730
Views
148
CrossRef citations to date
0
Altmetric
Review

Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy

, &
Pages 1059-1071 | Published online: 09 Jan 2014

References

  • Bogerts B. Schizophrenia. In: Encyclopedia of Neuroscience. Binder M, Hirokawa N, Windhorst U (Eds). Springer, Heidelberg, Germany (2009).
  • Begre S, Koenig T. Cerebral disconnectivity: an early event in schizophrenia. Neuroscientist14(1), 19–45 (2008).
  • Federspiel A, Begre S, Kiefer C, Schroth G, Strik WK, Dierks T. Alterations of white matter connectivity in first episode schizophrenia. Neurobiol. Dis.22(3), 702–709 (2006).
  • Konrad A, Winterer G. Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? Schizophr. Bull.34(1), 72–92 (2008).
  • Walterfang M, Wood SJ, Velakoulis D, Pantelis C. Neuropathological, neurogenetic and neuroimaging evidence for white matter pathology in schizophrenia. Neurosci. Biobehav. Rev.30(7), 918–948 (2006).
  • Kubicki M, McCarley RW, Shenton ME. Evidence for white matter abnormalities in schizophrenia. Curr. Opin. Psychiatry18(2), 121–134 (2005).
  • Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr. Res.108(1–3), 3–10 (2009).
  • Dwork AJ, Mancevski B, Rosoklija G. White matter and cognitive function in schizophrenia. Int. J. Neuropsychopharmacol.10(4), 513–536 (2007).
  • Regenold WT, Phatak P, Marano CM, Gearhart L, Viens CH, Hisley KC. Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression. Psychiatry Res.151(3), 179–188 (2007).
  • Uranova NA, Orlovskaia DD, Vikhreva OV, Zimina IS, Rakhmanova VI. Morphometric study of ultrastructural changes in oligodendroglial cells in the postmortem brain in endogenous psychoses. Vestn. Ross. Akad. Med. Nauk (7), 42–48 (2001).
  • Davis KL, Stewart DG, Friedman JI et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch. Gen. Psychiatry60(5), 443–456 (2003).
  • Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr. Res.67(2–3), 269–275 (2004).
  • Hof PR, Haroutunian V, Copland C, Davis KL, Buxbaum JD. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem. Res.27(10), 1193–1200 (2002).
  • Hof PR, Haroutunian V, Friedrich VL Jr et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol. Psychiatry53(12), 1075–1085 (2003).
  • Byne W, Kidkardnee S, Tatusov A, Yiannoulos G, Buchsbaum MS, Haroutunian V. Schizophrenia-associated reduction of neuronal and oligodendrocyte numbers in the anterior principal thalamic nucleus. Schizophr. Res.85(1–3), 245–253 (2006).
  • Schmitt A, Steyskal C, Bernstein HG et al. Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol.117(4), 395–407 (2009).
  • Vostrikov VM, Uranova NA, Orlovskaya DD. Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr. Res.94(1–3), 273–280 (2007).
  • Vostrikov V, Orlovskaya D, Uranova N. Deficit of pericapillary oligodendrocytes in the prefrontal cortex in schizophrenia. World J. Biol. Psychiatry9(1), 34–42 (2008).
  • Uranova NA, Vostrikov VM, Vikhreva OV, Zimina IS, Kolomeets NS, Orlovskaya DD. The role of oligodendrocyte pathology in schizophrenia. Int. J. Neuropsychopharmacol.10(4), 537–545 (2007).
  • Uranova N, Bonartsev P, Brusov O, Morozova M, Rachmanova V, Orlovskaya D. The ultrastructure of lymphocytes in schizophrenia. World J. Biol. Psychiatry8(1), 30–37 (2007).
  • Martins-de-Souza D, Gattaz WF, Schmitt A et al. Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J. Psychiatr. Res. doi:10.1016/j.jpsychires.2008.11.006 (2008) (Epub ahead of print).
  • Martins-de-Souza D, Gattaz WF, Schmitt A et al. Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J. Neural Transm.116(3), 275–289 (2009).
  • Konopaske GT, Dorph-Petersen KA, Sweet RA et al. Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol. Psychiatry63(8), 759–765 (2008).
  • McCullumsmith RE, Gupta D, Beneyto M et al. Expression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia. Schizophr. Res.90(1–3), 15–27 (2007).
  • Hakak Y, Walker JR, Li C et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl Acad. Sci. USA98(8), 4746–4751 (2001).
  • Tkachev D, Mimmack ML, Ryan MM et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet362(9386), 798–805 (2003).
  • Aston C, Jiang L, Sokolov BP. Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J. Neurosci. Res.77(6), 858–866 (2004).
  • Dracheva S, Davis KL, Chin B, Woo DA, Schmeidler J, Haroutunian V. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol. Dis.21(3), 531–540 (2006).
  • Peirce TR, Bray NJ, Williams NM et al. Convergent evidence for 2’,3’-cyclic nucleotide 3’-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch. Gen. Psychiatry63(1), 18–24 (2006).
  • Katsel P, Davis KL, Haroutunian V. Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr. Res.79(2–3), 157–173 (2005).
  • Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience91(4), 1247–1255 (1999).
  • Flynn SW, Lang DJ, Mackay AL et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol. Psychiatry8(9), 811–820 (2003).
  • Chambers JS, Perrone-Bizzozero NI. Altered myelination of the hippocampal formation in subjects with schizophrenia and bipolar disorder. Neurochem. Res.29(12), 2293–2302 (2004).
  • Steiner J, Bernstein HG, Bielau H et al. S100B-immunopositive glia is elevated in paranoid as compared to residual schizophrenia: a morphometric study. J. Psychiatr. Res.42(10), 868–876 (2008).
  • Haroutunian V, Davis KL. Introduction to the special section: myelin and oligodendrocyte abnormalities in schizophrenia. Int. J. Neuropsychopharmacol.10(4), 499–502 (2007).
  • Aberg K, Saetre P, Jareborg N, Jazin E. Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc. Natl Acad. Sci. USA103(19), 7482–7487 (2006).
  • Aberg K, Saetre P, Lindholm E et al. Human QKI, a new candidate gene for schizophrenia involved in myelination. Am. J. Med. Genet. B Neuropsychiatr. Genet.141B(1), 84–90 (2006).
  • Karoutzou G, Emrich HM, Dietrich DE. The myelin-pathogenesis puzzle in schizophrenia: a literature review. Mol. Psychiatry13(3), 245–260 (2008).
  • Zai G, King N, Wigg K et al. Genetic study of the myelin oligodendrocyte glycoprotein (MOG) gene in schizophrenia. Genes Brain Behav.4(1), 2–9 (2005).
  • Voineskos AN, de Luca V, Bulgin NL et al. A family-based association study of the myelin-associated glycoprotein and 2’,3’-cyclic nucleotide 3’-phosphodiesterase genes with schizophrenia. Psychiatr. Genet.18(3), 143–146 (2008).
  • Qu M, Yue W, Tang F, Wang L, Han Y, Zhang D. Polymorphisms of transferrin gene are associated with schizophrenia in Chinese Han population. J. Psychiatr. Res.42(11), 877–883 (2008).
  • Corfas G, Roy K, Buxbaum JD. Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat. Neurosci.7(6), 575–580 (2004).
  • Sokolov BP. Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies? Int. J. Neuropsychopharmacol.10(4), 547–555 (2007).
  • Buonanno A, Kwon OB, Yan L et al. Neuregulins and neuronal plasticity: possible relevance in schizophrenia. Novartis Found. Symp.289, 165–177 (2008).
  • Talmage DA. Mechanisms of neuregulin action. Novartis Found. Symp.289, 74–84 (2008).
  • Bertram I, Bernstein HG, Lendeckel U et al. Immunohistochemical evidence for impaired neuregulin-1 signaling in the prefrontal cortex in schizophrenia and in unipolar depression. Ann. NY Acad. Sci.1096, 147–156 (2007).
  • Bernstein HG, Lendeckel U, Bertram I et al. Localization of neuregulin-1α (heregulin-α) and one of its receptors, ErbB-4 tyrosine kinase, in developing and adult human brain. Brain Res. Bull.69(5), 546–559 (2006).
  • Birchmeier C. ErbB receptors and the development of the nervous system. Exp. Cell Res.315(4), 611–618 (2009).
  • Chong VZ, Thompson M, Beltaifa S, Webster MJ, Law AJ, Weickert CS. Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophr. Res.100(1–3), 270–280 (2008).
  • Hahn CG, Wang HY, Cho DS et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat. Med.12(7), 824–828 (2006).
  • Roy K, Murtie JC, El-Khodor BF et al. Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc. Natl Acad. Sci. USA104(19), 8131–8136 (2007).
  • Georgieva L, Moskvina V, Peirce T et al. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc. Natl Acad. Sci. USA103(33), 12469–12474 (2006).
  • Mitkus SN, Hyde TM, Vakkalanka R et al. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr. Res.98(1–3), 129–138 (2008).
  • Novak G, Tallerico T. Nogo A, B and C expression in schizophrenia, depression and bipolar frontal cortex, and correlation of Nogo expression with CAA/TATC polymorphism in 3’-UTR. Brain Res.1120(1), 161–171 (2006).
  • Rothermundt M, Ponath G, Arolt V. S100B in schizophrenic psychosis. Int. Rev. Neurobiol59, 445–470 (2004).
  • Steiner J, Bernstein HG, Bielau H et al. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci.8(2), 2–12 (2007).
  • Steiner J, Bernstein HG, Bogerts B et al. S100B is expressed in, and released from, OLN-93 oligodendrocytes: influence of serum and glucose deprivation. Neuroscience154(2), 496–503 (2008).
  • Lindholm E, Jazin E. A possible link between dopamine action and myelin dysfunction in schizophrenia. Schizophr. Res.96(1–3), 271–272 (2007).
  • Tkachev D, Mimmack ML, Huffaker SJ, Ryan M, Bahn S. Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia. Int. J. Neuropsychopharmacol.10(4), 557–563 (2007).
  • Rosin C, Colombo S, Calver AA, Bates TE, Skaper SD. Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia52(4), 336–343 (2005).
  • Carter CJ. Schizophrenia susceptibility genes converge on interlinked pathways related to glutamatergic transmission and long-term potentiation, oxidative stress and oligodendrocyte viability. Schizophr. Res.86(1–3), 1–14 (2006).
  • Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci.3(9), 705–714 (2002).
  • Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci.9(11), 839–855 (2008).
  • Shen S, Sandoval J, Swiss VA et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat. Neurosci.11(9), 1024–1034 (2008).
  • Schmitz T, Chew LJ. Cytokines and myelination in the central nervous system. ScientificWorldJournal8, 1119–1147 (2008).
  • Müller N, Schwarz M. Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox. Res.10(2), 131–148 (2006).
  • Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol. Psychiatry63, 801–808 (2008).
  • Seiwa C, Yamamoto M, Tanaka K et al. Restoration of FcRγ/Fyn signaling repairs central nervous system demyelination. J. Neurosci. Res.85(5), 954–966 (2007).
  • Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E. Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry7, 46 (2007).
  • Chesik D, De Keyser J, Wilczak N. Insulin-like growth factor system regulates oligodendroglial cell behavior: therapeutic potential in CNS. J. Mol. Neurosci.35(1), 81–90 (2008).
  • Xiao L, Xu H, Zhang Y et al. Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol. Psychiatry13(7), 697–708 (2008).
  • Garver DL, Holcomb JA, Christensen JD. Compromised myelin integrity during psychosis with repair during remission in drug-responding schizophrenia. Int. J. Neuropsychopharmacol.11(1), 49–61 (2008).
  • Kimelberg HK. The problem of astrocyte identity. Neurochem. Int.45(2–3), 191–202 (2004).
  • Chan-Palay V, Palay SL. The form of velate astrocytes in the cerebellar cortex of monkey and rat: high voltage electron microscopy of rapid Golgi preparations. Z. Anat. Entwicklungsgesch.138(1), 1–19 (1972).
  • Shehab SA, Cronly-Dillon JR, Nona SN, Stafford CA. Preferential histochemical staining of protoplasmic and fibrous astrocytes in rat CNS with GFAP antibodies using different fixatives. Brain Res.518(1–2), 347–352 (1990).
  • Virchow R. Die Cellularpathologie in ihrer Begründung auf Physiologischer und Pathologischer Gewebelehre. August Hirschwald, Berlin, Germany (1858).
  • De Keyser J, Mostert JP, Koch MW. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci.267(1–2), 3–16 (2008).
  • Cotter DR, Pariante CM, Everall IP. Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res. Bull.55(5), 585–595 (2001).
  • Stevens JR. Neuropathology of schizophrenia. Arch. Gen. Psychiatry39(10), 1131–1139 (1982).
  • Nasrallah HA, McCalley-Whitters M, Bigelow LB, Rauscher FP. A histological study of the corpus callosum in chronic schizophrenia. Psychiatry Res.8(4), 251–260 (1983).
  • Bruton CJ, Crow TJ, Frith CD, Johnstone EC, Owens DG, Roberts GW. Schizophrenia and the brain: a prospective clinico-neuropathological study. Psychol. Med.20(2), 285–304 (1990).
  • Roberts GW, Colter N, Lofthouse R, Bogerts B, Zech M, Crow TJ. Gliosis in schizophrenia: a survey. Biol. Psychiatry21(11), 1043–1050 (1986).
  • Bogerts B. Recent advances in the neuropathology of schizophrenia. Schizophr. Bull.19(2), 431–445 (1993).
  • Arnold SE, Franz BR, Trojanowski JQ, Moberg PJ, Gur RE. Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathol.91(3), 269–277 (1996).
  • Falkai P, Honer WG, David S, Bogerts B, Majtenyi C, Bayer TA. No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathol. Appl. Neurobiol.25(1), 48–53 (1999).
  • Damadzic R, Bigelow LB, Krimer LS et al. A quantitative immunohistochemical study of astrocytes in the entorhinal cortex in schizophrenia, bipolar disorder and major depression: absence of significant astrocytosis. Brain Res. Bull.55(5), 611–618 (2001).
  • Falkai P, Bogerts B. Cell loss in the hippocampus of schizophrenics. Eur. Arch. Psychiatry Neurol. Sci.236(3), 154–161 (1986).
  • Pakkenberg B. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch. Gen. Psychiatry47(11), 1023–1028 (1990).
  • Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C. Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr. Res.57(2–3), 127–138 (2002).
  • Oifa AI, Uranova NA. Electron-microscopic analysis of cytoarchitectonic disorders in the cerebral cortex in schizophrenia. Zh. Nevropatol. Psikhiatr. Im. S. S. Korsakova91(10), 48–52 (1991).
  • Kolomeets NS. Astroglia of the hippocampus in schizophrenia. Zh. Nevropatol. Psikhiatr. Im. S. S. Korsakova108(4), 70–76 (2008).
  • Webster MJ, O’Grady J, Kleinman JE, Weickert CS. Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience133(2), 453–461 (2005).
  • Steffek AE, McCullumsmith RE, Haroutunian V, Meador-Woodruff JH. Cortical expression of glial fibrillary acidic protein and glutamine synthetase is decreased in schizophrenia. Schizophr. Res.103(1–3), 71–82 (2008).
  • Bruneau EG, McCullumsmith RE, Haroutunian V, Davis KL, Meador-Woodruff JH. Increased expression of glutaminase and glutamine synthetase mRNA in the thalamus in schizophrenia. Schizophr. Res.75(1), 27–34 (2005).
  • Toro CT, Hallak JE, Dunham JS, Deakin JF. Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neurosci. Lett.404(3), 276–281 (2006).
  • Stevens B. Neuron-astrocyte signaling in the development and plasticity of neural circuits. Neurosignals16(4), 278–288 (2008).
  • Haydon PG. GLIA: listening and talking to the synapse. Nat. Rev. Neurosci.2(3), 185–193 (2001).
  • Theberge J, Williamson KE, Aoyama N et al. Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. Br. J. Psychiatry191, 325–334 (2007).
  • Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindstrom LH, Iyo M. Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients. BMC Psychiatry5, 6 (2005).
  • Myint AM, Kim YK, Verkerk R et al. Tryptophan breakdown pathway in bipolar mania. J. Affect. Disord.102(1–3), 65–72 (2007).
  • Baslow MH. The astrocyte surface NAAG receptor and NAAG peptidase signaling complex as a therapeutic target. Drug News Perspect.21(5), 251–257 (2008).
  • Brisch R, Bernstein HG, Krell D et al. Dopamine-glutamate abnormalities in the frontal cortex associated with the catechol-O-methyltransferase (COMT) in schizophrenia. 1269, 166–175 Brain Res. (2009).
  • Owen F, Crow TJ, Frith CD et al. Selective decreases in MAO-B activity in post-mortem brains from schizophrenic patients with type II syndrome. Br. J. Psychiatry151, 514–519 (1987).
  • Kondziella D, Brenner E, Eyjolfsson EM, Sonnewald U. How do glial-neuronal interactions fit into current neurotransmitter hypotheses of schizophrenia? Neurochem. Int.50(2), 291–301 (2007).
  • Gorwood P, Pouchot J, Vinceneux P et al. Rheumatoid arthritis and schizophrenia: a negative association at a dimensional level. Schizophr. Res.66(1), 21–29 (2004).
  • Wagner-Jauregg J. Über die Einwirkung fieberhafter Erkrankungen auf Psychosen. Allgemeine Z. Psychiatrie27, 93–131 (1887).
  • Nunes SO, Borelli SD, Matsuo T, Watanabe MA, Itano EN. The association of the HLA in patients with schizophrenia, schizoaffective disorder, and in their biological relatives. Schizophr. Res.76(2–3), 195–198 (2005).
  • Torrey EF, Leweke MF, Schwarz MJ et al. Cytomegalovirus and schizophrenia. CNS Drugs20(11), 879–885 (2006).
  • Yolken RH, Torrey EF. Viruses, schizophrenia, and bipolar disorder. Clin. Microbiol. Rev.8(1), 131–145 (1995).
  • Torrey EF, Bartko JJ, Lun ZR, Yolken RH. Antibodies to Toxoplasma gondii in patients with schizophrenia: a meta-analysis. Schizophr. Bull.33(3), 729–736 (2007).
  • Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS. Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am. J. Psychiatry163(5), 927–929 (2006).
  • Brown AS. The risk for schizophrenia from childhood and adult infections. Am. J. Psychiatry165(1), 7–10 (2008).
  • Nyffeler M, Meyer U, Yee BK, Feldon J, Knuesel I. Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: implications for schizophrenia. Neuroscience143(1), 51–62 (2006).
  • Arolt V, Rothermundt M. The immunology of psychiatric disorders. Psychother. Psychosom. Med. Psychol.55(1), 36–48 (2005).
  • Drzyzga L, Obuchowicz E, Marcinowska A, Herman ZS. Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behav. Immun.20(6), 532–545 (2006).
  • Schuld A, Hinze-Selch D, Pollmaecher T. Cytokine network in patients with schizophrenia and its significance for the pathophysiology of the illness. Nervenarzt75(3), 215–226 (2004).
  • Sperner-Unterweger B. Immunological aetiology of major psychiatric disorders: evidence and therapeutic implications. Drugs65(11), 1493–1520 (2005).
  • Conejero-Goldberg C, Torrey EF, Yolken RH. Herpes viruses and Toxoplasma gondii in orbital frontal cortex of psychiatric patients. Schizophr. Res.60(1), 65–69 (2003).
  • Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci. Lett.271(2), 126–128 (1999).
  • Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J. Neuropathol. Exp. Neurol.59(2), 137–150 (2000).
  • Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasennik E. Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol.43(2), 81–89 (2005).
  • Arnold SE, Trojanowski JQ, Gur RE, Blackwell P, Han LY, Choi C. Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch. Gen. Psychiatry55(3), 225–232 (1998).
  • Falke E, Han LY, Arnold SE. Absence of neurodegeneration in the thalamus and caudate of elderly patients with schizophrenia. Psychiatry Res.93(2), 103–110 (2000).
  • Kurumaji A, Wakai T, Toru M. Decreases in peripheral-type benzodiazepine receptors in postmortem brains of chronic schizophrenics. J. Neural Transm.104(11–12), 1361–1370 (1997).
  • Steiner J, Bielau H, Brisch R et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J. Psychiatr. Res.42(2), 151–157 (2008).
  • Steiner J, Mawrin C, Ziegeler A et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol.112(3), 305–316 (2006).
  • Togo T, Akiyama H, Kondo H et al. Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. Brain Res.885(1), 117–121 (2000).
  • Wierzba-Bobrowicz T, Lewandowska E, Kosno-Kruszewska E, Lechowicz W, Pasennik E, Schmidt-Sidor B. Degeneration of microglial cells in frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol.42(3), 157–165 (2004).
  • Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol. (Berl.)101(3), 249–255 (2001).
  • Mattiace LA, Davies P, Dickson DW. Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am. J. Pathol.136(5), 1101–1114 (1990).
  • Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging9(4), 339–349 (1988).
  • van Berckel BN, Bossong MG, Boellaard R et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol. Psychiatry64(9), 820–822 (2008).
  • Hirsch S. Clinical changes measured by [11C](R)-PK11195 PET in patients with psychosis and cognitive decline are associated with impaired event related potential mismatch negativity. (Abstract from the 12th Biennial Winter workshop on Schizophrenia, Davos, Switzerland). Schizophr. Res.67(Suppl. 1), 103 (2004).
  • Miyaoka T, Yasukawa R, Yasuda H, Hayashida M, Inagaki T, Horiguchi J. Possible antipsychotic effects of minocycline in patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry31(1), 304–307 (2007).
  • Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Isakson P. Distribution of COX-1 and COX-2 in normal and inflamed tissues. Adv. Exp. Med. Biol.400A, 167–170 (1997).
  • O’Banion MK. Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit. Rev. Neurobiol.13(1), 45–82 (1999).
  • Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi Abhari SA, Abbasi SH, Behnam B. Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr. Res.90(1–3), 179–185 (2007).
  • Müller N, Ulmschneider M, Scheppach C et al. COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur. Arch. Psychiatry Clin. Neurosci.254(1), 14–22 (2004).
  • Müller N, Riedel M, Scheppach C et al. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am. J. Psychiatry159(6), 1029–1034 (2002).
  • Müller N, Riedel M, Schwarz MJ, Engel RR. Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci.255(2), 149–151 (2005).
  • Rapaport MH, Delrahim KK, Bresee CJ, Maddux RE, Ahmadpour O, Dolnak D. Celecoxib augmentation of continuously ill patients with schizophrenia. Biol. Psychiatry57(12), 1594–1596 (2005).
  • Maida ME, Hurley SD, Daeschner JA, Moore AH, O’Banion MK. Cytosolic prostaglandin E2 synthase (cPGES) expression is decreased in discrete cortical regions in psychiatric disease. Brain Res.1103(1), 164–172 (2006).
  • Stolk P, Souverein PC, Leufkens HG, Weil JG, Egberts AC, Heerdink ER. The association between exposure to COX-2 inhibitors and schizophrenia deterioration. A nested case–control study. Pharmacopsychiatry40(3), 111–115 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.