magnetic stimulation affects corticospinal excitability and finger tapping in Parkinson’s disease. Clin. Neurophysiol.113, 944–950 (2002).
  • Siebner HR, Mentschel C, Auer C, Lehner C, Conrad B. Repetitive transcranial magnetic stimulation causes a short-term increase in the duration of the cortical silent period in patients with Parkinson’s disease. Neurosci. Lett.284, 147–150 (2000).
  • Gilio F, Curra A, Inghilleri M, Lorenzano C, Manfredi M, Berardelli A. Repetitive magnetic stimulation of cortical motor areas in Parkinson’s disease: implications for the pathophysiology of cortical function. Mov. Disord.17, 467–473 (2002).
  • Fierro B, Brighina F, D’Amelio M et al. Motor intracortical inhibition in PD: l-DOPA modulation of high-frequency rTMS effects. Exp. Brain Res.184, 521–528 (2008).
  • Dias AE, Barbosa ER, Coracini K, Maia F, Marcolin MA, Fregni F. Effects of repetitive transcranial magnetic stimulation on voice and speech in Parkinson’s disease. Acta Neurol. Scand.113, 92–99 (2006).
  • Brusa L, Agrò EF, Petta F et al. Effects of inhibitory rTMS on bladder function in Parkinson’s disease patients. Mov. Disord.24, 445–448 (2009).
  • Koch G, Brusa L, Caltagirone C et al. rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson disease. Neurology65, 623–625 (2005).
  • Brusa L, Versace V, Koch G et al. Low frequency rTMS of the SMA transiently ameliorates peak-dose LID in Parkinson’s disease. Clin. Neurophysiol.117, 1917–1921 (2006).
  • Koch G, Oliveri M, Brusa L, Stanzione P, Torriero S, Caltagirone C. High-frequency rTMS improves time perception in Parkinson disease. Neurology63, 2405–2406 (2004).
  • Boylan LS, Pullman SL, Lisanby SH, Spicknall KE, Sackeim HA. Repetitive transcranial magnetic stimulation to SMA worsens complex movements in Parkinson’s disease. Clin. Neurophysiol.112, 259–264 (2001).
  • Hamada M, Ugawa Y, Tsuji S, Effectiveness of rTMS on Parkinson’s Disease Study Group, Japan. High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov. Disord.23, 1524–1531 (2008).
  • Hamada M, Ugawa Y, Tsuji S. The Effectiveness of rTMS on Parkinson’s Disease study group. High-frequency rTMS over the supplementary motor area improves bradykinesia in Parkinson’s disease: Subanalysis of double-blind sham-controlled study. J. Neurol. Sci. (2009) (Epub ahead of print).
  • Gerschlager W, Siebner HR, Rothwell JC. Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology57, 449–455 (2001).
  • Munchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC. Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J. Neurosci.22, 554–561 (2002).
  • Bäumer T, Lange R, Liepert J et al. Repeated premotor rTMS leads to cumulative plastic changes of motor cortex excitability in humans. Neuroimage20, 550–560 (2003).
  • Buhmann C, Gorsler A, Bäumer T et al. Abnormal excitability of premotor-motor connections in de novo Parkinson’s disease. Brain127, 2732–2746 (2004).
  • Mir P, Matsunaga K, Gilio F, Quinn NP, Siebner HR, Rothwell JC. Dopaminergic drugs restore facilitatory premotor–motor interactions in Parkinson disease. Neurology64, 1906–1912 (2005).
  • Bäumer T, Hidding U, Hamel W et al. Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson’s disease. Mov. Disord.24, 672–676 (2009).
  • Sedlácková S, Rektorová I, Srovnalová H, Rektor I. Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson’s disease. J. Neural Transm.116, 1093–1101 (2009).
  • Dragasevic N, Potrebic A, Damjanovic A, Stefanova E, Kostic VS. Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson’s disease: an open study. Mov. Disord.17, 528–532 (2002).
  • Fregni F, Santos CM, Myczkowski ML et al. Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry75, 1171–1174 (2004).
  • del Olmo MF, Bello O, Cudeiro J. Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin. Neurophysiol.118, 131–139 (2007).
  • Boggio PS, Fregni F, Bermpohl F et al. Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov. Disord.20, 1178–1184 (2005).
  • Fregni F, Ono CR, Santos CM et al. Effects of antidepressant treatment with rTMS and fluoxetine on brain perfusion in PD. Neurology66, 1629–1637 (2006).
  • Cardoso EF, Fregni F, Martins Maia F et al. rTMS treatment for depression in Parkinson’s disease increases BOLD responses in the left prefrontal cortex. Int. J. Neuropsychopharmacol.11, 173–183 (2008).
  • Kormos TC. Efficacy of rTMS in the treatment of co-morbid anxiety in depressed patients with Parkinson’s disease. Mov. Disord.22, 1836 (2007).
  • Epstein CM, Evatt ML, Funk A et al. An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin. Neurophysiol.118, 2189–2194 (2007).
  • Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M. Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov. Disord.21, 325–331 (2006).
  • Koch G, Brusa L, Carrillo F et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology73, 113–119 (2009).
  • Fregni F, Boggio PS, Santos MC et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord.21, 1693–1702 (2006).
  • Boggio PS, Ferrucci R, Rigonatti SP et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J. Neurol. Sci.249, 31–38 (2006).
  • Wu AK, McCairn KW, Zada G, Wu T, Turner RS. Motor cortex stimulation: mild transient benefit in a primate model of Parkinson disease. J. Neurosurg.106, 695–700 (2007).
  • Canavero S, Paolotti R. Extradural motor cortex stimulation for advanced Parkinson’s disease: case report. Mov. Disord.15, 169–171 (2000).
  • Canavero S, Paolotti R, Bonicalzi V et al. Extradural motor cortex stimulation for advanced Parkinson disease. Report of two cases. J. Neurosurg.97, 1208–1211 (2002).
  • Canavero S, Bonicalzi V, Paolotti R et al. Therapeutic extradural cortical stimulation for movement disorders: a review. Neurol. Res.25, 18–22 (2003).
  • Pagni CA, Zeme S, Zenga F, Maina R. Extradural motor cortex stimulation in advanced Parkinson’s disease. Neurosurgery57(4 Suppl.), E402 (2005).
  • Pagni CA, Albanese A, Bentivoglio A et al. Results by motor cortex stimulation in treatment of focal dystonia, Parkinson’s disease and post-ictal spasticity. The experience of the Italian Study Group of the Italian Neurosurgical Society. Acta Neurochir. Suppl.101, 13–21 (2008).
  • Benvenuti E, Cecchi F, Colombini A, Gori G. Extradural motor cortex stimulation as a method to treat advanced Parkinson’s disease: new perspectives in geriatric medicine. Aging Clin. Exp. Res.18, 347–348 (2006).
  • Cioni B. Motor cortex stimulation for Parkinson’s disease. Acta Neurochir. Suppl.97, 233–238 (2007).
  • Arle JE, Apetauerova D, Zani J et al. Motor cortex stimulation in patients with Parkinson disease: 12-month follow-up in 4 patients. J. Neurosurg.109, 133–139 (2008).
  • Thobois S, Delamarre-Damier F, Derkinderen P. Treatment of motor dysfunction in Parkinson’s disease: an overview. Clin. Neurol. Neurosurg.107, 269–281 (2005).
  • Leichnetz GR. Afferent and efferent connections of the dorsolateral precentral gyrus (area 4 hand/arm region) in the macaque monkey, with comparison to area 8. J. Comp. Neurol.254, 460–492 (1986).
  • Cilia R, Landi A, Vergani F, Sganzerla E, Pezzoli G, Antonini A. Extradural motor cortex stimulation in Parkinson’s disease. Mov. Disord.22, 111–114 (2007).
  • Gutiérrez JC, Seijo FJ, Alvarez Vega MA, Fernández González F, Lozano Aragoneses B, Blázquez M. Therapeutic extradural cortical stimulation for Parkinson’s Disease: report of six cases and review of the literature. Clin. Neurol. Neurosurg.111, 703–707 (2009).
  • Strafella AP, Lozano AM, Lang AE, Ko JH, Poon YY, Moro E. Subdural motor cortex stimulation in Parkinson’s disease does not modify movement-related rCBF pattern. Mov. Disord.22, 2113–2116 (2007).
  • Munno D, Caporale S, Zullo G et al. Neuropsychologic assessment of patients with advanced Parkinson disease submitted to extradural motor cortex stimulation. Cogn. Behav. Neurol.20, 1–6 (2007).
  • Cilia R, Marotta G, Landi A et al. Cerebral activity modulation by extradural motor cortex stimulation in Parkinson’s disease: a perfusion SPECT study. Eur. J. Neurol.15, 22–28 (2008).
  • Fasano A, Piano C, De Simone C et al. High frequency extradural motor cortex stimulation transiently improves axial symptoms in a patient with Parkinson’s disease. Mov. Disord.23, 1916–1919 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.