121
Views
11
CrossRef citations to date
0
Altmetric
Review

Immunomodulatory drug treatment in multiple sclerosis

Pages 1423-1436 | Published online: 09 Jan 2014

References

  • Lassmann H. Bruck W, Lucchinetti F. The immunopathology of MS: an overview. Brain Pathol.17, 210–218 (2007).
  • Murray TJ. The history of multiple sclerosis: the changing frame of the disease over the centuries. J. Neuro. Sci.277(Suppl. 1), S3–S8 (2009).
  • Hohlfeld R, Wekerle H. Autoimmune concepts of MS as a basis for selective immunotherapy: from the pipe dreams to therapeutic pipelines. Proc. Natl Acad. Sci. USA101, 14599–14606 (2004).
  • Lassmann H. Mechanisms of Inflammation induced tissue injury in multiple sclerosis. J. Neuro. Sci.274, 45–47 (2008).
  • Holmoy T. The immunology of multiple sclerosis: disease mechanisms and therapeutic targets. Minerva Med.99, 119–140 (2008).
  • Hemmer B, Nessler S, Zhou D. Kieseier B, Hartung HP. Immunopathogenesis and immunotherapy of multiple sclerosis. Nat. Clin. Pract.2(4), 201–211 (2006).
  • Frischer JM, Bramow S, Dal-Bianco A et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain132, 1175–1189 (2009).
  • Furlan R, Cuomo C, Martino G. Animal models of multiple sclerosis. Methods Mol. Biol.549, 157–173 (2009).
  • Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disease. Ann. Rev. Neurosci.31, 247–269 (2008).
  • Bruck W. Evidence for primary neurodegeneration in MS. Mult. Scler. (Suppl. 1), S9, 13 (2008).
  • Geurts JJ, Barkhof F. Grey matter pathology in multiple sclerosis. Lancet Neurol.7(9), 841–851 (2008).
  • Herz J, Zipp F, Siffrin V. Neurodegeneration in autoimmune CNS inflammation. Exper. Neurol. DOI: 10.1016/j.expneurol.2009.11.019 (2009) (Epub ahead of print).
  • Johnson KP, Knobler RL, Greenstein JL et al. Recombinant β interferon treatment of relapsing–remitting multiple sclerosis pilot study results. Neurology40(Suppl. 1), 261 (1990).
  • Jacobs LD, Cookfair DL, Rudick RA et al. Intramuscular interferon β-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaboration Group (MSCRG). Ann. Neurol.39, 285–294 (1996).
  • PRIM (Prevention of relapses and disability by interferon β-1a subsequently in multiple sclerosis) study group. Randomized, double blind, placebo controlled study of Interferon β-1a in relapsing–remitting multiple sclerosis: chemical results. Lancet352, 1498–1504 (1998).
  • Teitelbaum D, Meshorer M, Hirshfeld T, Sela M, Arnon R. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur. J. Immunol.1, 242–248 (1971).
  • Revel M, Chebath J, Mangelus M et al. Antagonsim of interferon β in interferon γ: inhibition of signal transduction in vitro and reduction of serum levels in multiple sclerosis patients. Mult. Scler.1, S5–S11 (1995).
  • Clerico M, Contessa G, Durelli L. Interferon-β1a for the treatment of multiple sclerosis. Expert. Opin. Biol. Ther.7, 535–542 (2007).
  • Markowitz CE. Interferon-β: mechanism of action and dosing issues. Neurology68, S8–S11 (2007).
  • Sorensen PS, Ross C, Clemmesen KM et al. Clinical importance of neutralizing antibodies against interferon β in patients with relapsing–remitting multiple sclerosis. Lancet362, 1184–1161 (2003).
  • Goodin DS, Frohman EM, Hurwitz B et al Neutralizing antibodies to interferon β: assessment of their clinical and radiographic impact. An evidence report to the Therapeutics and Technology Assessment Subcomittee of the American Academy of Neurology. Neurology68(13), 977–984 (2007).
  • Ebers G. The interferon β-1b 16-year long-term follow-up study: the final results. Neurology66, A32 (2006).
  • Fridkis-Hareli M, Teitelbaum D, Gurevich E et al. Direct binding of myelin basic protein and synthetic copolymer 1 class II major histocompatibility complex molecules on living antigen presenting cells-specificity and promiscuity. Proc. Natl Acad. Sci. USA91, 4872–4876 (1994).
  • Weber MS, Prod’homme T, Youssef S et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nature Med.13(8), 935–943 (2007).
  • Aharoni R, Teitelbaum D, Sela M. Arnon R. Copolymer 1 induces T cells of the T helper type 2 that cross react with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA94, 10821–10826 (1997).
  • Neuhaus O, Farina C, Yassouridis A. Multiple sclerosis comparison of copolymer-1 reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc. Natl Acad. Sci. USA97, 7452–7457 (2000).
  • Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R. Glatiramer acetate specific T-cells in the brain express TH2/3 cytokines and brain-derived neurotrophic factor in situ.Proc. Natl Acad. Sci. USA100(24), 14157–14162 (2003).
  • Hestvik AL, Skorstad G, Price DA, Vartdal F, Holmoy T. Multiple sclerosis: glatiramer acetate induces anti-inflammatory T cells in the cerebrospinal fluid. Mult. Scler.14(6), 749–758 (2008).
  • Jee Y, Piao WH, Liu R et al. CD4+CD25+ regulatory T cells contribute to the therapeutic effects of glatiramer acetate in experimental autoimmune encephalomyelitis. Clin. Immunol.125, 34–42 (2007).
  • Begum-Haque S, Sharma, A, Kasper I et al. Downregulation of IL-17 and IL-6 in the central nervous system by glatiramer acetate in experimental autoimmune encephalomyelitis. J. Neuroimmunol.204, 58–65 (2008).
  • Aharoni R, Eilam R, Stock A et al. Glatiramer acetate reduces Th-17 inflammation and induces regulatory T-cells in the CNS of mice with relapsing–remitting or chronic EAE. J. Neuroimmunol. DOI: 10.1016/j.jneuroim.2010.04.022 (2010) (Epub ahead of print).
  • Ford C, Goodman AD, Johnson K et al. Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-labeled study of glatiramer acetate. Mult. Scler.16(3), 342–350 (2010).
  • Berger T. Current therapeutic recommendations in multiple sclerosis. J. Neurol. Sci.287(Suppl. 1), S37–S45 (2009).
  • Pilz G, Wipfler P, Ladurner G, Kraus J. Modern multiple sclerosis treatment – what is approved, what is on the horizon. Drug Discov. Today13, 1013–1025 (2008).
  • Vosoughi R, Freedman M. Therapy of MS. Clin. Neurol. Neurosurg.112(5), 365–385 (2010).
  • Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann. Neurol.49(3), 290–297 (2001).
  • Rio J, Tintoré M, Nos C, Téllez N, Galán I, Montalban X. Interferon β in relapsing–remitting multiple sclerosis. An eight years experience in a specialist multiple sclerosis centre. J. Neurol.252(7), 795–800 (2005).
  • Arnold DL, Campagnolo D, Panitch H, et al. Glatiramer acetate after mitoxantrone induction improves MRI markers of lesion volume and permanent tissue injury in MS. J. Neurol.255(10), 1473–1478 (2008).
  • Leary SM, Porter B. Thompson A. Multiple diagnosis and management of acute relapses. Postgrad. Med. J.81, 302–308 (2005).
  • Yudkin PL, Ellison GW, Ghezzi A et al. Overview of azathioprine treatment in multiple sclerosis. Lancet338, 1051–1055 (1991).
  • Filder JM, Dejoy SQ, Gibbons JJ Jr. Selective immunomodulation by the anti-neoplastic agent mitoxantrone, suppression of B lymphocyte function. J. Immunol.137(2), 727–732 (1986).
  • Hartung HP, Gonsette R, König N et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet360, 2018–2025 (2002).
  • Morrissey SP, Le Page E, Edan G. Mitoxantrone in the treatment of multiple sclerosis. Int. MS J.12, 74–87 (2005).
  • Gold R. Combination therapies in multiple sclerosis. J. Neurol.255, 51–60 (2008).
  • Rice GP, Hartung HP, Calabresi PA. Anti-α4 integrin therapy for multiple sclerosis: mechanism and rationale. Neurology64(8), 1336–1342 (2005).
  • Engelhardt B, Kappos L. Natalizumab: targeting α4-integrins in multiple sclerosis. Neurodegener. Dis.5(1), 16–22 (2008).
  • Clifford DB, De Luca A, Simpson DM, Arendt G, Giovannoni G, Nath A. Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol.9(4), 438–446 (2010).
  • Kieseier B, Wiendl H, Hartung HP, Stuve O. The future of multiple sclerosis therapy. Pharmacol. Res.60, 207–211 (2009).
  • Gasperini C, Ruggierir S. New oral drugs for multiple sclerosis. Neurol. Sci.30(2), S170–S183 (2009).
  • Rammohan K, Shoemaker J. Emerging multiple sclerosis oral therapies. Neurology74, S47–S53 (2010).
  • Brinkmann V, Davis MD, Heise CE et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptor. J. Biol Chem.277, 21453–21473 (2002).
  • Chiba K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptor. Phamacol. Ther.108, 308–319 (2005).
  • Budde K, Schomouder RL, Brunkhorst R et al. First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J. Am. Soc. Neprol.13, 1073–1083 (2002).
  • Webb M, Tham CS, Lin FF et al. Sphingosine 1-phosphate receptor agonists attenuate relapsing–remitting experimental autoimmune encephalomyelitis in SJL mice. J. Neuroimmunol.153, 108–121 (2004).
  • Cohen JA, Barkof F, Comi G et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med.362(5), 402–415 (2010).
  • Kappos L, Radue EW, O’Connor P et al. A placebo controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl J. Med.362(5), 387–401 (2010).
  • Beutler E. Cladribine (2-chlorodeoxyadenine). Lancet340, 952–956 (1992).
  • Sipe LC. Cladribine for multiple sclerosis: review and current status. Expert Rev. Neurother.5, 721–727 (2005).
  • Beutler E, Sipe JC, Romine JS, Koziol JA, McMillan R, Zyroff J. The treatment of chronic progressive multiple sclerosis with cladribin. Proc. Natl Acad. Sci. USA93(4), 1716–1720 (1996).
  • Brousil JA, Roberts RJ, Schlein AL. Cladribine: an investigational immunomodulatory agent for multiple sclerosis. Ann. Pharmacother.40(10), 1814–1821 (2006).
  • Rice GPA, Filippi M, Comi G. Cladribine and progressive MS. Clinical and MRI outcomes of multicenter controlled trial. Neurology54(5), 1145–1155 (2000).
  • Giovannoni G, Comi G, Cook S et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med.362(5), 416–426 (2010).
  • Nakajima A, Yamanaka H, Kamatani N. Leflunomid: clinical effectiveness and mechanism of action. Clin. Calcium13(6), 771–775 (2003).
  • Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor κB activation and gene expression. J. Immunol.162, 2095–2102 (1999).
  • Korn T, Toyka K, Hartung HP et al. Suppression of experimental autoimmune neuritis by leflunomide. Brain124, 1791–1802 (2001).
  • Merrill JE, Hanak S, Pu SF et al. Teriflunomide reduces behavioral, electrophysiological, and histopathological deficits in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. J. Neurol.256(1), 89–103 (2009).
  • O’Connor PW, Li D, Freedman MS et al. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology66, 894–900 (2006).
  • Freedman M, Wolinsky JS, Byrnes WJ. Oral teriflunomide or placebo added to Interferon-β for 6 months in patients with relapsing multiple sclerosis: safety and efficacy results. Presented at: European Committee for Treatment and Research in Multiple Sclerosis Annual Meeting. Düsseldorf, Germany, September 2009.
  • Mrowietz U, Asadullan K. Dimethylfumarate for psoriasis: more than a dietary curiosity. Trends Mol. Med.11(1), 43–48 (2005).
  • De Jong R, Bezemer AC, Zomerdijk TP, van de Pouw-Kraan T, Ottenhoff TH, Nibbering PH. Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. Eur. J. Immunol.26(9), 2067–2074 (1996).
  • Treumer F, Zhu K, Gläser R, Mrowietz U. Dimethylfumarate is a potent inducer of apoptosis in human T cells. J. Invest. Dermatol.121(6), 1383–1388 (2003).
  • Itoh K, Chiba T, Takahashi S et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun.236(2), 313–322 (1997).
  • Lakashev M Zeng W, Goetz S et al. Activation of Nrf2 and modulation of disease progression in EAE model by BG00012 (dimethylfumarate) suggests a novel mechanism of action combining anti-inflammatory and neuroprotective modulities. Mult. Scler.13(2), 503 (2007).
  • Kappos L, Gold R, Miller DH et al. Efficacy and safety of oral fumarate in patients with relapsing–remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled Phase IIb study. Lancet372, 1463–1472 (2008).
  • Jönsson S, Andersson G, Fex T et al. Synthesis and biological evaluation of new 1,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure–activity relationship. J. Med. Chem.47(8), 2075–2088. (2004).
  • Brunmark C, Runstrom A, Ohlsson L et al. The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J. Neuroimmunol.130, 163–172 (2002).
  • Yang JS, Xu LY, Xiao BG, Hedlund G, Link H. Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-β in Lewis rats. J. Neuroimmunol.156(1–2), 3–9 (2004).
  • Polman C, Barkhof F, Sandberg-Wollheim M, Linde A, Nordle O, Nederman T. Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology64, 987–991 (2005).
  • Comi G, Pulizzi A, Rovaris M et al. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing–remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled Phase IIb study. Lancet371, 2085–2092 (2008).
  • Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM. The promise of minocycline in neurology. Lancet Neurol.3(12), 744–751 (2004).
  • Metz LM, Zhang Y, Yeung M et al. Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann. Neurol.55(5), 756 (2004).
  • Metz LM, Li D, Traboulsee A et al. Glatiramer acetate in combination with minocycline in patients with relapsing–remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult. Scler.15(10), 1183–1194 (2009).
  • Neuhaus O, Strasser-Fuchs S, Fazekas F et al. Statins as immunomodulators: comparison with Interferon-β 1b in MS. Neurology59(7), 990–997 (2002).
  • Youssef S, Stüve O, Patarroyo JC et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature420(6911), 78–84 (2002).
  • Vollmer T, Key L, Durkalski V et al. Oral simvastatin treatment in relapsing–remitting multiple sclerosis. Lancet363, 1607–1608 (2004).
  • Paul F, Waiczies S, Wuerfel J et al. Oral high dose atrvastatin treatment in relapsing–remitting multiple sclerosis. PLoS One3(4), e1928 (2008).
  • Birnbaum G, Cree B, Altafullah I, Zinser M, Reder AT. Combining β interferon and atorvastatin may increase disease activity in multiple sclerosis. Neurology71(18), 1390–1395 (2008).
  • Hale G, Dyer MJ, Clark MR et al. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet2(8625), 1394–1399 (1988).
  • Cobbold SP, Hale G, Clark MR, Waldmann H. Purging in auto- and allografts: monoclonal antibodies which use human complement and other natural effector mechanisms. Prog. Clin. Biol. Res.333, 139–151; discussion 152–154 (1990).
  • Coles AJ, Cox A, Le Page E et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J. Neurol.253(1), 98–108 (2006).
  • Coles AJ, Compston DA, Selmaj KW et al. Alemtuzumab vs. interferon β-1a in early multiple sclerosis. N. Engl. J. Med.359(17), 1786–1801 (2008).
  • Maloney DG, Grillo-López AJ, White CA et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood90(6), 2188–2195 (1997).
  • McFarland HF. The B cell – old player, new position on the team. N. Engl. J. Med.358(7), 664–665 (2008).
  • Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol.180, 63–70 (2006).
  • Hauser SL, Waubant E, Arnold DL et al. B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N.Engl. J. Med.358(7), 676–688 (2008).
  • Martin R. Humanized anti-CD25 antibody treatment with daclizumab in multiple sclerosis. Neurodegener. Dis.5(1), 23–26 (2008).
  • Bielekova B, Catalfamo M, Reichert-Scrivner S et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ra-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl Acad. Sci. USA103(15), 5941–5946 (2006).
  • Kaufman MD, Wynn DR, Montalban X. A Phase 2 randomized double-blind placebo-controlled, multicenter study of subcutaneous daclizumab, a humanized anti-CD-25 monoclonal antibody in patients with active relapsing forms of multiple sclerosis: week 44 results. Neurology70(Suppl. 1), A220 (2008).
  • Smith PF. New approaches in the management of spasticity in multiple sclerosis patients: role of cannabinoids. Ther. Clin. Risk Manag.6, 59–63 (1020).
  • Correa FG, Mestre L, Docagne F, Borreli J, Guaza C. The endocannabinoid anandamide from immunomodulation to neuroprotection. Implications for multiple sclerosis. Vitam. Hom.81, 207–225 (2009).
  • Baker D, Pryce G. The endocannabinoid system and multiple sclerosis. Curr. Pharm. Des.14(23), 2326–2336 (2008).
  • De Lago E, Fernandez-Ruiz J. Cannabinoids and neuroprotection in motor-related disorders. CNS Neurol. Disord. Drug Targets6(6), 377–387 (2007).
  • Cencioni MT, Chiurchiù V, Catanzaro G et al. Anandamide suppresses proliferation and cytokine release from primary human T-lymphocytes mainly via CB2 receptors. PloS One5, 1–10 (2010).
  • Sospedra M, Martin R. Antigen-specific therapies in multiple sclerosis. Int. Rev. Immunol.24, 393–413 (2005).
  • Weiner HL, Mackin GA, Matsui M et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science259, 1321–1324 (1993).
  • Panitch H, Hrancic G, Oral myelin Group. Clinical results of Phase III trial in of oral myelin in relapsing remitting multiple sclerosis. Ann. Neurol.42, 467 (1997).
  • Warren KG, Catz I, Ferenczi LZ, Krantz MJ. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur. J. Neurol.13(8), 887–895 (2006).
  • Correale J, Farez M, Gilmore W. Vaccines for multiple sclerosis: progress to date. CNS Drugs22(3), 175–198 (2008).
  • Kappos L, Comi G, Panitch H. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized Phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat. Med.6(10), 1176–1182 (2000).
  • Ben-Nun A, Wekerle H, Cohen IR. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature292, 60–61 (1981).
  • Giacomini PS, Bar-Or A. Antigen-specific therapies in multiple sclerosis. Expert Opin. Emerg. Drugs14(3), 551–560 (2009).
  • Pluchino S, Quattrini A, Brambilla E et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature422(6933), 688–694 (2003).
  • Einstein O, Grigoriadis N, Mizrachi-Kol R et al. Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp. Neurol.198(2), 275–284 (2006).
  • Karussis D, Kassis I, Kurkalli B, Slavin S. Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): Aproposed treatment for multiple sclerosis and other neuroimmunological neurodegenerative diseases. J. Neurol. Sci.265, 131–135 (2008).
  • Freedman MS, Bar-Or A, Atkins HL et al. The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult. Scler.16(4), 503–510 (2010).
  • Zhao RC, Liao L, Han Q. Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy. J. Lab. Clin. Med.143(5), 284–291 (2004).
  • Mancardi G, Saccardi R. Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol.7(7), 626–636 (2008).
  • Fassas A, Mancardi GL. Autologous hemapoietic stem cell transplantation for multiple sclerosis: Is it worthwhile? Autoimmunity28, 1 (2008).
  • Fagius J, Lundgren J, Oberg G. Early highly aggressive MS successfully treated by heamatopoietic stem cell transplantation. Mult. Scler.15(2), 229–237 (2009).
  • Vajda FJE. Neuroprotection and neurodegenerative disease. J. Clin. Neurosci.9(1), 4–8 (2002).
  • Aharoni R, Arnon R. Linkage between immunomodulation neuroprotection and neurogeneisis. Drug News Perspect.22(6), 301–313 (2009).
  • Aktas O, Kieseier B, Hartung AP. Neuroprotection, regeneration and immunomodulation: broadening the therapeutic repertoire in multiple sclerosis. Trends in Neurosci.33(3), 145–152 (2010).
  • Traynor K. Dalfampridine approved for MS. Am. J. Health Sys. Pharm.67(5), 335 (2010).
  • Biernacki K, Antel JP, Blain M et al. Interferon β promotes nerve growth factor secretion early in the course of multiple sclerosis. Arch. Neurol.62(4), 563–568 (2005).
  • Malik O, Compston DA, Scolding NJ. Interferon-β inhibits mitogen induced astrocyte proliferation in vitro. J. Neuroimmunol.86(2), 155–162 (1998).
  • Kieseier BC, Hartung HP. Interferon-β and neuroprotection in multiple sclerosis – facts, hopes and phantasies. Exp. Neurol.10, 1–4 (2007).
  • Sättler MB, Demmer I, Williams SK et al. Effects of Interferon-β-1a on neuronal survival under autoimmune inflammatory conditions. Exp. Neurol.201(1), 172–181 (2006).
  • Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing–remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology53(8), 1698–1704 (1999).
  • Narayanan S, De Stefano N, Francis GS et al. Axonal metabolic recovery in multiple sclerosis patients treated with interferon β-1b. J. Neurol.248(11), 979–986 (2001).
  • Parry A, Clare S, Jenkinson M, Smith S, Palace J. Matthews PM. MRI brain T1 relaxation time changes in MS patients increase over time in both the white matter and the cortex. J. Neuroimaging13(3), 234–239 (2003).
  • Aharoni R, Eylam R, Domev H, Labunsky G, Sela M, Arnon R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc. Natl Acad. Sci. USA102, 19045–19050 (2005).
  • Azoulay D, Vachapova V, Shihman B, Miler A, Karni A. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J. Neuroimmunol.167, 215–218 (2005).
  • Maier K, Kuhnert AV, Taheri N et al. Effects of glatiramer acetate and Interferon-β on neurodegeneration in a model of multiple sclerosis: a comparative study. Am. J. Pathol.169(4), 1353–1364 (2006).
  • Aharoni R, Arnon R, Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J. Neuroscience25(36), 8217–8228 (2005).
  • Aharoni R, Herschkovitz A, Eilam R. et al. Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis.Proc. Natl Acad. Sci. USA105(32), 11358–11363 (2008).
  • Filippi M, Rovaris M, Rocca MA. Glatiramer Acetate reduces the proportion of new MS lesions evolving into ‘black holes’. Neurology57, 731–733 (2001).
  • Khan O, Shen Y, Caon C et al. Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing–remitting multiple sclerosis. Mult. Scler.11, 646–651 (2005).
  • Markovic-Plese S, Singh AK, Singh I. Therapeutic potential of statins in multiple sclerosis: immune modulation, neuroprotection and neurorepair. Future Neurol.3(2), 153–167 (2008).
  • Paintlia AS, Paintlia MK, Singh I, Skoff RB, Singh AK. Combination therapy of lovastatin and rolipram provides neuroprotection and promotes neurorepair in inflammatory demyelination model of multiple sclerosis. Glia57(2), 182–193 (2009).
  • DeAngelis T, Lublin F. Neurotherapeutics in multiple sclerosis: novel agents and emerging treatment strategies. Mt Sinai J. Med.75(2), 157–167 (2008).
  • Pogacic V, Herrling P. List of drugs in development for neurodegenerative diseases. Neurodegener. Dis.4, 443–486 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.