244
Views
83
CrossRef citations to date
0
Altmetric
Review

All-trans retinoic acid as a novel therapeutic strategy for Alzheimer’s disease

, , , , , , & show all
Pages 1615-1621 | Published online: 09 Jan 2014

References

  • Sandell LL, Sanderson BW, Moiseyev G et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev.21, 1113–1124 (2007).
  • Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. Cancer Lett.197, 185–192 (2003).
  • Le Doze F, Debruyne D, Albessard F, Barre L, Defer GL. Pharmacokinetics of all-trans retinoic acid, 13-cis retinoic acid, and fenretinide in plasma and brain of rat. Drug Metab. Dispos.28, 205–208 (2000).
  • Veal GJ, Errington J, Redfern CP, Pearson AD, Boddy AV. Influence of isomerisation on the growth inhibitory effects and cellular activity of 13-cis and all-trans retinoic acid in neuroblastoma cells. Biochem. Pharmacol.63, 207–215 (2002).
  • Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell83, 841–850 (1995).
  • Tsai FM, Shyu RY, Lin SC, Wu CC, Jiang SY. Induction of apoptosis by the retinoid inducible growth regulator RIG1 depends on the NC motif in HtTA cervical cancer cells. BMC Cell Biol.10, 15 (2009).
  • Ueki S, Mahemuti G, Oyamada H et al. Retinoic acids are potent inhibitors of spontaneous human eosinophil apoptosis. J. Immunol.181, 7689–7698 (2008).
  • Sabichi AL, Xu X, Lippman SM. RARβ1’: primed to fight retinoid resistance in lung carcinogenesis. J. Natl Cancer Inst.97, 1632–1633 (2005).
  • Christov K. The novel RARβ isoform (β5) is a potential target of retinoids in breast cancer. Curr. Cancer Drug Targets9, 142–147 (2009).
  • Swift CB, Hays JL, Petty WJ. Distinct functions of retinoic acid receptor β isoforms: implications for targeted therapy. Endocr. Metab. Immune Disord. Drug Targets8, 47–50 (2008).
  • Petty WJ, Li N, Biddle A et al. A novel retinoic acid receptor β isoform and retinoid resistance in lung carcinogenesis. J. Natl Cancer Inst.97, 1645–1651 (2005).
  • Farooqui AA, Antony P, Ong WY, Horrocks LA, Freysz L. Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Brain Res. Rev.45, 179–195 (2004).
  • Smith MA. Alzheimer disease. Int. Rev. Neurobiol.42, 1–54 (1998).
  • Smith MA. Oxidative stress and iron imbalance in Alzheimer disease: how rust became the fuss! J. Alzheimers Dis.9, 305–308 (2006).
  • Sonnen JA, Larson EB, Gray SL et al. Free radical damage to cerebral cortex in Alzheimer’s disease, microvascular brain injury, and smoking. Ann. Neurol.65, 226–229 (2009).
  • Perry G, Zhu X, Moreira PI, Smith MA. Altered redox balance in disease: can we change the new equilibria? Ann. Neurol.65, 121–123 (2009).
  • Lloret A, Badia MC, Mora NJ, Pallardo FV, Alonso MD, Vina J. Vitamin E paradox in Alzheimer’s disease: it does not prevent loss of cognition and may even be detrimental. J. Alzheimers Dis.17(1), 143–149 (2009).
  • Jama JW, Launer LJ, Witteman JC et al. Dietary antioxidants and cognitive function in a population-based sample of older persons. The Rotterdam Study. Am. J. Epidemiol.144, 275–280 (1996).
  • Perrig WJ, Perrig P, Stahelin HB. The relation between antioxidants and memory performance in the old and very old. J. Am. Geriatr. Soc.45, 718–724 (1997).
  • Foy CJ, Passmore AP, Vahidassr MD, Young IS, Lawson JT. Plasma chain-breaking antioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. QJM92, 39–45 (1999).
  • Jimenez-Jimenez FJ, de Bustos F, Molina JA et al. Cerebrospinal fluid levels of α-tocopherol (vitamin E) in Alzheimer’s disease. J. Neural Transm.104, 703–710 (1997).
  • Jimenez-Jimenez FJ, Molina JA, de Bustos F et al. Serum levels of β-carotene, α-carotene and vitamin A in patients with Alzheimer’s disease. Eur. J. Neurol.6, 495–497 (1999).
  • Riviere S, Birlouez-Aragon I, Nourhashemi F, Vellas B. Low plasma vitamin C in Alzheimer patients despite an adequate diet. Int. J. Geriatr. Psychiatry13, 749–754 (1998).
  • Zaman Z, Roche S, Fielden P, Frost PG, Niriella DC, Cayley AC. Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. Age Ageing21, 91–94 (1992).
  • Grant WB. Dietary links to Alzheimer’s disease: 1999 update. J. Alzheimers Dis.1, 197–201 (1999).
  • Smith MA, Petot GJ, Perry G. Diet and oxidative stress: a novel synthesis of epidemiological data on Alzheimer’s disease. J. Alzheimers Dis.1, 203–206 (1999).
  • Palace VP, Khaper N, Qin Q, Singal PK. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med.26, 746–761 (1999).
  • Das NP. Effects of vitamin A and its analogs on nonenzymatic lipid peroxidation in rat brain mitochondria. J. Neurochem.52, 585–588 (1989).
  • Mantymaa P, Guttorm T, Siitonen T et al. Cellular redox state and its relationship to the inhibition of clonal cell growth and the induction of apoptosis during all-trans retinoic acid exposure in acute myeloblastic leukemia cells. Haematologica85, 238–245 (2000).
  • Zanotto-Filho A, Schroder R, Moreira JC. Xanthine oxidase-dependent ROS production mediates vitamin A pro-oxidant effects in cultured Sertoli cells. Free Radic. Res.42, 593–601 (2008).
  • Kiningham KK, Cardozo ZA, Cook C et al. All-trans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma through NF-κB. Free Radic. Biol. Med.44, 1610–1616 (2008).
  • Ahlemeyer B, Krieglstein J. Inhibition of glutathione depletion by retinoic acid and tocopherol protects cultured neurons from staurosporine-induced oxidative stress and apoptosis. Neurochem. Int.36, 1–5 (2000).
  • Ahlemeyer B, Bauerbach E, Plath M et al. Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radic. Biol. Med.30, 1067–1077 (2001).
  • Ahlemeyer B, Huhne R, Krieglstein J. Retinoic acid potentiated the protective effect of NGF against staurosporine-induced apoptosis in cultured chick neurons by increasing the trkA protein expression. J. Neurosci. Res.60, 767–778 (2000).
  • Zhu X, Perry G, Moreira PI et al. Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J. Alzheimers Dis.9, 147–153 (2006).
  • Farooqui AA, Yang HC, Horrocks L. Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int.30, 517–522 (1997).
  • Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA. Phospholipase A2 and its role in brain tissue. J. Neurochem.69, 889–901 (1997).
  • Farooqui AA, Horrocks LA. Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist7, 232–245 (2001).
  • Farooqui AA, Ong WY, Horrocks LA, Farooqui T. Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist6, 169–180 (2000).
  • Farooqui AA, Rapoport SI, Horrocks LA. Membrane phospholipid alterations in Alzheimer’s disease: deficiency of ethanolamine plasmalogens. Neurochem. Res.22, 523–527 (1997).
  • Kim BH, Kang KS, Lee YS. Effect of retinoids on LPS-induced COX-2 expression and COX-2 associated PGE(2) release from mouse peritoneal macrophages and TNF-α release from rat peripheral blood mononuclear cells. Toxicol. Lett.150, 191–201 (2004).
  • Mey J. Retinoic acid as a regulator of cytokine signaling after nerve injury. Z. Naturforsch. C56, 163–176 (2001).
  • Karasinska JM, Rinninger F, Lutjohann D et al. Specific loss of brain ABCA1 increases brain cholesterol uptake and influences neuronal structure and function. J. Neurosci.29, 3579–3589 (2009).
  • Koldamova RP, Lefterov IM, Ikonomovic MD et al. 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid β secretion. J. Biol. Chem.278, 13244–13256 (2003).
  • Kane MA, Folias AE, Wang C, Napoli JL. Quantitative profiling of endogenous retinoic acid in vivo and in vitro by tandem mass spectrometry. Anal. Chem.80, 1702–1708 (2008).
  • Goodman AB. Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J. Cell Physiol.209, 598–603 (2006).
  • Tafti M, Ghyselinck NB. Functional implication of the vitamin A signaling pathway in the brain. Arch. Neurol.64, 1706–1711 (2007).
  • Zheng A, Savolainen ER, Koistinen P. All-trans retinoic acid induces apoptosis in acute myeloblastic leukaemia cells. Apoptosis2, 319–329 (1997).
  • Herget T, Specht H, Esdar C, Oehrlein SA, Maelicke A. Retinoic acid induces apoptosis-associated neural differentiation of a murine teratocarcinoma cell line. J. Neurochem.70, 47–58 (1998).
  • Guo JM, Xiao BX, Lou YR et al. The effects of all-trans-retinoic acid on cell cycle and alkaline phosphatase activity in pancreatic cancer cells. Med. Chem.2, 457–461 (2006).
  • Lu J, Zhang F, Zhao D et al. ATRA-inhibited proliferation in glioma cells is associated with subcellular redistribution of β-catenin via up-regulation of Axin. J. Neurooncol.87, 271–277 (2008).
  • McShea A, Harris PL, Webster KR, Wahl AF, Smith MA. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am. J. Pathol.150, 1933–1939 (1997).
  • McShea A, Zelasko DA, Gerst JL, Smith MA. Signal transduction abnormalities in Alzheimer’s disease: evidence of a pathogenic stimuli. Brain Res.815, 237–242 (1999).
  • McShea A, Lee HG, Petersen RB et al. Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochim. Biophys. Acta1772, 467–472 (2007).
  • Lee HG, Casadesus G, Nunomura A et al. The neuronal expression of MYC causes a neurodegenerative phenotype in a novel transgenic mouse. Am. J. Pathol.174, 891–897 (2009).
  • Zhu X, Siedlak SL, Wang Y et al. Neuronal binucleation in Alzheimer disease hippocampus. Neuropathol. Appl. Neurobiol.34, 457–465 (2008).
  • Vincent I, Jicha G, Rosado M, Dickson DW. Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J. Neurosci.17, 3588–3598 (1997).
  • Nagy Z, Esiri MM, Cato AM, Smith AD. Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol. (Berl.)94, 6–15 (1997).
  • Kobayashi S, Ishiguro K, Omori A et al. A cdc2-related kinase PSSALRE/cdk5 is homologous with the 30 kDa subunit of tau protein kinase II, a proline-directed protein kinase associated with microtubule. FEBS Lett.335, 171–175 (1993).
  • Ledesma MD, Correas I, Avila J, Diaz-Nido J. Implication of brain cdc2 and MAP2 kinases in the phosphorylation of tau protein in Alzheimer’s disease. FEBS Lett.308, 218–224 (1992).
  • Suzuki T, Oishi M, Marshak DR, Czernik AJ, Nairn AC, Greengard P. Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein. EMBO J.13, 1114–1122 (1994).
  • Sodhi CP, Perez RG, Gottardi-Littell NR. Phosphorylation of β-amyloid precursor protein (APP) cytoplasmic tail facilitates amyloidogenic processing during apoptosis. Brain Res.1198, 204–212 (2008).
  • Konishi Y, Lehtinen M, Donovan N, Bonni A. Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol. Cell9, 1005–1016 (2002).
  • Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol. Eng.17, 157–165 (2001).
  • Satoh J, Kuroda Y. Amyloid precursor protein β-secretase (BACE) mRNA expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines and growth factors. Neuropathology20, 289–296 (2000).
  • Hung AY, Koo EH, Haass C, Selkoe DJ. Increased expression of β-amyloid precursor protein during neuronal differentiation is not accompanied by secretory cleavage. Proc. Natl Acad. Sci. USA89, 9439–9443 (1992).
  • Pan JB, Monteggia LM, Giordano T. Altered levels and splicing of the amyloid precursor protein in the adult rat hippocampus after treatment with DMSO or retinoic acid. Brain Res. Mol Brain Res.18, 259–266 (1993).
  • Yang Y, Quitschke WW, Brewer GJ. Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. Brain Rese. Mol. Brain Res.60, 40–49 (1998).
  • Murray JN, Igwe OJ. Regulation of β-amyloid precursor protein and inositol 1,4,5-trisphosphate receptor gene expression during differentiation of a human neuronal cell line. Prog. Neuropsychopharmacol. Biol. Psychiatry27, 351–363 (2003).
  • Hong CS, Caromile L, Nomata Y, Mori H, Bredesen DE, Koo EH. Contrasting role of presenilin-1 and presenilin-2 in neuronal differentiation in vitro. J. Neurosci.19, 637–643 (1999).
  • Koryakina A, Aeberhard J, Kiefer S, Hamburger M, Kuenzi P. Regulation of secretases by all-trans-retinoic acid. FEBS J.276, 2645–2655 (2009).
  • Husson M, Enderlin V, Delacourte A et al. Retinoic acid normalizes nuclear receptor mediated hypo-expression of proteins involved in β-amyloid deposits in the cerebral cortex of vitamin A deprived rats. Neurobiol. Dis.23, 1–10 (2006).
  • Corcoran JP, So PL, Maden M. Disruption of the retinoid signalling pathway causes a deposition of amyloid β in the adult rat brain. Eur. J. Neurosci.20, 896–902 (2004).
  • Misner DL, Jacobs S, Shimizu Y et al. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc. Natl Acad. Sci. USA98, 11714–11719 (2001).
  • Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav. Brain Res.145, 37–49 (2003).
  • Hardy J. Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J. Alzheimers Dis.9, 151–153 (2006).
  • Lee HG, Zhu X, Nunomura A, Perry G, Smith MA. Amyloid β: the alternate hypothesis. Curr. Alzheimer Res.3, 75–80 (2006).
  • Castellani RJ, Lee HG, Zhu X, Nunomura A, Perry G, Smith MA. Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathol. (Berl.)111, 503–509 (2006).
  • Tamagno E, Guglielmotto M, Aragno M et al. Oxidative stress activates a positive feedback between the γ- and β-secretase cleavages of the β-amyloid precursor protein. J. Neurochem.104, 683–695 (2008).
  • Tamagno E, Parola M, Bardini P et al. β-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J. Neurochem.92, 628–636 (2005).
  • Rottkamp CA, Raina AK, Zhu X et al. Redox-active iron mediates amyloid-β toxicity. Free Radic. Biol. Med.30, 447–450 (2001).
  • Goodman AB, Pardee AB. Evidence for defective retinoid transport and function in late onset Alzheimer’s disease. Proc. Natl Acad. Sci. USA100, 2901–2905 (2003).
  • Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp Neurol189, 380–392 (2004).
  • Ding Y, Qiao A, Wang Z et al. Retinoic acid attenuates β-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J. Neurosci.28, 11622–11634 (2008).
  • Chartier-Harlin MC, Parfitt M, Legrain S et al. Apolipoprotein E, ε 4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum. Mol. Genet.3, 569–574 (1994).
  • Nowotny P, Hinrichs AL, Smemo S et al. Association studies between risk for late-onset Alzheimer’s disease and variants in insulin degrading enzyme. Am. J. Med. Genet. B Neuropsychiatr. Genet.136B, 62–68 (2005).
  • Liang X, Schnetz-Boutaud N, Kenealy SJ et al. Covariate analysis of late-onset Alzheimer disease refines the chromosome 12 locus. Mol. Psychiatry11, 280–285 (2006).
  • Lin PI, Martin ER, Browning-Large CA et al. Parsing the genetic heterogeneity of chromosome 12q susceptibility genes for Alzheimer disease by family-based association analysis. Neurogenetics7, 157–165 (2006).
  • Maury CP, Teppo AM. Immunodetection of protein composition in cerebral amyloid extracts in Alzheimer’s disease: enrichment of retinol-binding protein. J. Neurol. Sci.80, 221–228 (1987).
  • Liang Y, Lin S, Beyer TP, et al. A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J. Neurochem.88, 623–634 (2004).
  • Prinzen C, Muller U, Endres K, Fahrenholz F, Postina R. Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J.19, 1522–1524 (2005).
  • Lahiri DK, Nall C. Promoter activity of the gene encoding the β-amyloid precursor protein is up-regulated by growth factors, phorbol ester, retinoic acid and interleukin-1. Brain Res. Mol Brain Res.32, 233–240 (1995).
  • Yang Y, Quitschke WW, Brewer GJ. Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. Brain Res. Mol Brain Res.60, 40–49 (1998).
  • Culvenor JG, Evin G, Cooney MA et al. Presenilin 2 expression in neuronal cells: induction during differentiation of embryonic carcinoma cells. Exp Cell Res255, 192–206 (2000).
  • Gao Y, Pimplikar SW. The γ-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc. Natl Acad. Sci. USA98, 14979–14984 (2001).
  • Melino G, Draoui M, Bernardini S, Bellincampi L, Reichert U, Cohen P. Regulation by retinoic acid of insulin-degrading enzyme and of a related endoprotease in human neuroblastoma cell lines. Cell Growth Differ.7, 787–796 (1996).
  • Pedersen WA, Kloczewiak MA, Blusztajn JK. Amyloid β-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc. Natl Acad. Sci. USA93, 8068–8071 (1996).
  • Pedersen WA, Berse B, Schuler U, Wainer BH, Blusztajn JK. All-trans- and 9-cis-retinoic acid enhance the cholinergic properties of a murine septal cell line: evidence that the effects are mediated by activation of retinoic acid receptor-α. J. Neurochem.65, 50–58 (1995).
  • Sidell N, Lucas CA, Kreutzberg GW. Regulation of acetylcholinesterase activity by retinoic acid in a human neuroblastoma cell line. Exp. Cell Res155, 305–309 (1984).
  • Sahin M, Karauzum SB, Perry G, Smith MA, Aliciguzel Y. Retinoic acid isomers protect hippocampal neurons from amyloid-β induced neurodegeneration. Neurotox. Res.7, 243–250 (2005).
  • Zou F, Liu Y, Liu L et al. Retinoic acid activates human inducible nitric oxide synthase gene through binding of RARα/RXRα heterodimer to a novel retinoic acid response element in the promoter. Biochem. Biophys. Res. Commun.355, 494–500 (2007).
  • Marlatt MW, Lucassen PJ, Perry G, Smith MA, Zhu X. Alzheimer’s disease: cerebrovascular dysfunction, oxidative stress, and advanced clinical therapies. J. Alzheimers Dis.15, 199–210 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.