61
Views
30
CrossRef citations to date
0
Altmetric
Review

Development of the calcium plateau following status epilepticus: role of calcium in epileptogenesis

, &
Pages 813-824 | Published online: 09 Jan 2014

References

  • Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol. Ther.105(3), 229–266 (2005).
  • Willmore LJ. Post-traumatic epilepsy: cellular mechanisms and implications for treatment. Epilepsia31(Suppl. 3), S67–S73 (1990).
  • Cavalheiro EA, Leite JP, Bortolotto ZA et al. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia32(6), 778–782 (1991).
  • Lothman EW, Bertram EH 3rd. Epileptogenic effects of status epilepticus. Epilepsia34(Suppl. 1), S59–S70 (1993).
  • Hesdorffer DC, Logroscino G, Cascino G, Annegers JF, Hauser WA. Risk of unprovoked seizure after acute symptomatic seizure: effect of status epilepticus. Ann. Neurol.44(6), 908–912 (1998).
  • DeLorenzo RJ, Hauser WA, Towne AR et al. A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology46(4), 1029–1035 (1996).
  • Hauser WA. Status epilepticus: epidemiologic considerations. Neurology40(5 Suppl. 2), 9–13 (1990).
  • Wasterlain CG, Chen JW. Mechanistic and pharmacologic aspects of status epilepticus and its treatment with new antiepileptic drugs. Epilepsia49(Suppl. 9), 63–73 (2008).
  • DeLorenzo RJ, Pellock JM, Towne AR, Boggs JG. Epidemiology of status epilepticus. J. Clin. Neurophysiol.12(4), 316–325 (1995).
  • Li JM, Chen L, Zhou B, Zhu Y, Zhou D. Convulsive status epilepticus in adults and adolescents of southwest China: mortality, etiology, and predictors of death. Epilepsy Behav.14(1), 146–149 (2009).
  • Drislane FW. Presentation, evaluation, and treatment of nonconvulsive status epilepticus. Epilepsy Behav.1(5), 301–314 (2000).
  • Fountain NB, Lothman EW. Pathophysiology of status epilepticus. J. Clin. Neurophysiol.12(4), 326–342 (1995).
  • Deshpande LS, Lou JK, Mian A et al. Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: role of NMDA receptor activation and NMDA dependent calcium entry. Eur. J. Pharmacol.583(1), 73–83 (2008).
  • Fisher RS. Animal models of the epilepsies. Brain Res. Brain Res. Rev.14(3), 245–278 (1989).
  • McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Sci. STKE2006(356), re12 (2006).
  • Klitgaard H, Matagne A, Vanneste-Goemaere J, Margineanu DG. Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res.51(1–2), 93–107 (2002).
  • Pitkanen A, Kharatishvili I, Karhunen H et al. Epileptogenesis in experimental models. Epilepsia48(Suppl. 2), 13–20 (2007).
  • Cavalheiro EA. The pilocarpine model of epilepsy. Ital. J. Neurol. Sci.16(1–2), 33–37 (1995).
  • Sombati S, Delorenzo RJ. Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J. Neurophysiol.73(4), 1706–1711 (1995).
  • Deshpande LS, Lou JK, Mian A et al.In vitro status epilepticus but not spontaneous recurrent seizures cause cell death in cultured hippocampal neurons. Epilepsy Res.75(2–3), 171–179 (2007).
  • DeGiorgio CM, Tomiyasu U, Gott PS, Treiman DM. Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia33(1), 23–27 (1992).
  • Sloviter RS. Status epilepticus-induced neuronal injury and network reorganization. Epilepsia40(Suppl. 1), S34–S39; discussion S40–S31 (1999).
  • Tsuchida TN, Barkovich AJ, Bollen AW, Hart AP, Ferriero DM. Childhood status epilepticus and excitotoxic neuronal injury. Pediatr. Neurol.36(4), 253–257 (2007).
  • Pitkanen A. On the way to cure epilepsy. Expert Rev. Neurother.4(6), 917–920 (2004).
  • Deshpande LS, Sun DA, Sombati S et al. Alterations in neuronal calcium levels are associated with cognitive deficits after traumatic brain injury. Neurosci. Lett.441(1), 115–119 (2008).
  • Sun DA, Deshpande LS, Sombati S et al. Traumatic brain injury causes a long-lasting calcium (Ca2+)-plateau of elevated intracellular Ca levels and altered Ca2+ homeostatic mechanisms in hippocampal neurons surviving brain injury. Eur. J. Neurosci.27(7), 1659–1672 (2008).
  • Sun DA, Sombati S, Blair RE, DeLorenzo RJ. Long-lasting alterations in neuronal calcium homeostasis in an in vitro model of stroke-induced epilepsy. Cell Calcium35(2), 155–163 (2004).
  • West AE, Chen WG, Dalva MB et al. Calcium regulation of neuronal gene expression. Proc. Natl Acad. Sci. USA98(20), 11024–11031 (2001).
  • Mody I, MacDonald JF. NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol. Sci.16(10), 356–359 (1995).
  • Malenka RC, Nicoll RA. Long-term potentiation – a decade of progress? Science285(5435), 1870–1874 (1999).
  • Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J. Neurosci.7(2), 357–368 (1987).
  • Raza M, Blair RE, Sombati S et al. Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc. Natl Acad. Sci. USA101(50), 17522–17527 (2004).
  • Pal S, Sombati S, Limbrick DD Jr, DeLorenzo RJ. In vitro status epilepticus causes sustained elevation of intracellular calcium levels in hippocampal neurons. Brain Res.851(1–2), 20–31 (1999).
  • Sun DA, Sombati S, Blair RE, DeLorenzo RJ. Calcium-dependent epileptogenesis in an in vitro model of stroke-induced “epilepsy”. Epilepsia43(11), 1296–1305 (2002).
  • Raza M, Pal S, Rafiq A, DeLorenzo RJ. Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res.903(1–2), 1–12 (2001).
  • DeLorenzo RJ, Pal S, Sombati S. Prolonged activation of the N-methyl-D-aspartate receptor-Ca2+ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture. Proc. Natl Acad. Sci. USA95(24), 14482–14487 (1998).
  • Pal S, Sun D, Limbrick D, Rafiq A, DeLorenzo RJ. Epileptogenesis induces long-term alterations in intracellular calcium release and sequestration mechanisms in the hippocampal neuronal culture model of epilepsy. Cell Calcium30(4), 285–296 (2001).
  • Pal S, Limbrick DD Jr, Rafiq A, DeLorenzo RJ. Induction of spontaneous recurrent epileptiform discharges causes long-term changes in intracellular calcium homeostatic mechanisms. Cell Calcium28(3), 181–193 (2000).
  • Sherwin AL. Neuroactive amino acids in focally epileptic human brain: a review. Neurochem Res.24(11), 1387–1395 (1999).
  • Liu Z, Stafstrom CE, Sarkisian MR et al. Seizure-induced glutamate release in mature and immature animals: an in vivo microdialysis study. Neuroreport8(8), 2019–2023 (1997).
  • Smolders I, Khan GM, Manil J, Ebinger G, Michotte Y. NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis. Br. J. Pharmacol.121(6), 1171–1179 (1997).
  • Meldrum BS. First Alfred Meyer Memorial Lecture. Epileptic brain damage: a consequence and a cause of seizures. Neuropathol. Appl. Neurobiol.23(3), 185–201; discussion 201–202 (1997).
  • Rice AC, DeLorenzo RJ. NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Res.782(1–2), 240–247 (1998).
  • Hort J, Brozek G, Mares P, Langmeier M, Komarek V. Cognitive functions after pilocarpine-induced status epilepticus: changes during silent period precede appearance of spontaneous recurrent seizures. Epilepsia40(9), 1177–1183 (1999).
  • Prasad A, Williamson JM, Bertram EH. Phenobarbital and MK-801, but not phenytoin, improve the long-term outcome of status epilepticus. Ann. Neurol.51(2), 175–181 (2002).
  • Bardo S, Cavazzini MG, Emptage N. The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons. Trends Pharmacol. Sci.27(2), 78–84 (2006).
  • Friel D. Interplay between ER Ca2+ uptake and release fluxes in neurons and its impact on [Ca2+] dynamics. Biol Res,37(4), 665–674 (2004).
  • Lazarewicz JW, Rybkowski W, Sadowski M et al.N-methyl-D-aspartate receptor-mediated, calcium-induced calcium release in rat dentate gyrus/CA4 in vivo. J. Neurosci. Res.51(1), 76–84 (1998).
  • Jin W, Sugaya A, Tsuda T, Ohguchi H, Sugaya E. Relationship between large conductance calcium-activated potassium channel and bursting activity. Brain Res.860(1–2), 21–28 (2000).
  • Nagarkatti N, Deshpande LS, DeLorenzo RJ. Levetiracetam inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture. Neurosci. Lett.436(3), 289–293 (2008).
  • Cataldi M, Lariccia V, Secondo A, di Renzo G, Annunziato L. The antiepileptic drug levetiracetam decreases the inositol 1,4,5-trisphosphate-dependent [Ca2+]i increase induced by ATP and bradykinin in PC12 cells. J. Pharmacol. Exp. Ther.313(2), 720–730 (2005).
  • Carter DS, Harrison AJ, Falenski KW, Blair RE, DeLorenzo RJ. Long-term decrease in calbindin-D28K expression in the hippocampus of epileptic rats following pilocarpine-induced status epilepticus. Epilepsy Res.79(2–3), 213–223 (2008).
  • Magloczky Z, Halasz P, Vajda J, Czirjak S, Freund TF. Loss of calbindin-D28K immunoreactivity from dentate granule cells in human temporal lobe epilepsy. Neuroscience76(2), 377–385 (1997).
  • Nagerl UV, Mody I, Jeub M et al. Surviving granule cells of the sclerotic human hippocampus have reduced Ca2+ influx because of a loss of calbindin-D(28k) in temporal lobe epilepsy. J. Neurosci.20(5), 1831–1836 (2000).
  • Baimbridge KG, Miller JJ. Hippocampal calcium-binding protein during commissural kindling-induced epileptogenesis: progressive decline and effects of anticonvulsants. Brain Res.324(1), 85–90 (1984).
  • Shetty AK, Turner DA. Intracerebroventricular kainic acid administration in adult rat alters hippocampal calbindin and non-phosphorylated neurofilament expression. J. Comp. Neurol.363(4), 581–599 (1995).
  • Lee S, Williamson J, Lothman EW et al. Early induction of mRNA for calbindin-D28k and BDNF but not NT-3 in rat hippocampus after kainic acid treatment. Brain Res. Mol. Brain Res.47(1–2), 183–194 (1997).
  • Sonnenberg JL, Frantz GD, Lee S et al. Calcium binding protein (calbindin-D28k) and glutamate decarboxylase gene expression after kindling induced seizures. Brain Res. Mol. Brain Res.9(3), 179–190 (1991).
  • Lowenstein DH, Gwinn RP, Seren MS, Simon RP, McIntosh TK. Increased expression of mRNA encoding calbindin-D28K, the glucose-regulated proteins, or the 72 kDa heat-shock protein in three models of acute CNS injury. Brain Res. Mol. Brain Res.22(1–4), 299–308 (1994).
  • DeLorenzo RJ. The calmodulin hypothesis of neurotransmission. Cell Calcium2(4), 365–385 (1981).
  • Blair RE, Sombati S, Churn SB, Delorenzo RJ. Epileptogenesis causes an N-methyl-D-aspartate receptor/Ca2+-dependent decrease in Ca2+/calmodulin-dependent protein kinase II activity in a hippocampal neuronal culture model of spontaneous recurrent epileptiform discharges. Eur. J. Pharmacol.588(1), 64–71 (2008).
  • Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J. Neurosci.5(12), 3270–3277 (1985).
  • Carter DS, Haider SN, Blair RE et al. Altered calcium/calmodulin kinase II activity changes calcium homeostasis that underlies epileptiform activity in hippocampal neurons in culture. J. Pharmacol. Exp. Ther.319(3), 1021–1031 (2006).
  • Wasterlain CG, Farber DB. Kindling alters the calcium/calmodulin-dependent phosphorylation of synaptic plasma membrane proteins in rat hippocampus. Proc. Natl Acad. Sci. USA81(4), 1253–1257 (1984).
  • Yamagata Y, Imoto K, Obata K. A mechanism for the inactivation of Ca2+/calmodulin-dependent protein kinase II during prolonged seizure activity and its consequence after the recovery from seizure activity in rats in vivo. Neuroscience140(3), 981–992 (2006).
  • Singleton MW, Holbert WH 2nd, Ryan ML et al. Age dependence of pilocarpine-induced status epilepticus and inhibition of CaM kinase II activity in the rat. Brain Res. Dev. Brain Res.156(1), 67–77 (2005).
  • Churn SB, Sombati S, Jakoi ER, Severt L, DeLorenzo RJ. Inhibition of calcium/calmodulin kinase II α subunit expression results in epileptiform activity in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA97(10), 5604–5609 (2000).
  • Merrill MA, Chen Y, Strack S, Hell JW. Activity-driven postsynaptic translocation of CaMKII. Trends Pharmacol. Sci.26(12), 645–653 (2005).
  • Dong Y, Rosenberg HC. Prolonged changes in Ca2+/calmodulin-dependent protein kinase II after a brief pentylenetetrazol seizure; potential role in kindling. Epilepsy Res.58(2–3), 107–117 (2004).
  • Friel DD, Chiel HJ. Calcium dynamics: analyzing the Ca2+ regulatory network in intact cells. Trends Neurosci.31(1), 8–19 (2008).
  • Ben-Ari Y. Cell death and synaptic reorganizations produced by seizures. Epilepsia42(Suppl. 3), 5–7 (2001).
  • Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog. Neurobiol.73(1), 1–60 (2004).
  • Orrenius S, McCabe MJ Jr, Nicotera P. Ca2+-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol. Lett.64–65 Spec. No, 357–364 (1992).
  • Fujikawa DG. Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav.7(Suppl. 3), S3–S11 (2005).
  • Holmes GL. Seizure-induced neuronal injury: animal data. Neurology59(9 Suppl. 5), S3–S6 (2002).
  • Duncan JS. Seizure-induced neuronal injury: human data. Neurology59(9 Suppl. 5), S15–S20 (2002).
  • Liu RS, Lemieux L, Bell GS et al. Cerebral damage in epilepsy: a population-based longitudinal quantitative MRI study. Epilepsia46(9), 1482–1494 (2005).
  • Pitkanen A, Nissinen J, Nairismagi J et al. Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy. Prog. Brain Res.135, 67–83 (2002).
  • Simpson PB, Challiss RA, Nahorski SR. Neuronal Ca2+ stores: activation and function. Trends Neurosci.18(7), 299–306 (1995).
  • Sanchez RM, Dai W, Levada RE, Lippman JJ, Jensen FE. AMPA/kainate receptor-mediated downregulation of GABAergic synaptic transmission by calcineurin after seizures in the developing rat brain. J. Neurosci.25(13), 3442–3451 (2005).
  • Deshpande LS, Nagarkatti N, Ziobro JM, Sombati S, Delorenzo RJ. Carisbamate prevents the development and expression of spontaneous recurrent epileptiform discharges and is neuroprotective in cultured hippocampal neurons. Epilepsia49(10), 1795–1802 (2008).
  • Grabenstatter HL, Dudek FE. A new potential AED, carisbamate, substantially reduces spontaneous motor seizures in rats with kainate-induced epilepsy. Epilepsia49(10), 1787–1794 (2008).
  • Deshpande LS, Nagarkatti N, Sombati S, DeLorenzo RJ. The novel antiepileptic drug carisbamate (RWJ 333369) is effective in inhibiting spontaneous recurrent seizure discharges and blocking sustained repetitive firing in cultured hippocampal neurons. Epilepsy Res.79(2–3), 158–165 (2008).
  • Pitkanen A, Lukasiuk K. Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav.14(Suppl. 1), 16–25 (2009).
  • Pisani A, Bonsi P, Martella G et al. Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia45(7), 719–728 (2004).
  • Kulak W, Sobaniec W, Wojtal K, Czuczwar SJ. Calcium modulation in epilepsy. Pol. J. Pharmacol.56(1), 29–41 (2004).
  • Brandt C, Potschka H, Loscher W, Ebert U. N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience118(3), 727–740 (2003).
  • Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res.50(1–2), 105–123 (2002).
  • Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev.9(3), 275–308 (2003).
  • Rice AC, DeLorenzo RJ. N-methyl-D-aspartate receptor activation regulates refractoriness of status epilepticus to diazepam. Neuroscience93(1), 117–123 (1999).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.