179
Views
54
CrossRef citations to date
0
Altmetric
Review

Hypothalamic–pituitary–adrenocortical system dysregulation and new treatment strategies in depression

, , &
Pages 1005-1019 | Published online: 09 Jan 2014

References

  • Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology23(5), 477–501 (2000).
  • Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J. Affect. Disord.62(1–2), 77–91 (2001).
  • Halbreich U, Asnis GM, Shindledecker R, Zumoff B, Nathan RS. Cortisol secretion in endogenous depression. I. Basal plasma levels. Arch. Gen. Psychiatry42(9), 904–908 (1985).
  • Linkowski P, Mendlewicz J, Leclercq R et al. The 24-hour profile of adrenocorticotropin and cortisol in major depressive illness. J. Clin. Endocrinol. Metab.61(3), 429–438 (1985).
  • Board F, Wadeson R, Persky H. Depressive affect and endocrine functions: blood levels of adrenal cortex and thyroid hormones in patients suffering from depressive reactions. Arch. Neurol. Psychiatry78, 612–620 (1957).
  • Gibbons JL, McHugh PR. Plasma cortisol in depressive illness. Psychiatry Res.1, 162–171 (1963).
  • Traskman L, Tybring G, Asberg M, Bertilsson L, Lantto O, Schalling D. Cortisol in the CSF of depressed and suicidal patients. Arch. Gen. Psychiatry37(7), 761–767 (1980).
  • Carroll BJ, Curtis GC, Davies BM, Mendels J, Sugerman AA. Urinary free cortisol excretion in depression. Psychol. Med.6(1), 43–50 (1976).
  • Anisman H, Ravindran AV, Griffiths J, Merali Z. Endocrine and cytokine correlates of major depression and dysthymia with typical or atypical features. Mol. Psychiatry4(2), 182–188 (1999).
  • Young EA, Carlson NE, Brown MB. Twenty-four-hour ACTH and cortisol pulsatility in depressed women. Neuropsychopharmacology25(2), 267–276 (2001).
  • Cowen PJ. Cortisol, serotonin and depression: all stressed out? Br. J. Psychiatry180, 99–100 (2002).
  • Strickland PL, Deakin JF, Percival C, Dixon J, Gater RA, Goldberg DP. Bio–social origins of depression in the community. Interactions between social adversity, cortisol and serotonin neurotransmission. Br. J. Psychiatry180, 168–173 (2002).
  • Kunzel HE, Binder EB, Nickel T et al. Pharmacological and nonpharmacological factors influencing hypothalamic–pituitary–adrenocortical axis reactivity in acutely depressed psychiatric in-patients, measured by the Dex-CRH test. Neuropsychopharmacology28(12), 2169–2178 (2003).
  • Holsboer F, Von Bardeleben U, Gerken A, Stalla GK, Muller OA. Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression. N. Engl. J. Med.311(17), 1127 (1984).
  • Gold PW, Chrousos G, Kellner C et al. Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. Am. J. Psychiatry141(5), 619–627 (1984).
  • Nemeroff CB, Krishnan KR, Reed D, Leder R, Beam C, Dunnick NR. Adrenal gland enlargement in major depression. A computed tomographic study. Arch. Gen. Psychiatry49(5), 384–387 (1992).
  • Rubin RT, Phillips JJ, Sadow TF, McCracken JT. Adrenal gland volume in major depression. Increase during the depressive episode and decrease with successful treatment. Arch. Gen. Psychiatry52(3), 213–218 (1995).
  • Amsterdam JD, Winokur A, Abelman E, Lucki I, Rickels K. Cosyntropin (ACTH α 1–24) stimulation test in depressed patients and healthy subjects. Am. J. Psychiatry140(7), 907–909 (1983).
  • Gerken A, Holsboer F. Cortisol and corticosterone response after syn-corticotropin in relationship to dexamethasone suppressibility of cortisol. Psychoneuroendocrinology11(2), 185–194 (1986).
  • Jaeckle RS, Kathol RG, Lopez JF, Meller WH, Krummel SJ. Enhanced adrenal sensitivity to exogenous cosyntropin (ACTH α 1–24) stimulation in major depression. Relationship to dexamethasone suppression test results. Arch. Gen. Psychiatry44(3), 233–240 (1987).
  • Rubin RT, Miller TH, Rhodes ME, Czambel RK. Adrenal cortical responses to low- and high-dose ACTH(1–24) administration in major depressives vs. matched controls. Psychiatry Res.143(1), 43–50 (2006).
  • Nemeroff CB, Widerlov E, Bissette G et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science226(4680), 1342–1344 (1984).
  • Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology60(4), 436–444 (1994).
  • Purba JS, Hoogendijk WJ, Hofman MA, Swaab DF. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch. Gen. Psychiatry53(2), 137–143 (1996).
  • Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M. Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch. Gen. Psychiatry45(6), 577–579 (1988).
  • De Bellis MD, Gold PW, Geracioti TD Jr, Listwak SJ, Kling MA. Association of fluoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression. Am. J. Psychiatry150(4), 656–657 (1993).
  • Heuser I, Bissette G, Dettling M et al. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress. Anxiety8(2), 71–79 (1998).
  • Veith RC, Lewis N, Langohr JI et al. Effect of desipramine on cerebrospinal fluid concentrations of corticotropin-releasing factor in human subjects. Psychiatry Res.46(1), 1–8 (1993).
  • Nemeroff CB, Bissette G, Akil H, Fink M. Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy. Corticotrophin-releasing factor, β-endorphin and somatostatin. Br. J. Psychiatry158, 59–63 (1991).
  • Kling MA, Geracioti TD, Licinio J, Michelson D, Oldfield EH, Gold PW. Effects of electroconvulsive therapy on the CRH–ACTH–cortisol system in melancholic depression: preliminary findings. Psychopharmacol. Bull.30(3), 489–494 (1994).
  • Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M. Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. J. Clin. Invest.87(3), 831–837 (1991).
  • Brady LS, Gold PW, Herkenham M, Lynn AB, Whitfield HJ Jr. The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Res.572(1–2), 117–125 (1992).
  • Fadda P, Pani L, Porcella A, Fratta W. Chronic imipramine, L-sulpiride and mianserin decrease corticotropin releasing factor levels in the rat brain. Neurosci. Lett.192(2), 121–123 (1995).
  • Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J. Neurosci.15(10), 6340–6350 (1995).
  • Liebsch G, Landgraf R, Gerstberger R et al. Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats. Regul. Pept.59(2), 229–239 (1995).
  • Liebsch G, Landgraf R, Engelmann M, Lorscher P, Holsboer F. Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J. Psychiatr. Res.33(2), 153–163 (1999).
  • Heinrichs SC, Lapsansky J, Lovenberg TW, De Souza EB, Chalmers DT. Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regul. Pept.71(1), 15–21 (1997).
  • Skutella T, Probst JC, Renner U, Holsboer F, Behl C. Corticotropin-releasing hormone receptor (type I) antisense targeting reduces anxiety. Neuroscience85(3), 795–805 (1998).
  • Timpl P, Spanagel R, Sillaber I et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet.19(2), 162–166 (1998).
  • Smith GW, Aubry JM, Dellu F et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron20(6), 1093–1102 (1998).
  • Contarino A, Dellu F, Koob GF et al. Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1. Brain Res.835(1), 1–9 (1999).
  • Muller MB, Zimmermann S, Sillaber I et al. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat. Neurosci.6(10), 1100–1107 (2003).
  • Coste SC, Kesterson RA, Heldwein KA et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat. Genet.24(4), 403–409 (2000).
  • Bale TL, Contarino A, Smith GW et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat. Genet.24(4), 410–414 (2000).
  • Kishimoto T, Radulovic J, Radulovic M et al. Deletion of CRHR2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat. Genet.24(4), 415–419 (2000).
  • Bale TL, Vale WW. Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: sexually dichotomous responses. J. Neurosci.23(12), 5295–5301 (2003).
  • Pariante CM, Miller AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatry49(5), 391–404 (2001).
  • Reul JM, De Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology117(6), 2505–2511 (1985).
  • De Kloet ER. Brain corticosteroid receptor balance and homeostatic control. Front. Neuroendocrinol.12, 95–164 (1991).
  • Spencer RL, Young EA, Choo PH, McEwen BS. Adrenal steroid type I and type II receptor binding: estimates of in vivo receptor number, occupancy, and activation with varying level of steroid. Brain Res.514(1), 37–48 (1990).
  • Rupprecht R, Arriza JL, Spengler D et al. Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. Mol. Endocrinol.7(4), 597–603 (1993).
  • Carroll B, Curtis GC, Mendels J. Neuroendocrine regulation in depression. I. Limbic system-adrenocortical dysfunction. Arch. Gen. Psychiatry33(9), 1039–1044 (1976).
  • Von Bardeleben U, Holsboer F. Cortisol response to a combined dexamethasone-hCRH challenge in patients with depression. J. Neuroendocrinol.1, 485–488 (1989).
  • Heuser I, Yassouridis A, Holsboer F. The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J. Psychiatr. Res.28(4), 341–356 (1994).
  • Holsboer F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res.33(3), 181–214 (1999).
  • Binder EB, Salyakina D, Lichtner P et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet.36(12), 1319–1325 (2004).
  • van Rossum EF, Binder EB, Majer M et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol. Psychiatry59(8), 681–688 (2006).
  • Seckl JR, Fink G. Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in rat hippocampus in vivo. Neuroendocrinology55(6), 621–626 (1992).
  • Reul JM, Stec I, Soder M, Holsboer F. Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic–pituitary–adrenocortical system. Endocrinology133(1), 312–320 (1993).
  • Reul JM, Labeur MS, Grigoriadis DE, De Souza EB, Holsboer F. Hypothalamic–pituitary–adrenocortical axis changes in the rat after long-term treatment with the reversible monoamine oxidase-A inhibitor moclobemide. Neuroendocrinology60(5), 509–519 (1994).
  • Young EA, Lopez JF, Murphy-Weinberg V, Watson SJ, Akil H. The role of mineralocorticoid receptors in hypothalamic–pituitary–adrenal axis regulation in humans. J. Clin. Endocrinol. Metab.83(9), 3339–3345 (1998).
  • Ising M, Kunzel HE, Binder EB, Nickel T, Modell S, Holsboer F. The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry29(6), 1085–1093 (2005).
  • Zobel AW, Nickel T, Sonntag A, Uhr M, Holsboer F, Ising M. Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. a prospective study. J. Psychiatr. Res.35(2), 83–94 (2001).
  • Zobel AW, Yassouridis A, Frieboes RM, Holsboer F. Prediction of medium-term outcome by cortisol response to the combined dexamethasone–CRH test in patients with remitted depression. Am. J. Psychiatry156(6), 949–951 (1999).
  • Appelhof BC, Huyser J, Verweij M et al. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol. Psychiatry59(8), 696–701 (2006).
  • Aubry JM, Gervasoni N, Osiek C et al. The DEX/CRH neuroendocrine test and the prediction of depressive relapse in remitted depressed outpatients. J. Psychiatr. Res.41(3–4), 290–294 (2007).
  • Barden N, Reul JM, Holsboer F. Do antidepressants stabilize mood through actions on the hypothalamic–pituitary–adrenocortical system? Trends Neurosci.18(1), 6–11 (1995).
  • Schule C, Baghai T, Schmidbauer S, Bidlingmaier M, Strasburger CJ, Laakmann G. Reboxetine acutely stimulates cortisol, ACTH, growth hormone and prolactin secretion in healthy male subjects. Psychoneuroendocrinology29(2), 185–200 (2004).
  • Seifritz E, Baumann P, Muller MJ et al. Neuroendocrine effects of a 20-mg citalopram infusion in healthy males. A placebo-controlled evaluation of citalopram as 5-HT function probe. Neuropsychopharmacology14(4), 253–263 (1996).
  • Schule C, Baghai T, Goy J, Bidlingmaier M, Strasburger C, Laakmann G. The influence of mirtazapine on anterior pituitary hormone secretion in healthy male subjects. Psychopharmacology (Berl.)163(1), 95–101 (2002).
  • Schule C, Baghai TC, Eser D et al. Time course of hypothalamic–pituitary–adrenocortical axis activity during treatment with reboxetine and mirtazapine in depressed patients. Psychopharmacology (Berl.)186(4), 601–611 (2006).
  • Ising M, Horstmann S, Kloiber S et al. Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression – a potential biomarker? Biol. Psychiatry62(1), 47–54 (2007).
  • Schule C, Baghai TC, Eser D et al. The combined dexamethasone/CRH test (DEX/CRH test) and prediction of acute treatment response in major depression. PLoS ONE4(1), e4324 (2008).
  • Schule C, Baghai TC, Rupprecht R. [New insights into the pathogenesis and pathophysiology of depression]. Nervenarzt78(Suppl. 3), 531–547 (2007).
  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature455(7215), 894–902 (2008).
  • Gallagher P, Malik N, Newham J, Young AH, Ferrier IN, Mackin P. Antiglucocorticoid treatments for mood disorders. Cochrane Database Syst. Rev.1, CD005168 (2008).
  • Schule C. Neuroendocrinological mechanisms of actions of antidepressant drugs. J. Neuroendocrinol.19(3), 213–226 (2007).
  • Mori S, Zanardi R, Popoli M et al. cAMP-dependent phosphorylation system after short and long-term administration of moclobemide. J. Psychiatr. Res.32(2), 111–115 (1998).
  • Stout SC, Owens MJ, Nemeroff CB. Regulation of corticotropin-releasing factor neuronal systems and hypothalamic–pituitary–adrenal axis activity by stress and chronic antidepressant treatment. J. Pharmacol. Exp. Ther.300(3), 1085–1092 (2002).
  • Schule C, Baghai T, Rackwitz C, Laakmann G. Influence of mirtazapine on urinary free cortisol excretion in depressed patients. Psychiatry Res.120(3), 257–264 (2003).
  • Buckingham JC, Hodges JR. Hypothalamic receptors influencing the secretion of corticotrophin releasing hormone in the rat. J. Physiol.290(2), 421–431 (1979).
  • Jones MT, Birmingham M, Gillham B, Holmes M, Smith T. The effect of cyproheptadine on the release of corticotrophin releasing factor. Clin. Endocrinol. (Oxf.)10(2), 203–205 (1979).
  • Kjaer A, Knigge U, Plotsky PM, Bach FW, Warberg J. Histamine H1 and H2 receptor activation stimulates ACTH and β-endorphin secretion by increasing corticotropin-releasing hormone in the hypophyseal portal blood. Neuroendocrinology56(6), 851–855 (1992).
  • Cohrs S, Pohlmann K, Guan Z et al. Quetiapine reduces nocturnal urinary cortisol excretion in healthy subjects. Psychopharmacology (Berl.)174(3), 414–420 (2004).
  • Cohrs S, Roher C, Jordan W et al. The atypical antipsychotics olanzapine and quetiapine, but not haloperidol, reduce ACTH and cortisol secretion in healthy subjects. Psychopharmacology (Berl.)185(1), 11–18 (2006).
  • de Borja Goncalves Guerra A, Castel S, Benedito-Silva AA, Calil HM. Neuroendocrine effects of quetiapine in healthy volunteers. Int. J. Neuropsychopharmacol.8(1), 49–57 (2005).
  • Meier A, Neumann AC, Jordan W et al. Ziprasidone decreases cortisol excretion in healthy subjects. Br. J. Clin. Pharmacol.60(3), 330–336 (2005).
  • Calabrese JR, Keck PE Jr, Macfadden W et al. A randomized, double-blind, placebo-controlled trial of quetiapine in the treatment of bipolar I or II depression. Am. J. Psychiatry162(7), 1351–1360 (2005).
  • Thase ME, Macfadden W, Weisler RH et al. Efficacy of quetiapine monotherapy in bipolar I and II depression: a double-blind, placebo-controlled study (the BOLDER II study). J. Clin. Psychopharmacol.26(6), 600–609 (2006).
  • Montgomery S, Cutler A, Lazarus A, Schollin M, Brecher M. A randomised, placebo-controlled study of once-daily extended release quetiapine fumarate (quetiapine XR) monotherapy in patients with major depressive disorder (MDD). Presented at: 7th International Forum on Mood and Anxiety Disorders. Budapest, Hungary, 5–7 December 2007.
  • Cutler AJ, Montgomery S, Feifel D, Lazarus A, Schollin M, Brecher M. Extended release quetiapine fumarate (quetiapine XR) monotherapy in patients with major depressive disorder (MDD): results from a double-blind, randomized Phase III study. Presented at: 48th American College of Neuropsychopharmacology Annual Meeting. Boca Raton, FL, USA, 9–13 December 2007.
  • Weisler R, Joyce M, McGill L, Lazarus A, Aström M, Brecher M. Extended release quetiapine fumarate (quetiapine XR) monotherapy for major depressive disorder (MDD): a double-blind, placebo-controlled study. Presented at: 161st Annual Meeting of the American Psychiatric Association. Washington, DC, USA, 3–8 May 2008.
  • El-Khalili N, Banov M, Bortnick B et al. Efficacy and tolerability of extended release quetiapine fumarate (quetiapine XR) monotherapy in major depressive disorder (MDD): a randomized, placebo-controlled clinical trial (Study 003). Presented at: 63rd Annual Society of Biological Psychiatry. Washington, DC, USA, 1–3 May 2008.
  • Datto C, Lam RW, Lepola U, Sweitzer D, Eriksson H, Brecher M. Double-blind study of extended release quetiapine fumarate (quetiapine XR) monotherapy for maintenance treatment of major depressive disorder (MDD). Presented at: 161st Annual Meeting of the American Psychiatric Association. Washington, DC, USA, 3–8 May 2008.
  • Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science213(4514), 1394–1397 (1981).
  • Keck ME, Welt T, Wigger A et al. The anxiolytic effect of the CRH(1) receptor antagonist R121919 depends on innate emotionality in rats. Eur. J. Neurosci.13(2), 373–380 (2001).
  • Nielsen DM, Carey GJ, Gold LH. Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice. Eur. J. Pharmacol.499(1–2), 135–146 (2004).
  • Griebel G, Simiand J, Steinberg R et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4- methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J. Pharmacol. Exp. Ther.301(1), 333–345 (2002).
  • Arborelius L, Skelton KH, Thrivikraman KV, Plotsky PM, Schulz DW, Owens MJ. Chronic administration of the selective corticotropin-releasing factor 1 receptor antagonist CP-154,526: behavioral, endocrine and neurochemical effects in the rat. J. Pharmacol. Exp. Ther.294(2), 588–597 (2000).
  • Jutkiewicz EM, Wood SK, Houshyar H, Hsin LW, Rice KC, Woods JH. The effects of CRF antagonists, antalarmin, CP154,526, LWH234, and R121919, in the forced swim test and on swim-induced increases in adrenocorticotropin in rats. Psychopharmacology (Berl.)180(2), 215–223 (2005).
  • Chaki S, Nakazato A, Kennis L et al. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Eur. J. Pharmacol.485(1–3), 145–158 (2004).
  • Harro J, Tonissaar M, Eller M. The effects of CRA 1000, a non-peptide antagonist of corticotropin-releasing factor receptor type 1, on adaptive behaviour in the rat. Neuropeptides35(2), 100–109 (2001).
  • Okuyama S, Chaki S, Kawashima N et al. Receptor binding, behavioral, and electrophysiological profiles of nonpeptide corticotropin-releasing factor subtype 1 receptor antagonists CRA1000 and CRA1001. J. Pharmacol. Exp. Ther.289(2), 926–935 (1999).
  • Zobel AW, Nickel T, Kunzel HE et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J. Psychiatr. Res.34(3), 171–181 (2000).
  • Held K, Kunzel H, Ising M et al. Treatment with the CRH1-receptor-antagonist R121919 improves sleep-EEG in patients with depression. J. Psychiatr. Res.38(2), 129–136 (2004).
  • Kunzel HE, Zobel AW, Nickel T et al. Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects. J. Psychiatr. Res.37(6), 525–533 (2003).
  • Kunzel HE, Ising M, Zobel AW et al. Treatment with a CRH-1-receptor antagonist (R121919) does not affect weight or plasma leptin concentration in patients with major depression. J. Psychiatr. Res.39(2), 173–177 (2005).
  • Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am. J. Psychiatry165(5), 617–620 (2008).
  • Aguilera G. Regulation of pituitary ACTH secretion during chronic stress. Front. Neuroendocrinol.15(4), 321–350 (1994).
  • Gold PW, Goodwin FK, Reus VI. Vasopressin in affective illness. Lancet1(8076), 1233–1236 (1978).
  • Aguilera G, Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic–pituitary–adrenal axis: implications for stress adaptation. Regul. Pept.96(1–2), 23–29 (2000).
  • Scott LV, Dinan TG. Vasopressin as a target for antidepressant development: an assessment of the available evidence. J. Affect. Disord.72(2), 113–124 (2002).
  • Muller MB, Landgraf R, Preil J et al. Selective activation of the hypothalamic vasopressinergic system in mice deficient for the corticotropin-releasing hormone receptor 1 is dependent on glucocorticoids. Endocrinology141(11), 4262–4269 (2000).
  • van West D, Del-Favero J, Aulchenko Y et al. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol. Psychiatry9(3), 287–292 (2004).
  • Dempster EL, Burcescu I, Wigg K et al. Evidence of an association between the vasopressin V1b receptor gene (AVPR1B) and childhood-onset mood disorders. Arch. Gen. Psychiatry64(10), 1189–1195 (2007).
  • Liebsch G, Wotjak CT, Landgraf R, Engelmann M. Septal vasopressin modulates anxiety-related behaviour in rats. Neurosci. Lett.217(2–3), 101–104 (1996).
  • Griebel G, Simiand J, Serradeil-Le Gal C et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc. Natl Acad. Sci. USA99(9), 6370–6375 (2002).
  • Stemmelin J, Lukovic L, Salome N, Griebel G. Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology30(1), 35–42 (2005).
  • Hodgson RA, Higgins GA, Guthrie DH et al. Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacol. Biochem. Behav.86(3), 431–440 (2007).
  • Breuer ME, van Gaalen MM, Wernet W et al. SSR149415, a non-peptide vasopressin V(1b) receptor antagonist, has long-lasting antidepressant effects in the olfactory bulbectomy-induced hyperactivity depression model. Naunyn Schmiedebergs Arch. Pharmacol.379(1), 101–106 (2009).
  • Sonino N. The use of ketoconazole as an inhibitor of steroid production. N. Engl. J. Med317(13), 812–818 (1987).
  • Amsterdam J, Mosley PD, Rosenzweig M. Assessment of adrenocortical activity in refractory depression: steroid suppression with ketoconazole. In: Refractory Depression. Nolan W, Zohar J, Roose S, Amsterdam J (Eds). John Wiley, London, UK 199–210 (1994).
  • Anand A, Malison R, McDougle CJ, Price LH. Antiglucocorticoid treatment of refractory depression with ketoconazole: a case report. Biol. Psychiatry37(5), 338–340 (1995).
  • Ghadirian AM, Engelsmann F, Dhar V et al. The psychotropic effects of inhibitors of steroid biosynthesis in depressed patients refractory to treatment. Biol. Psychiatry37(6), 369–375 (1995).
  • Iizuka H, Kishimoto A, Nakamura J, Mizukawa R. [Clinical effects of cortisol synthesis inhibition on treatment-resistant depression]. Nihon Shinkei Seishin Yakurigaku Zasshi16(1), 33–36 (1996).
  • Murphy BE, Dhar V, Ghadirian AM, Chouinard G, Keller R. Response to steroid suppression in major depression resistant to antidepressant therapy. J. Clin. Psychopharmacol.11(2), 121–126 (1991).
  • Murphy BE. Treatment of major depression with steroid suppressive drugs. J. Steroid Biochem. Mol. Biol.39(2), 239–244 (1991).
  • Ravaris CL, Sateia MJ, Beroza KW, Noordsy DL, Brinck-Johnsen T. Effect of ketoconazole on a hypophysectomized, hypercortisolemic, psychotically depressed woman. Arch. Gen. Psychiatry45(10), 966–967 (1988).
  • Thakore JH, Dinan TG. Cortisol synthesis inhibition: a new treatment strategy for the clinical and endocrine manifestations of depression. Biol. Psychiatry37(6), 364–368 (1995).
  • Wolkowitz OM, Reus VI, Manfredi F, Ingbar J, Brizendine L, Weingartner H. Ketoconazole administration in hypercortisolemic depression. Am. J. Psychiatry150(5), 810–812 (1993).
  • Wolkowitz OM, Reus VI, Chan T et al. Antiglucocorticoid treatment of depression: double-blind ketoconazole. Biol. Psychiatry45(8), 1070–1074 (1999).
  • Malison RT, Anand A, Pelton GH et al. Limited efficacy of ketoconazole in treatment-refractory major depression. J. Clin. Psychopharmacol.19(5), 466–470 (1999).
  • Murphy BE, Ghadirian AM, Dhar V. Neuroendocrine responses to inhibitors of steroid biosynthesis in patients with major depression resistant to antidepressant therapy. Can. J. Psychiatry43(3), 279–286 (1998).
  • Raven PW, Checkley SA, Taylor NF. Extra-adrenal effects of metyrapone include inhibition of the 11-oxoreductase activity of 11 β-hydroxysteroid dehydrogenase: a model for 11-HSD I deficiency. Clin. Endocrinol. (Oxf.)43(5), 637–644 (1995).
  • Seckl JR. 11β-Hydroxysteroid dehydrogenase in the brain: a novel regulator of glucocorticoid action? Front. Neuroendocrinol.18(1), 49–99 (1997).
  • Healy DG, Harkin A, Cryan JF, Kelly JP, Leonard BE. Metyrapone displays antidepressant-like properties in preclinical paradigms. Psychopharmacology (Berl.)145(3), 303–308 (1999).
  • Jeffcoate WJ, Silverstone JT, Edwards CR, Besser GM. Psychiatric manifestations of Cushing’s syndrome: response to lowering of plasma cortisol. Q. J. Med.48(191), 465–472 (1979).
  • Raven PW, O’Dwyer AM, Taylor NF, Checkley SA. The relationship between the effects of metyrapone treatment on depressed mood and urinary steroid profiles. Psychoneuroendocrinology21(3), 277–286 (1996).
  • Rogoz Z, Skuza G, Wojcikowski J et al. Effect of metyrapone supplementation on imipramine therapy in patients with treatment-resistant unipolar depression. Pol. J. Pharmacol.56(6), 849–855 (2004).
  • O’Dwyer AM, Lightman SL, Marks MN, Checkley SA. Treatment of major depression with metyrapone and hydrocortisone. J. Affect. Disord.33(2), 123–128 (1995).
  • Jahn H, Schick M, Kiefer F, Kellner M, Yassouridis A, Wiedemann K. Metyrapone as additive treatment in major depression: a double-blind and placebo-controlled trial. Arch. Gen. Psychiatry61(12), 1235–1244 (2004).
  • Van de Wiele RL, MacDonald PC, Gurpide E, Lieberman S. Studies on the secretion and interconversion of the androgens. In: Recent progress in Hormone Research. Pincus G (Ed.). Academic Press, NY, USA 275–310 (1963).
  • Montanini V, Simoni M, Chiossi G et al. Age-related changes in plasma dehydroepiandrosterone sulphate, cortisol, testosterone and free testosterone circadian rhythms in adult men. Horm. Res.29(1), 1–6 (1988).
  • Majewska MD. Steroids and brain activity. Essential dialogue between body and mind. Biochem. Pharmacol.36(22), 3781–3788 (1987).
  • Majewska MD, Schwartz RD. Pregnenolone-sulfate: an endogenous antagonist of the γ-aminobutyric acid receptor complex in brain? Brain Res.404(1–2), 355–360 (1987).
  • Nieschlag E, Loriaux DL, Ruder HJ, Zucker IR, Kirschner MA, Lipsett MB. The secretion of dehydroepiandrosterone and dehydroepiandrosterone sulphate in man. J. Endocrinol.57(1), 123–134 (1973).
  • Hansen CR Jr, Kroll J, Mackenzie TB. Dehydroepiandrosterone and affective disorders. Am. J. Psychiatry139(3), 386–387 (1982).
  • Maayan R, Yagorowski Y, Grupper D et al. Basal plasma dehydroepiandrosterone sulfate level: a possible predictor for response to electroconvulsive therapy in depressed psychotic inpatients. Biol. Psychiatry48(7), 693–701 (2000).
  • Tollefson GD, Haus E, Garvey MJ, Evans M, Tuason VB. 24-hour urinary dehydroepiandrosterone sulfate in unipolar depression treated with cognitive and/or pharmacotherapy. Ann. Clin. Psychiatry2, 39–45 (1990).
  • Takebayashi M, Kagaya A, Uchitomi Y et al. Plasma dehydroepiandrosterone sulfate in unipolar major depression. Short communication. J. Neural. Transm.105(4–5), 537–542 (1998).
  • Assies J, Visser I, Nicolson NA et al. Elevated salivary dehydroepiandrosterone-sulfate but normal cortisol levels in medicated depressed patients: preliminary findings. Psychiatry Res.128(2), 117–122 (2004).
  • Heuser I, Deuschle M, Luppa P, Schweiger U, Standhardt H, Weber B. Increased diurnal plasma concentrations of dehydroepiandrosterone in depressed patients. J. Clin. Endocrinol. Metab.83(9), 3130–3133 (1998).
  • Ferguson HC, Bartram AC, Fowlie HC, Cathro DM, Birchall K, Mitchell FL. A preliminary investigation of steroid excretion in depressed patients before and after electro-convulsive therapy. Acta Endocrinol. (Copenh.)47, 58–68 (1964).
  • Reus VI, Wolkowitz OM, Roberts E et al. Dehydroepiandrosterone (DHEA) and memory in depressed patients. Neuropsychopharmacology9, 66S (1993) (Abstract).
  • Osran H, Reist C, Chen CC, Lifrak ET, Chicz-DeMet A, Parker LN. Adrenal androgens and cortisol in major depression. Am. J. Psychiatry150(5), 806–809 (1993).
  • Fabian TJ, Dew MA, Pollock BG et al. Endogenous concentrations of DHEA and DHEA-S decrease with remission of depression in older adults. Biol. Psychiatry50(10), 767–774 (2001).
  • Scott LV, Salahuddin F, Cooney J, Svec F, Dinan TG. Differences in adrenal steroid profile in chronic fatigue syndrome, in depression and in health. J. Affect. Disord.54(1–2), 129–137 (1999).
  • Michael A, Jenaway A, Paykel ES, Herbert J. Altered salivary dehydroepiandrosterone levels in major depression in adults. Biol. Psychiatry48(10), 989–995 (2000).
  • Schmidt PJ, Murphy JH, Haq N, Danaceau MA, St Clair L. Basal plasma hormone levels in depressed perimenopausal women. Psychoneuroendocrinology27(8), 907–920 (2002).
  • Barrett-Connor E, Von Muhlen D, Laughlin GA, Kripke A. Endogenous levels of dehydroepiandrosterone sulfate, but not other sex hormones, are associated with depressed mood in older women: the Rancho Bernardo Study. J. Am. Geriatr. Soc.47(6), 685–691 (1999).
  • Markianos M, Tripodianakis J, Sarantidis D, Hatzimanolis J. Plasma testosterone and dehydroepiandrosterone sulfate in male and female patients with dysthymic disorder. J. Affect. Disord.101(1–3), 255–258 (2007).
  • Poor V, Juricskay S, Gati A, Osvath P, Tenyi T. Urinary steroid metabolites and 11β-hydroxysteroid dehydrogenase activity in patients with unipolar recurrent major depression. J. Affect. Disord.81(1), 55–59 (2004).
  • Blauer KL, Poth M, Rogers WM, Bernton EW. Dehydroepiandrosterone antagonizes the suppressive effects of dexamethasone on lymphocyte proliferation. Endocrinology129(6), 3174–3179 (1991).
  • May M, Holmes E, Rogers W, Poth M. Protection from glucocorticoid induced thymic involution by dehydroepiandrosterone. Life Sci.46(22), 1627–1631 (1990).
  • Shafagoj Y, Opoku J, Qureshi D, Regelson W, Kalimi M. Dehydroepiandrosterone prevents dexamethasone-induced hypertension in rats. Am. J. Physiol.263(2 Pt 1), E210–E213 (1992).
  • Kalimi M, Shafagoj Y, Loria R, Padgett D, Regelson W. Anti-glucocorticoid effects of dehydroepiandrosterone (DHEA). Mol. Cell. Biochem.131(2), 99–104 (1994).
  • Goodyer IM, Herbert J, Altham PM. Adrenal steroid secretion and major depression in 8- to 16-year-olds, III. Influence of cortisol/DHEA ratio at presentation on subsequent rates of disappointing life events and persistent major depression. Psychol. Med.28(2), 265–273 (1998).
  • Gallagher P, Young A. Cortisol/DHEA ratios in depression. Neuropsychopharmacology26(3), 410 (2002).
  • Young AH, Gallagher P, Porter RJ. Elevation of the cortisol–dehydroepiandrosterone ratio in drug-free depressed patients. Am. J. Psychiatry159(7), 1237–1239 (2002).
  • Goodyer IM, Herbert J, Tamplin A. Psychoendocrine antecedents of persistent first-episode major depression in adolescents: a community-based longitudinal enquiry. Psychol. Med.33(4), 601–610 (2003).
  • Ferrari E, Mirani M, Barili L et al. Cognitive and affective disorders in the elderly: a neuroendocrine study. Arch. Gerontol. Geriatr. Suppl. (9), 171–182 (2004).
  • Schule C, Di Michele F, Baghai T et al. Influence of sleep deprivation on neuroactive steroids in major depression. Neuropsychopharmacology28(3), 577–581 (2003).
  • Deuschle M, Luppa P, Gilles M, Hamann B, Heuser I. Antidepressant treatment and dehydroepiandrosterone sulfate: different effects of amitriptyline and paroxetine. Neuropsychobiology50(3), 252–256 (2004).
  • Schule C, Baghai TC, Eser D, Schwarz M, Bondy B, Rupprecht R. Effects of mirtazapine on dehydroepiandrosterone-sulfate and cortisol plasma concentrations in depressed patients. J. Psychiatr. Res.43(5), 538–545 (2008).
  • Wolkowitz OM, Reus VI, Roberts E et al. Dehydroepiandrosterone (DHEA) treatment of depression. Biol. Psychiatry41(3), 311–318 (1997).
  • Sands DE, Chamberlain GHA. Treatment of inadequate personality in juveniles by dehydroepiandrosterone: preliminary report. BMJ2, 66–68 (1952).
  • Sands DE. Further studies on endocrine treatment in adolescence and early adult life. J. Ment. Sci.100, 211–219 (1954).
  • Strauss EB, Sands DE, Robinson AM, Tindall WJ, Stevenson WAH. Use of dehydroepiandrosterone in psychiatric treatment: a preliminary survey. BMJ2, 64–66 (1952).
  • Strauss EB, Stevenson WAH. Use of dehydroepiandrosterone in psychiatric practice. J. Neurol. Neurosurg. Psychiatry18, 137–144 (1955).
  • Wolkowitz OM, Reus VI, Keebler A et al. Double-blind treatment of major depression with dehydroepiandrosterone. Am. J. Psychiatry156(4), 646–649 (1999).
  • Bloch M, Schmidt PJ, Danaceau MA, Adams LF, Rubinow DR. Dehydroepiandrosterone treatment of midlife dysthymia. Biol. Psychiatry45(12), 1533–1541 (1999).
  • Schmidt PJ, Daly RC, Bloch M et al. Dehydroepiandrosterone monotherapy in midlife-onset major and minor depression. Arch. Gen. Psychiatry62(2), 154–162 (2005).
  • Morales AJ, Nolan JJ, Nelson JC, Yen SS. Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J. Clin. Endocrinol. Metab.78(6), 1360–1367 (1994).
  • Araneo B, Daynes R. Dehydroepiandrosterone functions as more than an antiglucocorticoid in preserving immunocompetence after thermal injury. Endocrinology136(2), 393–401 (1995).
  • Browne ES, Porter JR, Correa G, Abadie J, Svec F. Dehydroepiandrosterone regulation of the hepatic glucocorticoid receptor in the Zucker rat. The obesity research program. J. Steroid Biochem. Mol. Biol.45(6), 517–524 (1993).
  • Genazzani AD, Stomati M, Bernardi F, Pieri M, Rovati L, Genazzani AR. Long-term low-dose dehydroepiandrosterone oral supplementation in early and late postmenopausal women modulates endocrine parameters and synthesis of neuroactive steroids. Fertil. Steril.80(6), 1495–1501 (2003).
  • Nadjafi-Triebsch C, Huell M, Burki D, Rohr UD. Progesterone increase under DHEA-substitution in males. Maturitas45(3), 231–235 (2003).
  • Johannsson G, Burman P, Wiren L et al. Low dose dehydroepiandrosterone affects behavior in hypopituitary androgen-deficient women: a placebo-controlled trial. J. Clin. Endocrinol. Metab.87(5), 2046–2052 (2002).
  • Hajszan T, MacLusky NJ, Leranth C. Dehydroepiandrosterone increases hippocampal spine synapse density in ovariectomized female rats. Endocrinology145(3), 1042–1045 (2004).
  • Karishma KK, Herbert J. Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. Eur. J. Neurosci.16(3), 445–453 (2002).
  • Wolkowitz OM. Prospective controlled studies of the behavioral and biological effects of exogenous corticosteroids. Psychoneuroendocrinology19(3), 233–255 (1994).
  • Keller J, Flores B, Gomez RG et al. Cortisol circadian rhythm alterations in psychotic major depression. Biol. Psychiatry60(3), 275–281 (2006).
  • Egeland J, Lund A, Landro NI et al. Cortisol level predicts executive and memory function in depression, symptom level predicts psychomotor speed. Acta Psychiatr. Scand.112(6), 434–441 (2005).
  • Schatzberg AF, Rothschild AJ, Langlais PJ, Bird ED, Cole JO. A corticosteroid/dopamine hypothesis for psychotic depression and related states. J. Psychiatr. Res.19(1), 57–64 (1985).
  • DeBattista C, Belanoff J. The use of mifepristone in the treatment of neuropsychiatric disorders. Trends Endocrinol. Metab.17(3), 117–121 (2006).
  • Robbins A, Spitz IM. Mifepristone: clinical pharmacology. Clin. Obstet. Gynecol.39(2), 436–450 (1996).
  • Brogden RN, Goa KL, Faulds D. Mifepristone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs45(3), 384–409 (1993).
  • Cadepond F, Ulmann A, Baulieu EE. RU486 (mifepristone): mechanisms of action and clinical uses. Annu. Rev. Med48, 129–156 (1997).
  • Flores BH, Kenna H, Keller J, Solvason HB, Schatzberg AF. Clinical and biological effects of mifepristone treatment for psychotic depression. Neuropsychopharmacology31(3), 628–636 (2006).
  • Kling MA, Whitfield HJ Jr, Brandt HA et al. Effects of glucocorticoid antagonism with RU 486 on pituitary–adrenal function in patients with major depression: time-dependent enhancement of plasma ACTH secretion. Psychopharmacol. Bull.25(3), 466–472 (1989).
  • Krishnan KR, Reed D, Wilson WH et al. RU486 in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry16(6), 913–920 (1992).
  • Belanoff JK, Flores BH, Kalezhan M, Sund B, Schatzberg AF. Rapid reversal of psychotic depression using mifepristone. J. Clin. Psychopharmacol.21(5), 516–521 (2001).
  • Belanoff JK, Rothschild AJ, Cassidy F et al. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol. Psychiatry52(5), 386–392 (2002).
  • Simpson GM, El Sheshai A, Loza N et al. An 8-week open-label trial of a 6-day course of mifepristone for the treatment of psychotic depression. J. Clin. Psychiatry66(5), 598–602 (2005).
  • Murphy BE, Filipini D, Ghadirian AM. Possible use of glucocorticoid receptor antagonists in the treatment of major depression: preliminary results using RU 486. J. Psychiatry Neurosci.18(5), 209–213 (1993).
  • Young AH, Gallagher P, Watson S, Del-Estal D, Owen BM, Ferrier IN. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology29(8), 1538–1545 (2004).
  • Fiala C, Gemzel-Danielsson K. Review of medical abortion using mifepristone in combination with a prostaglandin analogue. Contraception74(1), 66–86 (2006).
  • Schule C, Baghai T, Zwanzger P et al. Attenuation of hypothalamic–pituitary–adrenocortical hyperactivity in depressed patients by mirtazapine. Psychopharmacology (Berl.)166(3), 271–275 (2003).
  • Bschor T, Adli M, Baethge C et al. Lithium augmentation increases the ACTH and cortisol response in the combined DEX/CRH test in unipolar major depression. Neuropsychopharmacology27(3), 470–478 (2002).
  • Nickel T, Sonntag A, Schill J et al. Clinical and neurobiological effects of tianeptine and paroxetine in major depression. J. Clin. Psychopharmacol.23(2), 155–168 (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.