326
Views
49
CrossRef citations to date
0
Altmetric
Review

The genetics of attention-deficit/hyperactivity disorder

&
Pages 1547-1565 | Published online: 09 Jan 2014

References

  • Coghill D, Nigg J, Rothenberger A, Sonuga-Barke E, Tannock R. Whither causal models in the neuroscience of ADHD? Dev. Sci.8(2), 105–114 (2005).
  • Mick E, Faraone SV. Genetics of attention deficit hyperactivity disorder. Child Adolesc. Psychiatr. Clin. N. Am.17(2), 261–284, vii–viii (2008).
  • Waldman ID, Gizer IR. The genetics of attention deficit hyperactivity disorder. Clin. Psychol. Rev.26(4), 396–432 (2006).
  • Biederman J, Faraone SV, Keenan K et al. Further evidence for family-genetic risk factors in attention deficit hyperactivity disorder. Patterns of comorbidity in probands and relatives psychiatrically and pediatrically referred samples. Arch. Gen. Psychiatry49(9), 728–738 (1992).
  • Biederman J, Faraone SV, Keenan K, Knee D, Tsuang MT. Family-genetic and psychosocial risk factors in DSM-III attention deficit disorder. J. Am. Acad. Child Adolesc. Psychiatry29(4), 526–533 (1990).
  • Faraone SV, Biederman J, Chen WJ, Milberger S, Warburton R, Tsuang MT. Genetic heterogeneity in Attention-deficit/hyperactivity disorder (ADHD): gender, psychiatric comorbidity, and maternal ADHD. J. Abnorm. Psychol.104(2), 334–345 (1995).
  • Biederman J, Faraone SV, Mick E et al. High risk for attention deficit hyperactivity disorder among children of parents with childhood onset of the disorder: a pilot study. Am. J. Psychiatry152(3), 431–435 (1995).
  • Kessler RC, Adler L, Barkley R et al. The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am. J. Psychiatry163(4), 716–723 (2006).
  • Smalley SL, McGough JJ, Del’Homme M et al. Familial clustering of symptoms and disruptive behaviors in multiplex families with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry39(9), 1135–1143 (2000).
  • Faraone SV, Biederman J. Do attention deficit hyperactivity disorder and major depression share familial risk factors? J. Nerv. Ment. Dis.185(9), 533–541 (1997).
  • Faraone SV, Biederman J, Jetton JG, Tsuang MT. Attention deficit disorder and conduct disorder: longitudinal evidence for a familial subtype. Psychol. Med.27(2), 291–300 (1997).
  • Waschbusch DA. A meta-analytic examination of comorbid hyperactive–impulsive–attention problems and conduct problems. Psychol. Bull.128(1), 118–150 (2002).
  • Cantwell DP. Genetics of hyperactivity. J. Child Psychol. Psychiatry16, 261–264 (1975).
  • Morrison JR, Stewart MA. The psychiatric status of the legal families of adopted hyperactive children. Arch. Gen. Psychiatry28, 888–891 (1973).
  • Sprich S, Biederman J, Crawford MH, Mundy E, Faraone SV. Adoptive and biological families of children and adolescents with ADHD. J. Am. Acad. Child Adolesc. Psychiatry39(11), 1432–1437 (2000).
  • Faraone SV, Perlis RH, Doyle AE et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry57(11), 1313–1323 (2005).
  • Thapar A, Langley K, O’Donovan M, Owen M. Refining the attention deficit hyperactivity disorder phenotype for molecular genetic studies. Mol. Psychiatry11(8), 714–720 (2006).
  • Schimmelmann BG, Friedel S, Christiansen H, Dempfle A, Hinney A, Hebebrand J. Genetic findings in attention-deficit and hyperactivity disorder (ADHD). Z. Kinder Jugendpsychiatr. Psychother.34(6), 425–433 (2006).
  • Ogdie MN, MacPhie IL, Minassian SL et al. A genomewide scan for attention-deficit/hyperactivity disorder in an extended sample: suggestive linkage on 17p11. Am. J. Hum. Genet.72(5), 1268–1279 (2003).
  • Faraone SV, Doyle AE, Lasky-Su J et al. Linkage analysis of attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1387–1391 (2008).
  • Ogdie MN, Fisher SE, Yang M et al. Attention deficit hyperactivity disorder: fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. Am. J. Hum. Genet.75(4), 661–668 (2004).
  • Bakker SC, van der Meulen EM, Buitelaar JK et al. A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder: suggestive evidence for linkage on chromosomes 7p and 15q. Am. J. Hum. Genet.72(5), 1251–1260 (2003).
  • Hebebrand J, Dempfle A, Saar K et al. A genome-wide scan for attention-deficit/hyperactivity disorder in 155 German sib-pairs. Mol. Psychiatry11(2), 196–205 (2006).
  • Asherson P, Zhou K, Anney RJ et al. A high-density SNP linkage scan with 142 combined subtype ADHD sib pairs identifies linkage regions on chromosomes 9 and 16. Mol. Psychiatry13(5), 514–521 (2008).
  • Arcos-Burgos M, Castellanos FX, Pineda D et al. Attention-deficit/hyperactivity disorder in a population isolate: linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am. J. Hum. Genet.75(6), 998–1014 (2004).
  • Romanos M, Freitag C, Jacob C et al. Genome-wide linkage analysis of ADHD using high-density SNP arrays: novel loci at 5q13.1 and 14q12. Mol. Psychiatry13(5), 522–530 (2008).
  • Zhou K, Dempfle A, Arcos-Burgos M et al. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1392–1398 (2008).
  • Uhl GR, Drgon T, Liu QR et al. Genome-wide association for methamphetamine dependence: convergent results from 2 samples. Arch. Gen. Psychiatry65(3), 345–355 (2008).
  • Ogdie MN, Bakker SC, Fisher SE et al. Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13. Mol. Psychiatry11(1), 5–8 (2006).
  • Friedel S, Saar K, Sauer S et al. Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Mol. Psychiatry12(10), 923–933 (2007).
  • Doyle AE, Ferreira MA, Sklar PB et al. Multivariate genomewide linkage scan of neurocognitive traits and ADHD symptoms: Suggestive linkage to 3q13. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1399–1411 (2008).
  • Rommelse NN, Arias-Vasquez A, Altink ME et al. Neuropsychological endophenotype approach to genome-wide linkage analysis identifies susceptibility loci for ADHD on 2q21.1 and 13q12.11. Am. J.Hum. Genet.83(1), 99–105 (2008).
  • Bakker SC, van der Meulen EM, Oteman N et al. DAT1, DRD4, and DRD5 polymorphisms are not associated with ADHD in Dutch families. Am. J. Med. Genet. B Neuropsychiatr. Genet.132(1), 50–52 (2005).
  • Ogdie MN, MacPhie IL, Minassian SL et al. A genomewide scan for attention-deficit/hyperactivity disorder in an extended sample: suggestive linkage on 17p11. Am. J. Hum. Genet.72(5), 1268–1279 (2003).
  • Smalley SL, Kustanovich V, Minassian SL et al. Genetic linkage of attention-deficit/hyperactivity disorder on chromosome 16p13, in a region implicated in autism. Am. J. Hum. Genet.71(4), 959–963 (2002).
  • Gayan J, Willcutt EG, Fisher SE et al. Bivariate linkage scan for reading disability and attention-deficit/hyperactivity disorder localizes pleiotropic loci. J. Child Psychol. Psychiatry46(10), 1045–1056 (2005).
  • Loo SK, Fisher SE, Francks C et al. Genome-wide scan of reading ability in affected sibling pairs with attention-deficit/hyperactivity disorder: unique and shared genetic effects. Mol. Psychiatry9(5), 485–493 (2004).
  • Zhou K, Asherson P, Sham P et al. Linkage to chromosome 1p36 for attention-deficit/hyperactivity disorder traits in school and home settings. Biol. Psychiatry64(7), 571–576 (2008).
  • Jain M, Palacio LG, Castellanos FX et al. Attention-deficit/hyperactivity disorder and comorbid disruptive behavior disorders: evidence of pleiotropy and new susceptibility loci. Biol. Psychiatry61(12), 1329–1339 (2007).
  • Neale BM, Lasky-Su J, Anney R et al. Genome-wide association scan of attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1337–1344 (2008).
  • Lasky-Su J, Neale BM, Franke B et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1345–1354 (2008).
  • Lasky-Su J, Anney RJ, Neale BM et al. Genome-wide association scan of the time to onset of attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1355–1358 (2008).
  • Oades RD, Lasky-Su J, Christiansen H et al. The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Behav. Brain Funct.4, 48 (2008).
  • Sonuga-Barke EJ, Brookes KJ, Buitelaar J et al. Intelligence in DSM-IV combined type attention-deficit/hyperactivity disorder is not predicted by either dopamine receptor/transporter genes or other previously identified risk alleles for attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147(3), 316–319 (2008).
  • Brookes K, Xu X, Chen W et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol. Psychiatry11(10), 934–953 (2006).
  • Guan L, Wang B, Chen Y et al. A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol. Psychiatry14(4), 546–554 (2008).
  • Faraone SV, Doyle AE, Mick E, Biederman J. Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am. J. Psychiatry158(7), 1052–1057 (2001).
  • Li D, Sham PC, Owen MJ, He L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum. Mol. Genet.15(14), 2276–2284 (2006).
  • Bhaduri N, Das M, Sinha S et al. Association of dopamine D4 receptor (DRD4) polymorphisms with attention deficit hyperactivity disorder in Indian population. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(1), 61–66 (2006).
  • Ballon N, Leroy S, Roy C et al. Polymorphisms TaqI A of the DRD2, BalI of the DRD3, exon III repeat of the DRD4, and 3´ UTR VNTR of the DAT: association with childhood ADHD in male African–Caribbean cocaine dependents? Am. J. Med. Genet. B Neuropsychiatr. Genet.144B(8), 1034–1041 (2007).
  • Cheuk DK, Li SY, Wong V. Exon 3 polymorphisms of dopamine D4 receptor (DRD4) gene and attention deficit hyperactivity disorder in Chinese children. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(8), 907–911 (2006).
  • Guan LL, Wang YF, Li J, Wang B, Yang L, Qian QJ . [Association analysis of dopamine D4 receptor gene polymorphism and attention deficit hyperactivity disorder with/without disruptive behavior disorder.] Beijing Da Xue Xue Bao39(3), 233–236 (2007).
  • Yang JW, Jang WS, Hong SD et al. A case–control association study of the polymorphism at the promoter region of the DRD4 gene in Korean boys with attention deficit-hyperactivity disorder: evidence of association with the -521 C/T SNP. Prog. Neuropsychopharmacol. Biol. Psychiatry32(1), 243–248 (2008).
  • Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem.65, 1157–1165 (1995).
  • Langley K, Marshall L, Van den BM et al. Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. Am. J. Psychiatry161(1), 133–138 (2004).
  • Swanson J, Oosterlaan J, Murias M et al. Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proc. Natl. Acad. Sci. USA97(9), 4754–4759 (2000).
  • Manor I, Tyano S, Eisenberg J, Bachner-Melman R, Kotler M, Ebstein RP. The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA). Mol. Psychiatry7(7), 790–794 (2002).
  • Barkley RA, Smith KM, Fischer M, Navia B. An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphisms (DRD4 7+, DBH TaqI A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(5), 487–498 (2006).
  • Loo SK, Rich EC, Ishii J et al. Cognitive functioning in affected sibling pairs with ADHD: familial clustering and dopamine genes. J. Child Psychol. Psychiatry49(9), 950–957 (2008).
  • Johnson KA, Kelly SP, Robertson IH et al. Absence of the 7-repeat variant of the DRD4 VNTR is associated with drifting sustained attention in children with ADHD but not in controls. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(6), 927–937 (2008).
  • Kieling C, Genro JP, Hutz MH, Rohde LA. The -1021 C/T DBH polymorphism is associated with neuropsychological performance among children and adolescents with ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(4), 485–490 (2008).
  • Rommelse NN. Endophenotypes in the genetic research of ADHD over the last decade: have they lived up to their expectations? Expert Rev. Neurother.8(10), 1425–1429 (2008).
  • Doyle AE, Faraone SV, Seidman LJ et al. Are endophenotypes based on measures of executive functions useful for molecular genetic studies of ADHD? J. Child Psychol. Psychiatry46(7), 774–803 (2005).
  • Groot AS, de Sonneville LM, Stins JF, Boomsma DI. Familial influences on sustained attention and inhibition in preschoolers. J. Child Psychol. Psychiatry45(2), 306–314 (2004).
  • Stins JF, van Baal GC, Polderman TJ, Verhulst FC, Boomsma DI. Heritability of Stroop and flanker performance in 12-year old children. BMC Neurosci.5, 49 (2004).
  • Anokhin AP, Heath AC, Ralano A. Genetic influences on frontal brain function: WCST performance in twins. Neuroreport14(15), 1975–1978 (2003).
  • Fan J, Wu Y, Fossella JA, Posner MI. Assessing the heritability of attentional networks. BMC Neurosci.2(1), 14 (2001).
  • Durston S, Fossella JA, Casey BJ et al. Differential effects of DRD4 and DAT1 genotype on fronto–striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Mol. Psychiatry10(7), 678–685 (2005).
  • Monuteaux MC, Seidman LJ, Faraone SV et al. A preliminary study of dopamine D4 receptor genotype and structural brain alterations in adults with ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1436–1441 (2008).
  • Shaw P, Gornick M, Lerch J et al. Polymorphisms of the dopamine D4 receptor, clinical outcome, and cortical structure in attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry64(8), 921–931 (2007).
  • El Faddagh M, Laucht M, Maras A, Vohringer L, Schmidt MH. Association of dopamine D4 receptor (DRD4) gene with attention-deficit/hyperactivity disorder (ADHD) in a high-risk community sample: a longitudinal study from birth to 11 years of age. J. Neural Transm.111(7), 883–889 (2004).
  • Holmes J, Payton A, Barrett J et al. Association of DRD4 in children with ADHD and comorbid conduct problems. Am. J. Med. Genet.114(2), 150–153 (2002).
  • Carrasco X, Rothhammer P, Moraga M et al. Genotypic interaction between DRD4 and DAT1 loci is a high risk factor for attention-deficit/hyperactivity disorder in Chilean families. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(1), 51–54 (2006).
  • Henriquez BH, Henriquez HM, Carrasco CX et al. Combination of DRD4 and DAT1 genotypes is an important risk factor for attention deficit disorder with hyperactivity families living in Santiago, Chile. Rev. Med. Chil.136(6), 719–724 (2008).
  • Qian Q, Wang Y, Li J et al. Evaluation of potential gene-gene interactions for attention deficit hyperactivity disorder in the Han Chinese population. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(2), 200–206 (2007).
  • Lowe N, Kirley A, Hawi Z et al. Joint analysis of the DRD5 marker concludes association with attention-deficit/hyperactivity disorder confined to the predominantly inattentive and combined subtypes. Am. J. Hum. Genet.74(2), 348–356 (2004).
  • Mill J, Xu X, Ronald A et al. Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25, and 5HT1B. Am. J. Med. Genet. B Neuropsychiatr. Genet.133(1), 68–73 (2005).
  • Misener VL, Luca P, Azeke O et al. Linkage of the dopamine receptor D1 gene to attention-deficit/hyperactivity disorder. Mol. Psychiatry9(5), 500–509 (2004).
  • VanNess SH, Owens MJ, Kilts CD. The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet.6, 55 (2005).
  • Banoei MM, Majidizadeh T, Shirazi E et al. No association between the DAT1 ten-repeat allele and ADHD in the Iranian population. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(1), 110–111 (2008).
  • Das M, Mukhopadhyay K. DAT1 3´-UTR 9R allele: preferential transmission in Indian children with attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(6), 826–829 (2007).
  • Genro JP, Polanczyk GV, Zeni C et al. A common haplotype at the dopamine transporter gene 5´ region is associated with attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1568–1575 (2008).
  • Genro JP, Zeni C, Polanczyk GV, Roman T, Rohde LA, Hutz MH. A promoter polymorphism (-839 C > T) at the dopamine transporter gene is associated with attention deficit/hyperactivity disorder in Brazilian children. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(2), 215–219 (2007).
  • Brookes KJ, Xu X, Anney R et al. Association of ADHD with genetic variants in the 5´-region of the dopamine transporter gene: evidence for allelic heterogeneity. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1519–1523 (2008).
  • Xu X, Mill J, Sun B et al. Association study of promoter polymorphisms at the dopamine transporter gene in attention deficit hyperactivity disorder. BMC Psychiatry9, 3 (2009).
  • Biederman J, Kim JW, Doyle AE et al. Sexually dimorphic effects of four genes (COMT, SLC6A2, MAOA, SLC6A4) in genetic associations of ADHD: a preliminary study. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1511–1518 (2008).
  • Hawi Z, Segurado R, Conroy J et al. Preferential transmission of paternal alleles at risk genes in attention-deficit/hyperactivity disorder. Am. J. Hum. Genet.77(6), 958–965 (2005).
  • Hawi Z, Kent L, Hill M et al. ADHD and DAT1: Further evidence of paternal over-transmission of risk alleles and haplotype. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2009) (Epub ahead of print).
  • Anney RJ, Hawi Z, Sheehan K et al. Parent of origin effects in attention/deficit hyperactivity disorder (ADHD): analysis of data from the international multicenter ADHD genetics (IMAGE) program. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1495–1500 (2008).
  • Asherson P, Brookes K, Franke B et al. Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. Am. J. Psychiatry164(4), 674–677 (2007).
  • Brookes KJ, Mill J, Guindalini C et al. A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Arch. Gen. Psychiatry63(1), 74–81 (2006).
  • Zhou K, Chen W, Buitelaar J et al. Genetic heterogeneity in ADHD: DAT1 gene only affects probands without CD. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1481–1487 (2008).
  • Karama S, Grizenko N, Sonuga-Barke E et al. Dopamine transporter 3’UTR VNTR genotype is a marker of performance on executive function tasks in children with ADHD. BMC Psychiatry8, 45 (2008).
  • Bellgrove MA, Barry E, Johnson KA et al. Spatial attentional bias as a marker of genetic risk, symptom severity, and stimulant response in ADHD. Neuropsychopharmacology33(10), 2536–2545 (2008).
  • Rommelse NN, Altink ME, Arias-Vasquez A et al. A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1536–1546 (2008).
  • Ribases M, Ramos-Quiroga JA, Hervas A et al. Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB. Mol. Psychiatry14(1), 71–85 (2007).
  • Bellgrove MA, Hawi Z, Lowe N, Kirley A, Robertson IH, Gill M. DRD4 gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): effects of associated alleles at the VNTR and -521 SNP. Am. J. Med. Genet. B Neuropsychiatr. Genet.136(1), 81–86 (2005).
  • Bellgrove MA, Hawi Z, Gill M, Robertson IH. The cognitive genetics of attention deficit hyperactivity disorder (ADHD): sustained attention as a candidate phenotype. Cortex42(6), 838–845 (2006).
  • Barkley RA, Smith KM, Fischer M, Navia B. An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphisms (DRD4 7+, DBH TaqI A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(5), 487–498 (2006).
  • Cheuk DK, Wong V. Meta-analysis of association between a catechol- O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder. Behav. Genet.36(5), 651–659 (2006).
  • Halleland H, Lundervold AJ, Halmoy A, Haavik J, Johansson S. Association between catechol O-methyltransferase (COMT) haplotypes and severity of hyperactivity symptoms in adults. Am. J. Med. Genet. B Neuropsychiatr. Genet.150B(3), 403–410 (2009).
  • Retz W, Rosler M, Kissling C et al. Norepinephrine transporter and catecholamine- O-methyltransferase gene variants and attention-deficit/hyperactivity disorder symptoms in adults. J. Neural Transm.115(2), 323–329 (2008).
  • Thapar A, Langley K, Fowler T et al. Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry62(11), 1275–1278 (2005).
  • Caspi A, Langley K, Milne B et al. A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry65(2), 203–210 (2008).
  • Das M, Bhowmik AD, Sinha S et al. MAOA promoter polymorphism and attention deficit hyperactivity disorder (ADHD) in Indian children. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(6), 637–642 (2006).
  • Rommelse NN, Altink ME, Arias-Vasquez A et al. Differential association between MAOA, ADHD and neuropsychological functioning in boys and girls. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1524–1530 (2008).
  • Xu X, Brookes K, Chen CK, Huang YS, Wu YY, Asherson P. Association study between the monoamine oxidase A gene and attention deficit hyperactivity disorder in Taiwanese samples. BMC Psychiatry7, 10 (2007).
  • Lung FW, Yang P, Cheng TS, Kao WT. No allele variation of the MAOA gene promoter in male Chinese subjects with attention deficit hyperactivity disorder. Neuropsychobiology54(3), 147–151 (2006).
  • Li J, Kang C, Zhang H et al. Monoamine oxidase A gene polymorphism predicts adolescent outcome of attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(4), 430–433 (2007).
  • Li J, Wang Y, Hu S et al. The monoamine oxidase B gene exhibits significant association to ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet.147(3), 370–374 (2008).
  • Comings DE, Gade-Andavolu R, Gonzalez N et al. Comparison of the role of dopamine, serotonin, and noradrenaline genes in ADHD, ODD and conduct disorder: multivariate regression analysis of 20 genes. Clin. Genet.57(3), 178–196 (2000).
  • Barr CL, Kroft J, Feng Y et al. The norepinephrine transporter gene and attention-deficit hyperactivity disorder. Am. J. Med. Genet.114(3), 255–259 (2002).
  • Cho SC, Kim JW, Kim BN et al. No evidence of an association between norepinephrine transporter gene polymorphisms and attention deficit hyperactivity disorder: a family-based and case-control association study in a Korean sample. Neuropsychobiology57(3), 131–138 (2008).
  • McEvoy B, Hawi Z, Fitzgerald M, Gill M. No evidence of linkage or association between the norepinephrine transporter (NET) gene polymorphisms and ADHD in the Irish population. Am. J. Med. Genet.114(6), 665–666 (2002).
  • Bobb AJ, Addington AM, Sidransky E et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am. J. Med. Genet. B Neuropsychiatr. Genet.134B(1), 67–72 (2005).
  • Brookes KJ, Knight J, Xu X, Asherson P. DNA pooling analysis of ADHD and genes regulating vesicle release of neurotransmitters. Am. J. Med. Genet. B Neuropsychiatr. Genet.139(1), 33–37 (2005).
  • Kim CH, Hahn MK, Joung Y et al. A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder. Proc. Natl. Acad. Sci. USA103(50), 19164–19169 (2006).
  • Xu X, Knight J, Brookes K et al. DNA pooling analysis of 21 norepinephrine transporter gene SNPs with attention deficit hyperactivity disorder: no evidence for association. Am. J. Med. Genet. B Neuropsychiatr. Genet.134(1), 115–118 (2005).
  • Kim CH, Waldman ID, Blakely RD, Kim KS. Functional gene variation in the human norepinephrine transporter: association with attention deficit hyperactivity disorder. Ann. NY Acad. Sci.1129, 256–260 (2008).
  • Kim JW, Biederman J, McGrath CL et al. Further evidence of association between two NET single-nucleotide polymorphisms with ADHD. Mol. Psychiatry13(6), 624–630 (2008).
  • Cho SC, Kim JW, Kim BN et al. Possible association of the α-2A-adrenergic receptor gene with response time variability in attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(6), 957–963 (2008).
  • Wang B, Wang Y, Zhou R et al. Possible association of the α-2A adrenergic receptor gene (ADRA2A) with symptoms of attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(2), 130–134 (2006).
  • Deupree JD, Smith SD, Kratochvil CJ et al. Possible involvement of α-2A adrenergic receptors in attention deficit hyperactivity disorder: radioligand binding and polymorphism studies. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(8), 877–884 (2006).
  • Roman T, Polanczyk GV, Zeni C, Genro JP, Rohde LA, Hutz MH. Further evidence of the involvement of α-2A-adrenergic receptor gene (ADRA2A) in inattentive dimensional scores of attention-deficit/hyperactivity disorder. Mol. Psychiatry11(1), 8–10 (2006).
  • Schmitz M, Denardin D, Silva TL et al. Association between α-2A-adrenergic receptor gene and ADHD inattentive type. Biol. Psychiatry60(10), 1028–1033 (2006).
  • Waldman ID, Nigg JT, Gizer IR, Park L, Rappley MD, Friderici K. The adrenergic receptor α-2A gene (ADRA2A) and neuropsychological executive functions as putative endophenotypes for childhood ADHD. Cogn. Affect. Behav. Neurosci.6(1), 18–30 (2006).
  • Cho SC, Kim JW, Kim BN et al. Association between the α-2C-adrenergic receptor gene and attention deficit hyperactivity disorder in a Korean sample. Neurosci. Lett.446(2–3), 108–111 (2008).
  • Kopeckova M, Paclt I, Petrasek J, Pacltova D, Malikova M, Zagatova V. Some ADHD polymorphisms (in genes DAT1, DRD2, DRD3, DBH, 5-HTT) in case–control study of 100 subjects 6–10 age. Neuro. Endocrinol. Lett.29(2), 246–251 (2008).
  • Li J, Wang Y, Zhou R et al. Association between polymorphisms in serotonin transporter gene and attention deficit hyperactivity disorder in Chinese Han subjects. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(1), 14–19 (2007).
  • Retz W, Freitag CM, Retz-Junginger P et al. A functional serotonin transporter promoter gene polymorphism increases ADHD symptoms in delinquents: interaction with adverse childhood environment. Psychiatry Res.158(2), 123–131 (2008).
  • Grevet EH, Marques FZ, Salgado CA et al. Serotonin transporter gene polymorphism and the phenotypic heterogeneity of adult ADHD. J. Neural Transm.114(12), 1631–1636 (2007).
  • Wigg KG, Takhar A, Ickowicz A et al. Gene for the serotonin transporter and ADHD: no association with two functional polymorphisms. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(6), 566–570 (2006).
  • Xu X, Aysimi E, Anney R et al. No association between two polymorphisms of the serotonin transporter gene and combined type attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(7), 1306–1309 (2008).
  • Banerjee E, Sinha S, Chatterjee A, Gangopadhyay PK, Singh M, Nandagopal K. A family-based study of Indian subjects from Kolkata reveals allelic association of the serotonin transporter intron-2 (STin2) polymorphism and attention-deficit-hyperactivity disorder (ADHD). Am. J. Med. Genet. B Neuropsychiatr. Genet.141(4), 361–366 (2006).
  • Quist JF, Barr CL, Schachar R et al. The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Mol. Psychiatry8(1), 98–102 (2003).
  • Hawi Z, Dring M, Kirley A et al. Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample. Mol. Psychiatry7(7), 718–725 (2002).
  • Ickowicz A, Feng Y, Wigg K et al. The serotonin receptor HTR1B: gene polymorphisms in attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(1), 121–125 (2007).
  • Guimaraes AP, Zeni C, Polanczyk GV et al. Serotonin genes and attention deficit/hyperactivity disorder in a Brazilian sample: preferential transmission of the HTR2A 452His allele to affected boys. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(1), 69–73 (2007).
  • Li J, Wang Y, Zhou R et al. No association of attention-deficit/hyperactivity disorder with genes of the serotonergic pathway in Han Chinese subjects. Neurosci. Lett.403(1–2), 172–175 (2006).
  • Li J, Wang Y, Zhou RL, Yang L, Zhang HB, Wang B. Association between serotonin 1D gene polymorphisms and attention deficit hyperactivity disorder comorbid or not comorbid learning disorder. Beijing Da Xue Xue Bao39(5), 535–538 (2007).
  • Li J, Zhang X, Wang Y et al. The serotonin 5-HT1D receptor gene and attention-deficit/hyperactivity disorder in Chinese Han subjects. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(8), 874–876 (2006).
  • Li J, Wang YF, Zhou RL, Yang L, Zhan HB, Wang B. [Association between serotonin 2C gene polymorphisms and attention deficit hyperactivity disorder in children with or without comorbidity of disruptive behavior disorder.] Zhonghua Er Ke Za Zhi45(5), 374–377 (2007).
  • Li J, Wang Y, Zhou R et al. Association of attention-deficit/hyperactivity disorder with serotonin 4 receptor gene polymorphisms in Han Chinese subjects. Neurosci. Lett.401(1–2), 6–9 (2006).
  • Li J, Kang C, Wang Y et al. Contribution of 5-HT2A receptor gene -1438A>G polymorphism to outcome of attention-deficit/hyperactivity disorder in adolescents. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(5), 473–476 (2006).
  • Li J, Wang YF, Zhou RL, Yang L, Zhang HB, Wang B. Association between tryptophan hydroxylase gene polymorphisms and attention deficit hyperactivity disorder with or without learning disorder. Zhonghua Yi Xue Za Zhi83(24), 2114–2118 (2003).
  • Li J, Wang Y, Zhou R et al. Association between tryptophan hydroxylase gene polymorphisms and attention deficit hyperactivity disorder in Chinese Han population. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(2), 126–129 (2006).
  • Sheehan K, Lowe N, Kirley A et al. Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. Mol. Psychiatry10(10), 944–949 (2005).
  • Walitza S, Renner TJ, Dempfle A et al. Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in attention-deficit/hyperactivity disorder. Mol. Psychiatry10(12), 1126–1132 (2005).
  • Choi TK, Lee HS, Kim JW et al. Support for the MnlI polymorphism of SNAP25; a Korean ADHD case–control study. Mol. Psychiatry12(3), 224–226 (2007).
  • Kim JW, Biederman J, Arbeitman L et al. Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(6), 781–790 (2007).
  • Renner TJ, Walitza S, Dempfle A et al. Allelic variants of SNAP25 in a family-based sample of ADHD. J. Neural Transm.115(2), 317–321 (2008).
  • Comings DE, Gade-Andavolu R, Gonzalez N et al. Multivariate analysis of associations of 42 genes in ADHD, ODD and conduct disorder. Clin. Genet.58(1), 31–40 (2000).
  • Todd RD, Lobos EA, Sun LW, Neuman RJ. Mutational analysis of the nicotinic acetylcholine receptor α 4 subunit gene in attention deficit/hyperactivity disorder: evidence for association of an intronic polymorphism with attention problems. Mol. Psychiatry8(1), 103–108 (2003).
  • Lee J, Laurin N, Crosbie J et al. Association study of the nicotinic acetylcholine receptor α4 subunit gene, CHRNA4, in attention-deficit hyperactivity disorder. Genes Brain Behav.7(1), 53–60 (2008).
  • Turic D, Langley K, Mills S et al. Follow-up of genetic linkage findings on chromosome 16p13: evidence of association of N-methyl-D aspartate glutamate receptor 2A gene polymorphism with ADHD. Mol. Psychiatry9(2), 169–173 (2004).
  • Adams J, Crosbie J, Wigg K et al. Glutamate receptor, ionotropic, N-methyl-D-aspartate 2A (GRIN2A) gene as a positional candidate for attention-deficit/hyperactivity disorder in the 16p13 region. Mol. Psychiatry9(5), 494–499 (2004).
  • Dorval KM, Wigg KG, Crosbie J et al. Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder. Genes Brain Behav.6(5), 444–452 (2007).
  • Conner AC, Kissling C, Hodges E et al. Neurotrophic factor-related gene polymorphisms and adult attention deficit hyperactivity disorder (ADHD) score in a high-risk male population. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1476–1480 (2008).
  • Ribases M, Hervas A, Ramos-Quiroga JA et al. Association study of 10 genes encoding neurotrophic factors and their receptors in adult and child attention-deficit/hyperactivity disorder. Biol. Psychiatry63(10), 935–945 (2008).
  • Lee J, Laurin N, Crosbie J et al. Association study of the brain-derived neurotropic factor (BDNF) gene in attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.144B(8), 976–981 (2007).
  • Schimmelmann BG, Friedel S, Dempfle A et al. No evidence for preferential transmission of common valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor gene (BDNF) in ADHD. J. Neural Transm.114(4), 523–526 (2007).
  • Xu X, Mill J, Zhou K, Brookes K, Chen CK, Asherson P. Family-based association study between brain-derived neurotrophic factor gene polymorphisms and attention deficit hyperactivity disorder in UK and Taiwanese samples. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(1), 83–86 (2007).
  • Syed Z, Dudbridge F, Kent L. An investigation of the neurotrophic factor genes GDNF, NGF, and NT3 in susceptibility to ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet.144B(3), 375–378 (2007).
  • Kent L, Green E, Hawi Z et al. Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Mol. Psychiatry10(10), 939–943 (2005).
  • Langley K, Rice F, Van den Bree MB, Thapar A. Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. A review. Minerva Pediatr.57(6), 359–371 (2005).
  • Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA288(6), 728–737 (2002).
  • Nigg JT. What Causes ADHD? Understanding What Goes Wrong and Why. The Guilford Press, NY, USA (2006).
  • Purcell S. Variance components models for gene–environment interaction in twin analysis. Twin Res.5(6), 554–571 (2002).
  • Kahn RS, Khoury J, Nichols WC, Lanphear BP. Role of dopamine transporter genotype and maternal prenatal smoking in childhood hyperactive–impulsive, inattentive, and oppositional behaviors. J. Pediatr.143(1), 104–110 (2003).
  • Neuman RJ, Lobos E, Reich W, Henderson CA, Sun LW, Todd RD. Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol. Psychiatry61(12), 1320–1328 (2007).
  • Langley K, Turic D, Rice F et al. Testing for gene x environment interaction effects in attention deficit hyperactivity disorder and associated antisocial behavior. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(1), 49–53 (2008).
  • Todd RD, Neuman RJ. Gene–environment interactions in the development of combined type ADHD: evidence for a synapse-based model. Am. J. Med. Genet. B Neuropsychiatr. Genet.144B(8), 971–975 (2007).
  • Sengupta SM, Grizenko N, Schmitz N et al. COMT Val108/158Met gene variant, birth weight, and conduct disorder in children with ADHD. J. Am. Acad. Child Adolesc. Psychiatry45(11), 1363–1369 (2006).
  • Laucht M, Skowronek MH, Becker K et al. Interacting effects of the dopamine transporter gene and psychosocial adversity on attention-deficit/hyperactivity disorder symptoms among 15-year-olds from a high-risk community sample. Arch. Gen. Psychiatry64(5), 585–590 (2007).
  • Muller DJ, Mandelli L, Serretti A et al. Serotonin transporter gene and adverse life events in adult ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1461–1469 (2008).
  • Sonuga-Barke EJ, Lasky-Su J, Neale BM et al. Does parental expressed emotion moderate genetic effects in ADHD? an exploration using a genome wide association scan. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1359–1368 (2008).
  • Waldman ID. Gene–environment interactions reexamined: does mother’s marital stability interact with the dopamine receptor D2 gene in the etiology of childhood attention-deficit/hyperactivity disorder? Dev. Psychopathol.19(4), 1117–1128 (2007).
  • Stringaris AK, Asherson P. Molecular genetics in child psychiatry. In: Biological Psychiatry: Recent Trends and Developments. Banaschewski T, Rohde LA (Eds). Karger, Basel, Switzerland 181–194 (2008).
  • Lasky-Su J, Biederman J, Laird N et al. Evidence for an association of the dopamine D5 receptor gene on age at onset of attention deficit hyperactivity disorder. Ann. Hum. Genet.71(Pt 5), 648–659 (2007).
  • Christiansen H, Chen W, Oades RD et al. Co-transmission of conduct problems with attention-deficit/hyperactivity disorder: familial evidence for a distinct disorder. J. Neural Transm.115(2), 163–175 (2008).
  • Faraone SV. Report from the 4th International Meeting of the Attention Deficit Hyperactivity Disorder Molecular Genetics Network. Am. J. Med. Genet. B Neuropsychiatr. Genet.121(1), 55–59 (2003).
  • Kuntsi J, Neale BM, Chen W, Faraone SV, Asherson P. The IMAGE project: methodological issues for the molecular genetic analysis of ADHD. Behav. Brain Funct.2, 27 (2006).
  • Manolio TA, Rodriguez LL, Brooks L et al. New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nat. Genet.39(9), 1045–1051 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.