246
Views
29
CrossRef citations to date
0
Altmetric
Review

Neurodegeneration in schizophrenia

Pages 1131-1141 | Published online: 09 Jan 2014

References

  • Bullmore ET, O’Connell P, Frangou S, Murray RM. Schizophrenia as a developmental disorder of neural network integrity: the dysplastic net hypothesis. In: Neurodevelopment and Adult Psychopathology. Keshaven MS, Murray RM (Eds). Cambridge University Press, Cambridge, UK 253–266 (1997).
  • Sawa A, Snyder SH. Schizophrenia: diverse approaches to a complex disease. Science296, 692–695 (2002).
  • Rapaport MH, Delrahim KK, Bresee CJ, Maddux RE, Ahmadpour O, Dolnak D. Celecoxib augmentation of continuously ill patients with schizophrenia. Biol. Psychiatry57, 1594–1596 (2005).
  • Cannon M, Caspi A, Moffitt TE. Evidence for early, specific, pan-development impairment in schizophreniform disorder: results from a longitudinal birth cohort. Arch. Gen. Psychiatr.59, 449–456 (2002).
  • Cannon M, Murray RM, Jones P. Obstetric complications and schizophrenia: past, present and future. Am. J. Psychiatry159, 1080–1092 (2002).
  • Geddes JR, Verdoux H, Takei N. Schizophrenia and complications of pregnancy and labour: an individual patient data meta-analysis. Schizophr. Bull.25, 413–423 (1999).
  • Levinson DF, Mowry BJ. Genetics of schizophrenia. In: Genetic Influences on Neural and Behavioral Functions. Pfaff DW, Berrettini WH, Joh TH, Maxson SC (Eds). CRC Press, FL, USA, 47–82 (2000).
  • Lipska BK, Weinberger DR. A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus. Neurotoxicity Res.4, 469–475 (2002).
  • Bachevalier J, Alvarado MC, Malkova L. Memory and socioemotional behavior in monkeys after hippocampal damage incurred in infancy or in adulthood. Biol. Psychiatry46, 329–339 (1999).
  • Decker MJ, Rye DB. Neonatal intermittent hypoxia impairs dopamine signaling and executive functioning. Sleep Breath.6, 205–207 (2002).
  • Heijman BT, Tobi EW, Stein AD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA105, 17046–17049 (2008).
  • Hulshoff Pol HE, Hoek HW, Susser E et al. Prenatal exposure to famine and brain morphology in schizophrenia. Am. J. Psychiatry157, 1170–1172 (2000).
  • Sperner-Unterweger B. Immunological aetiology of major psychiatric disorders: evidence and therapeutic implications. Drugs65, 1493–1520 (2005).
  • St Clair D, Xu M, Wang P et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA294, 557–562 (2005).
  • Susser ES, Lin SP. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch. Gen. Psychiatry49, 983–988 (1992).
  • Arnold SE. Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann. NY Acad. Sci.911, 275–292 (2000).
  • Gold JM, Weinberger DR. Cognitive deficits and the neurobiology of schizophrenia. Curr. Opin. Neurobiol.5, 225–230 (1995).
  • Kalus P, Slotboom J, Gallinat J et al. New evidence for involvement of the entorhinal region in schizophrenia: a combined MRI volumetric and DTI study. Neuroimage24, 1122–1129 (2005).
  • Le Pen G, Gourevitch R, Hazane F, Hoareau C, Jay TM, Krebs MO. Peripubertal maturation after developmental disturbance: a model for psychosis onset in the rat. Neuroscience143, 395–405 (2006).
  • Abi-Dargham A, Gil R, Krystal J. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am. J. Psychiatry155, 761–767 (1998).
  • Talamini LM, Koch T, Luiten PGM, Koolhaas JM, Korf J. Interruptions of early cortical development affect limbic association areas and social behavior in rats: possible relevance for neurodevelopmental disorders. Brain Res.847, 105–120 (1999).
  • Weinberger DR. Neurodevelopmental perspectives on schizophrenia. In: Psychopharmacology: The Fourth Generation of Progress. Bloom FE, Kupfer DJ (Eds). Raven Press, NY, USA 1171–1183 (1995).
  • Moghaddam B. Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology174, 39–44 (2004).
  • Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry52, 998–1007 (1995).
  • Tamminga C. Glutamatergic aspects of schizophrenia. Br. J. PsychiatrySuppl.37, 12–15 (1999).
  • Forbes NF, Carrick LA, McIntosh AM, Lawrie SM. Working memory in schizophrenia: a meta-analysis. Psychol. Med.23, 1–17 (2008).
  • Karilampi U, Helldin L, Hjärthag F, Norlander T, Archer T. Verbal learning in schizopsychotic outpatients and healthy volunteers as a function of cognitive performance. Arch. Clin. Neuropsychol.22, 161–174 (2007).
  • Owashi T, Iwanami A, Nakagome K, Higuchi T, Kamijima K. Thought disorder and executive dysfunction in patients with schizophrenia. Int. J. Neurosci.119, 105–123 (2009)
  • Segarra N, Bernardo M, Valdes M et al. Cerebellar deficits in schizophrenia are associated with executive dysfunction. Neuroreport19, 1513–1517 (2008).
  • Lewis DA, Moghaddam B. Cognitive dysfunction in schizophrenia: convergence of g-aminobutyric acid and glutamate alterations. Arch. Neurol.63, 1372–1376 (2006).
  • Abi-Saab WM, D’Souza DC, Moghaddam B, Krystal JH. The NMDA antagonist model for schizophrenia: promise and pitfalls. Pharmacopsychiatry31(Suppl. 2), 104–109 (1998).
  • Krystal JH, Anand A, Moghaddam B. Effects of NMDA receptor antagonists: implications for the pathophysiology of schizophrenia. Arch. Gen. Psychiatry59, 663–664 (2002).
  • Stefani MR, Moghaddam B. Distinct contributions of glutamate receptor subtypes to cognitive set-shifting abilities in the rat. Ann. NY Acad. Sci.1003, 464–467 (2003).
  • Kobori N, Dash PK. Reversal of brain injury-induced prefrontal glutamic acid decarboxylase expression and working memory deficts by D1 antagonism. J. Neurosci.26, 4236–4246 (2006).
  • Williams GV, Castner SA. Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience139, 263–276 (2006).
  • Dikranian K, Ishimaru MJ, Tenkova T et al. Apoptosis in the in vivo mammalian forebrain. Neurobiol. Dis.8, 359–379 (2001).
  • Ishimaru MJ, Ikonomidou C, Tenkova TI et al. Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J. Comp. Neurol.408, 461–476 (1999).
  • Gwag BJ, Koh JY, Demaro JA, Ying HS, Jacquin M, Choi DW. Slowly triggered excitotoxicity occurs by necrosis in cortical cultures. Neuroscience77, 393–401 (1997).
  • Olney JW, Wozniak DF, Jevtovic-Todorovic V, Farber NB, Bittigau P, Ikonomidou C. Glutamate and GABA receptor dysfunction in the fetal alcohol syndrome. Neurotox. Res.4, 315–325 (2002).
  • Olney JW, Tenkova T, Dikranian K, Qin YQ, Labruyere J, Ikonomidou C. Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. Brain Res. Devel. Brain Res.133, 115–126 (2002).
  • Bubeníková-Valesová V, Horácek J, Vrajová M, Höschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci. Biobehav. Rev.32, 1014–1023 (2008).
  • Jarskog LF, Glantz LA, Gilmore JH. Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry29, 846–858 (2005).
  • Mattson MP, Duan W. “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J. Neurosci. Res.58, 152–166 (1999).
  • Jarskog LF, Gilmore JH, Selinger ES, Lieberman JA. Cortical bcl-2 protein expression and apoptotic regulation in schizophrenia. Biol. Psychiatry48, 641–650 (2000).
  • Jarskog LF, Selinger ES, Lieberman JA, Gilmore JH. Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2 ratio without caspase-3 activation. Am. J. Psychiatry161, 109–115 (2004).
  • Miyaoka T. Clinical potential of minocycline for schizophrenia. CNS Neurol. Disord. Drug Targets7, 376–381 (2008)
  • Butts BD, Houde C, Mehmet H. Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease.Cell Death Differ.15, 1178–1186 (2008).
  • Beauregard M, Bachevalier J. Neonatal insult to the hippocampal region and schizophrenia: a review and a putative animal model. Can. J. Psychiatry41, 446–456 (1996).
  • Bertolino A, Nawroz S, Mattay VS et al. Regionally specific pattern neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. Am. J. Psychiat.153, 1554–1563 (1996).
  • Bertolino A, Breier A, Callicott JH et al. The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology22, 125–132 (2000).
  • Black MD, Lister S, Hitchcock JM, Giersbergen P, Sorensen SM. Neonatal lesion model of schizophrenia in rats: sex differences and persistence of effects into maturity. Drug Dev. Res.43, 206–213 (1998).
  • Chambers RA, Moore J, McEnvoy JP, Levin ED. Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology15, 587–594 (1996).
  • Lillrank SM, Lipska BK, Weinberger DR. Neurodevelopmental animal models of schizophrenia. Clin. Neurosci.3, 98–104 (1995).
  • Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology9, 67–75 (1993).
  • Lipska BK, Al-Amin HA, Weinberger DR. Excitotoxic lesions of the rat medial prefrontal cortex: effects on abnormal behaviors associated with neonatal hippocampal damage. Neuropsychopharmacology19, 451–464 (1998).
  • Wan RQ, Corbett R. Enhancement of postsynaptic sensitivity to dopaminergic agonists induced by neonatal hippocampal lesions. Neuropsychopharmacology16, 259–268 (1997).
  • Weinberger DR. Cell biology of the hippocampal formation in schizophrenia. Biol. Psychiatry45, 395–402 (1999).
  • Eastwood SL, Harrison PJ. Hippocampal and cortical growth-associated protein-43 messenger RNA in schizophrenia. Neuroscience86, 437–448 (1998).
  • Falkai P, Bogerts B. Cell loss in the hippocampus of schizophrenics. Eur. Arch. Psychiat. Neurol.Sci.236, 154–161 (1986)
  • Suddath RL, Christisin GW, Torrey EF, Casanova M, Weinberger DR. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N. Engl. J. Med.322, 789–794 (1990).
  • Akbarian S, Bunney WE, Potkin SG et al. Altered distribution of nicotinamideadenine dinucleotide phosphate diaphorase cells in front lobe of schizophrenics implies disturbances of cortical development. Arch. Gen. Psychiatr.50, 169–177 (1993).
  • Arnold SE, Hyman BT, Vanhoesen GW, Damasio AR. Some cutoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch. Gen. Psychiatr.48, 625–632 (1991).
  • Jakob H, Beckman H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J. Neural Transm.65, 303–326 (1986).
  • Csernansky JG, Bardgett ME. Limbic-cortical neuronal damage and the pathophysiology in schizophrenia. Schizophr. Bull.24, 231–248 (1998).
  • Raedler TJ, Knable MB, Weinberger DR. Schizophrenia as a developmental disorder of the cerebral cortex. Curr. Opin. Neurobiol.8, 157–161 (1998).
  • Jones P, Done DJ. From birth to onset: a neurodevelopmental perspective of schizophrenia in two national birth cohorts. In: Neurodevelopment and Adult Psychopathology. Keshaven MS, Murray RM (Eds). Cambridge University Press, Cambridge, UK 119–136 (1997).
  • Mednick SA, Machon RA, Huttunen MO, Bonett D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatr.45, 189–192 (1988).
  • Beninger RJ, Jhamandas A, Aujla H et al. Neonatal exposure to the glutamate receptor antagonist MK-801: effects on locomotor activity and pre-pulse inhibition before and after sexual maturity in rats. Neurotoxicity Res.4, 477–488 (2002).
  • Moore H, Giracello D, Grace AA, Geyer MA. Sensory gating deficits in rats with early disruption of limbic cortical development. Relevance to schizophrenia. Soc. Neurosci. Abstr.25, 1580 (1999).
  • Talamini LM, Koch T, Ter Horst GJ, Korf J. Methylazoxymethanol acetate-induced abnormalities in the entorhinal cortex of the rat: parallels with morphological findings in schizophrenia. Brain Res.789, 293–306 (1999).
  • Archer T, Palomo P, Fredriksson A. Neonatal 6-hydroxydopamine-induced hypo/hyperactivity: blockade by dopamine reuptake inhibitors and effect of acute D-amphetamine. Neurotoxicity Res.4, 247–266 (2002).
  • Braff DL, Geyer MA. Sensorimotor gating and schizophrenia: human and animal model studies. Arch. Gen. Psychiatry47, 181–188 (1990).
  • Braff DL Information processing and attentional dysfunctions in schizophrenia. Schizophr. Bull.19, 233–259 (1993).
  • Perry W, Braff DL. Information processing deficits and thought disorder in schizophrenia. Am. J. Psychiatr.151, 363–367 (1994).
  • Geyer MA. The family of sensorimotor gating disorders: comorbidities or diagnostic overlaps. Neurotox. Res.10, 211–220 (2006).
  • Powell SB, Geyer MA. Developmental markers of psychiatric disorders as identified by sensorimotor gating. Neurotox. Res.4, 489–502 (2002).
  • Van den Buuse M, Garner B, Koch M. Neurodevelopmental animal models of schizophrenia: effects on prepulse inhibition. Curr. Mol. Med.3, 459–471 (2003).
  • Tseng KY, Chambers RA, Lipska BK. The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav. Brain Res.204, 295–305 (2009).
  • Tseng KY, Lewis BL, Lipska BK, O’Donnell P. Post-pubertal disruption of medial prefrontal cortical dopamine–glutamate interactions in a developmental animal model of schizophrenia. Biol. Psychiatry62, 730–738 (2007).
  • Lipska BK, Jaskiw GE, Chrapusta S, Karoum F, Weinberger DR. Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Res.585, 1–6 (1992).
  • Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR. Neonatal excitotoxic lesions hippocampal damage in rats causes post pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology122, 35–43 (1995).
  • Lipska BK, Kolb B, Halim N, Weinberger DR. Synaptic abnormalities in prefrontal cortex and nucleus accumbens of adult rats with neonatal hippocampal damage. Schizophr. Res.49, 47 (2001).
  • O’Donnell P, Lewis BL, Weinberger DR, Lipska BK. Neonatal hippocampal damage alters electrophysiological properties of prefrontal cortical neurons an adult rats. Cereb. Cortex12, 975–982 (2002).
  • Lipska BK, Weinberger DR. Subchronic treatment with haloperidol and clozapine in rats with neonatal excitotoxic hippocampal damage. Neuropsychopharmacology10, 199–205 (1994).
  • Lillrank SM, Lipska BK, Kolachana BS, Weinberger DR. Attenuated extracellular dopamine levels after stress and amphetamine in the nucleus accumbens of rats with neonatal ventral hippocampal damage. J. Neural Transm.106, 183–196 (1999).
  • Brans RG, van Haren NE, van Baal GC, Schnack HG, Kahn RS, Hulshoff Pol HE. Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Arch. Gen. Psychiatry65, 1259–1268 (2008).
  • Shenton ME, Gerig G, McCarley RW, Szekely G, Kikinis R. Amygdala-hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data. Psychiatry Res.115, 15–35 (2002).
  • Archer T, Fredriksson A, Sundström E et al. Prenatal methylazoxymethanol treatment potentiates D-amphetamine- and methylphenidate-induced motor activity in male and female rats. Pharmacol. Toxicol.63, 233–239 (1988).
  • Flagstad P, Glenthoj BY, Didriksen M. Cognitive deficits caused by late gestational disruption of neurogenesis in rats: a preclinical model of schizophrenia. Neuropsychopharmacolgy30, 250–260 (2005).
  • Mohammed AK, Jonsson G, Söderberg U, Archer T. Impaired selective attention in methylazoxymethanol-induced microencephalic rats. Pharmacol. Biochem. Behav.24, 975–981 (1986).
  • Mohammed AK, Jonsson G, Sundström E, Minor BG, Söderberg U, Archer T. Selective attention and place navigation in rats treated prenatally with methylazoxymethanol. Brain Res. Dev. Brain Res.30, 145–155 (1986).
  • Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Nowak P, Brus R. Pharmacological models of ADHD. J. Neural Transm.115, 287–298 (2008).
  • Lodge DJ, Grace AA. Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia. Neurotox. Res14, 97–104. (2008).
  • Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol. Psychiatry60, 253–264 (2006).
  • Lavin A Moore HM, Grace AA. Prenatal disruption of neocortical development alters prefrontal cortical neuron responses to dopamine in adult rats. Neuropsychopharmacology30, 1426–1435 (2005).
  • Chen S, Hillman DE. Selective ablation of neurons by methylazoxymethanol during pre- and postnatal brain development. Exp. Neurol.94, 103–119 (1986).
  • Gourevitch R, Rocher C, Le Pen G, Krebs MO, Jay TM. Working memory deficits in adult rats after prenatal disruption of neurogenesis. Behav. Pharmacol.15, 287–292 (2004).
  • Virgili M, Vandi M, Contestabile A. Ischemic and excitotoxic damage to brain slices from normal and microencephalic rats. Neurosci. Lett.233, 53–57 (1997).
  • Ferguson SA, Holson RR. Methylazoxymethanol-induced microencephaly in the brown Norway strain: behavior and brain weight. Int. J. Dev. Neurosci.15, 75–86 (1997).
  • Flagstad P, Mork A, Glenthoj BY, van Beek J, Michael-Titus AT, Didriksen M. Disruption of neurogenesis on gestation day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology29, 2052–2064 (2004).
  • Fiore M, Aloe L, Westenbroek C, Amendola T, Antonelli A, Korf J. Bromodeoxyuridine and methylazoxymethanol exposure during brain development affects behavior in rats: consideration for a role of nerve growth factor and brain derived neurotrophic factor. Neurosci. Lett.309, 113–116 (2001)
  • Fiore M, Korf J, Antonelli A, Talamini L, Aloe L. Long-lasting effects of prenatal MAM treatment on water maze performance in rats: associations with altered brain development and neurotrophin levels. Neurotoxicol. Teratol.24, 179–191 (2002).
  • Lee MH, Rabe A. Premature decline in Morris water maze performance of aging microencephalic rats. Neurotoxicol. Teratol.14, 383–392 (1992).
  • Shimizu J, Tamaru M, Katsukura T, Matsutani T, Nagata Y. Effects of fetal treatment with methylazoxymethanol acetate on radial maze performance in rats. Neurosci. Res.11, 209–214 (1991).
  • Leng A, Jongen-Relo AL, Pothuizen HH, Feldon J. Effects of prenatal methylazoxymethanol acetate (MAM) treatment in rats on water maze performance. Behav. Brain Res.161, 291–298 (2005).
  • Grace AA, Moore H. Regulation of information flow in the nucleus accumbens: a model for the pathophysiology of schizophrenia. In: Origins and Development of Schizophrenia: Advances in Experimental Psychopathology. Lenzenweger MF, Dworkin RH (Eds). American Psychological Association Press, DC, USA 123–157 (1998).
  • Jongen-Relo AL, Leng A, Luber M, Pothuizen HH, Weber L, Feldon J. The prenatal methylazoxymethanol acetate treatment: a neurodevelopmental animal model for schizophrenia. Behav. Brain Res.149, 159–181 (2004).
  • Featherstone RE, Rizos Z, Nobrega JN, Kapur S, Fletcher PJ. Gestational methylazoxymethanol acetate treatment impairs select cognitive functions: parallels to schizophrenia.Neuropsychopharmacology32, 483–492 (2007).
  • Goto Y, Grace AA. Alterations in medial prefrontal cortical activity and plasticity in rats with disruption of cortical development. Biol. Psychiatry60, 1259–1267 (2006).
  • Castro PA, Cooper EC, Lowenstein DH, Baraban SC. Hippocampal heterotopias lack of functional Kv4.2 potassium channels in the methylazoxymethanol model of cortical malformations and epilepsy. J. Neurosci.21, 6626–6634 (2001).
  • Ferrer I, Pozas E, Marti M, Blanco R, Planas AM. Methylazoxymethanol acetate-induced apoptosis in the external granule cell layer of the developing cerebellum of the rat is associated with strong c-jun expression and formation of high molecular weight c-jun complexes. J. Neuropathol. Exp. Neurol.56, 1–9 (1997).
  • Lafarga M, Lerga A, Andres MA, Polanco JL, Calle E, Berciano MT. Apoptosis induced by methylazoxymethanol in developing rat cerebellum: organization of the cell nucleus and its relationship to DNA and rRNA degradation. Cell Tissue Res.289, 25–38 (1997).
  • Ciani E, Frenquelli M, Contestabile A. Developmental expression of the cell cycle and apoptosis controlling gene, Lot1, in the rat cerebellum and in cultures of cerebellar granule cells. Brain Res. Dev. Brain Res.142, 193–202 (2003).
  • Fan QY, Ramakrisna S, Marchi N, Fazio V, Hallene K, Janigro D. Combined effects of prenatal inhibition of vasculogenesis and neurogenesid on rat brain development. Neurobiol. Dis.32, 499–509 (2008).
  • Ferrer I, Puig B, Goutan E, Gombau L, Muñoz-Cánoves P. Methylazoximethanol acetate-induced cell death in the granule cell layer of the developing mouse cerebellum is associated with caspase-3 activation, but does not depend on the tissue-type plasminogen activator. Neurosci. Lett.299, 77–80 (2001).
  • Hugon J, Esclaire F, Lesort M, Kisby G, Spencer P. Toxic neuronal apoptosis and modifications of tau and APP gene and protein expressions. Drug. Metab. Rev.31, 635–647 (1999).
  • Kisby GE, Olivas A, Standley M et al. Genotoxicants target distinct molecular networks in neonatal neurons. Environ. Health Perspect.114, 1703–1712 (2006).
  • Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect.108(Suppl. 3), 511–533 (2000).
  • Maekawa M, Takashima N, Matsumata M et al. Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illness. PLos One4, 5085–5095 (2009).
  • Ko HG, Jang DJ, Son J et al. Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory. Mol. Brain2(1), 1 (2009).
  • Brunskill EW, Ehrman LA, Williams MT et al. Abnormal neurodevelopment, neurosignalling and behavior in Npas-deficient mice. Eur. J. Neurosci.22, 1265–1276 (2005).
  • Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW. Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J. Med. Genet.40, 325–332 (2003).
  • Geist MA, Volbracht C, Podhorna J, Falsig J, Leist M. Wide spectrum modulation by KP-544 in models relevant for neuronal survival. Neuroreport18, 571–575 (2007).
  • Ellenbroek BA, van den Kroonenberg PT, Cools AR. The effects of an early stressful life event on sensorimotor gating in adult rats. Schizophr. Res.30, 251–260 (1998).
  • Furukawa T, Mizukawa R, Hirai T, Fujihara S, Kitamura T, Takahashi K. Childhood parental loss and schizophrenia: evidence against pathogenic but for some pathoplastic effects. Psychiatry Res.81, 353–362 (1998).
  • Millstein RA, Ralph RJ, Yang RJ, Holmes A. Effects of repeated maternal separation on prepulse inhibition of startle across inbred mouse strains. Genes Brain Behav.5, 346–354 (2006).
  • Mäki P, Veijola J, Joukamaa M et al. Maternal separation at birth and schizophrenia – a long-term follow-up of the Finnish Christmas Seal Home Children. Schizophr. Res.60, 13–19 (2003).
  • Dean B. Is schizophrenia the price of human central nervous system complexity? Aust. NZ J. Psychiatry43, 13–24 (2009).
  • Kasof GM, Mahanty NK, Pozzo Miller LD et al. Spontaneous and evoked glutamate signalling influences Fos-lacZ expression and pyramidal cell death in hippocampal slice cultures from transgenic rats. Brain Res. Mol. Brain Res.34, 197–208 (1995).
  • Kasof GM, Mandelzys A, Maika SD, Hammer RE, Curran T, Morgan JI. Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacZ transgenic rats. J. Neurosci.15, 4238–4249 (1995).
  • Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system – involvement of inducible protoonco-genes Fos and Jun. Ann. Rev. Neurosci.14, 421–451 (1991).
  • Morgan JI, Curran T. Immediate-early genes: ten years on. Trends Neurosci.18, 66–67 (1995).
  • Sheng M, Greenberg ME. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron4, 477–485 (1990).
  • Akbari EM, Budin R, Parada M, Fleming AS. The effects of early isolation on sexual behavior and c-fos expression in naïve male Long-Evans rats. Dev. Psychobiol.50, 298–306 (2008).
  • Morales T, Aguilar L, Ramos E, Mena F, Morgan C. Fos expression induced by milk ingestion in the caudal brainstem of neonatal rats. Brain Res.1241, 76–83 (2008).
  • Shi L, Liu Y, Mao C, Zeng F, Meyer K, Xu Z. A new approach for exploring functional development of fetal brain pathways. Dev. Psychobiol.51, 384–388 (2009).
  • Doucet JP, Nakabeppu Y, Bedard PJ et al. Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of delta FosB-like protein(s) in both rodent and primate striatum. Eur. J. Neurosci.8, 365–381 (1996).
  • Hiroi N, Brown JR, Haile CN, Ye H, Greenberg ME, Nestler EJ. FosB mutant mice: loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine’s psychomotor and rewarding effects. Proc. Natl Acad. Sci. USA94, 10397–10402 (1997).
  • Kim Y, Teylan MA, Baron M, Sands A, Nairn AC, Greengard P. Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens. Proc. Natl Acad. Sci. USA106, 2915–2920 (2009).
  • Powell KJ, Binder TL, Hori S et al. Neonatal ventral hippocampal lesions produce an elevation of δFosB-like protein(s) in the rodent neocortex. Neuropsychopharmacolgy31, 700–711 (2006).
  • Green TA, Alibhai IN, Unterberg S et al. Induction of activating transcription factors (ATFs) ATF2, ATF3, and ATF4 in the nucleus accumbens and their regulation of emotional behavior. J. Neurosci.28, 2025–2032 (2008).
  • Nestler EJ. Review. Transcriptional mechanisms of addiction: role of δFosB. Philos. Trans. R. Soc. Lond. B Biol. Sci.363, 3245–3255 (2008).
  • Wallace DL, Vialou V, Rios L et al. The influence of δFosB in the nucleus accumbens on natural reward-related behavior. J. Neurosci.28, 10272–10277 (2008).
  • Winstanley CA. The orbitofrontal cortex, impulsivity, and addiction: probing orbitofrontal dysfunction at the neural, neurochemical, and molecular level. Ann. NY Acad. Sci.1121, 639–655 (2007).
  • Nikulina EM, Arrillaga-Romany I, Miczek KA, Hammer RP Jr. Long-lasting alteration in mesocorticolimbic structures after repeated social defeat stress in rats: time course of µ-opioid receptor mRNA and FosB/δFosB immunoreactivity. Eur. J. Neurosci.27, 2272–2284 (2008).
  • Wallace DL, Han MH, Graham DL et al. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat. Neurosci.12, 200–209 (2009).
  • Moghaddam B, Jackson M. Effect of stress on prefrontal cortex function. Neurotox. Res.6, 73–78 (2004).
  • Scornaiencki R, Cantrup R, Rushlow WJ, Rajakumar N. Prefrontal cortical D1 dopamine receptors modulate subcortical D2 dopamine receptor-mediated stress responsiveness. Int. J. Neuropsychopharmacol.11, 1–14 (2009).
  • Inglis FM, Moghaddam B. Dopaminergic innervation of the amygdala is highly responsive to stress. J. Neurochem.72, 1088–1094 (1999).
  • King S, Mancini-Marïe A, Brunet A, Walker E, Meaney MJ, Laplante DP. Prenatal maternal stress from a natural disaster predicts dermatoglyphic asymmetry in humans. Dev. Psychopathol.21, 343–353 (2009).
  • Wong AH, Lipska BK, Likhodi O et al. Cortical gene expression in the neonatal ventral-hippocampal lesion rat model. Schizophr. Res.77, 261–270 (2005).
  • Pearlson GD, Folley BS. Endophenotypes, dimensions, risks: is psychosis analogous to common inherited medical illnesses? Clin. EEG Neurosci.39, 73–77 (2008).
  • Wang Y, Paramasivam M, Thomas A et al. DYX1C1 functions in neuronal migration in developing neocortex. Neuroscience143, 515–522 (2006).
  • Schwab SG, Knapp M, Mondabon S et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am. J. Hum. Genet.72, 185–190 (2003).
  • Schwab SG, Knapp M, Sklar P et al. Evidence for association of DNA sequence variants in the phosphatidylinositol-4-phosphate 5-kinase IIα gene (PIP5K2A) with schizophrenia. Mol. Psychiatry11, 837–846 (2006).
  • Abou Jamra R, Schmael C, Cichon S, Rietschel M, Schumacher J, Nothen MM. The G72/G30 gene locus in psychiatric disorders: a challenge to diagnostic boundaries? Schizophr. Bull.32, 599–608 (2006).
  • Li D, Collier DA, He L. Meta-analysis shows strong positive association of the neureglin 1 (NRG1) gene with schizophrenia. Hum. Mol. Genet.15, 1995–2002 (2006).
  • Anton ES, Ghashghaei HT, Weber JL et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat. Neurosci.7, 1319–1328 (2004)
  • Ghashghaei HT, Lai C, Anton ES. Neuronal migration in the adult brain: are we there yet? Nat. Rev. Neurosci.8, 141–151 (2007).
  • Ghashghaei HT, Weber J, Pevny L et al. The role of neuregulin–ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc. Natl Acad. Sci. USA103, 1930–1935 (2006).
  • Nave KA, Salzer JL. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol.16, 492–500 (2006).
  • Wratten NS, Memoli H, Huang Y et al. Identification of a schizophrenia-associated functional noncoding variant in NOS1AP. Am. J. Psychiatry166, 434–441 (2009).
  • Krug A, Markov V, Leube D et al. Genetic variation in the schizophrenia-risk gene neureglin 1 correlates with personality traits in healthy individuals. Eur. Psychiatry23, 344–349 (2008).
  • Craddock N, O’Donovan MC, Owen MJ. Phenotypic and genetic complexity of psychosis. Invited Commentary on schizophrenia: a common disease caused by multiple rare alleles. Br. J. Psychiatry190, 200–203 (2007).
  • Pickard BS, Thomson PA, Christoforou A et al. The PDE4B gene confers sex-specific protection against schizophrenia. Psychiatry Genet.17, 129–133 (2007).
  • Numata S, Ueno SI, Iga JI et al. Positive association of the PDE4B (phosphodiesterase 4B) gene with schizophrenia in a Japanese population. J. Psychiatry43(1), 7–12 (2008).
  • Blackwood DH, Thiagarajah T, Malloy MP, Pickard BS, Muir WJ. Chromosome abnormalities, mental retardation and the search for genes in bipolar disorder and schizophrenia. Neurotox. Res.14, 113–120 (2008).
  • Pickard BS, Malloy MP, Porteous DJ, Blackwood DH, Muir WJ. Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability. Am. J. Med. Genet. B Neuropsychiatr. Genet.136, 26–32 (2005).
  • Pickard BS, Malloy MP, Christoforou A. Cytogenetic and genetic evidence support a role for the kainite-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol. Psychiatry11, 847–857 (2006).
  • Caluseriu O, Mirza G, Ragoussis J, Chow EW, MacCrimmon D, Bassett AS. Schizophrenia in an adult with 6p25 deletion syndrome. Am. J. Med. Genet. A140, 1208–1213 (2006).
  • Pickard BS, Christoforou A, Thomson PA. Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Mol. Psychiatry14, 874–884 (2008).
  • Radulescu A. A multi-etiology model of systemic degeneration in schizophrenia. J. Theor. Biol.259(2), 269–279 (2009).
  • Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull.35, 528–548 (2009).
  • Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA. Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology34, 374–389 (2009).
  • Wedenoja J, Luokola A, Tuulio-Henriksson A et al. Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol. Psychiatry13, 673–684 (2008).
  • Weinberger DR, McClure RK. Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphology: what is happening in the schizophrenic brain? Arch. Gen. Psychiatry59, 553–558 (2002).
  • Yuan J, Yanker BA. Apoptosis in the nervous system. Nature407, 802–809 (2000).
  • Lieberman JA. Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol. Psychiatry46, 729–739 (1999)
  • Lieberman JA. Neuroprotection: a new strategy in the treatment of schizophrenia. Neurobiological basis of neurodegeneration and neuroprotection. CNS Spectr.12(10 Suppl. 18), 4–6 (2007).
  • Yasui-Furukori N, Saito M, Nakagami T et al. Clinical response to risperidone in relation to plasma drug concentrations in acutely exacerbated schizophrenic patients. J. Psychopharmacol. DOI: 10.1177/0269881109104849 (2009) (Epub ahead of print).
  • Lynch D, Laws KR, McKenna PJ. Cognitive behavioural therapy for major psychiatric disorder: does it really work? A meta-analytical review of well-controlled trials. Psychol Med.29, 1–16 (2009).
  • Gil Sanz D, Diego Lorenzo M, Bengochea Seco R et al. Efficacy of a social cognition training program for schizophrenic patients: a pilot study. Span. J. Psychol.12, 184–191 (2009).
  • von Hausswolff-Juhlin Y, Bjartveit M, Lindström E, Jones P. Schizophrenia and physical health problems. Acta Psychiatr. Scand. Suppl.438, 15–21 (2009).
  • Acil AA, Dogan S, Dogan O. The effects of physical exercises to mental state and quality of life in patients with schizophrenia. J. Psychiatr. Ment. Health Nurs.15, 808–815 (2008).
  • Ho B-C, Andreasen NC, Nopoulus P, Arndt S, Magnotta V, Flaum M. Progressive structural brain abnormalities and their relationship in clinical outcome. A longitudinal magnetic resonance imaging study early in schizophrenia. Arch. Gen. Psychiatry60, 585–594 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.