131
Views
8
CrossRef citations to date
0
Altmetric
Theme: Migraine & headache - Review

The biological basis of headache

Pages 363-378 | Published online: 09 Jan 2014

References

  • Stovner LJ, Hagen K, Jensen R et al. The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia27(3), 193–210 (2007).
  • Ray BS, Wolff HG. Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch. Surg.41, 813–856 (1940).
  • Wolff HG. Headache and Other Head Pain. Oxford University Press, NY, USA (1963).
  • McNaughton FL. The innervation of the intracranial blood vessels and the dural sinuses. In: The Circulation of the Brain and Spinal Cord. Cobb S, Frantz AM, Penfield W, Riley HA (Eds). Hafner Publishing Co., NY, USA, 178–200 (1966).
  • Arbab MAR, Wiklund L, Svendgaard NA. Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience19, 695–708 (1986).
  • Knight YE, Bartsch T, Goadsby PJ. Trigeminal antinociception induced by bicuculline in the periaqueductal grey (PAG) is not affected by PAG P/Q-type calcium channel blockade in rat. Neurosci. Lett.336, 113–116 (2003).
  • Uddman R, Edvinsson L, Ekman R, Kingman T, McCulloch J. Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci. Lett.62, 131–136 (1985).
  • Goadsby PJ, Zagami AS, Lambert GA. Neural processing of craniovascular pain: a synthesis of the central structures involved in migraine. Headache31(6), 365–371 (1991).
  • Kemplay S, Webster KE. A quantitative study of the projections of the gracile, cuneate and trigeminal nuclei and of the medullary reticular formation to the thalamus in the rat. Neuroscience32(1), 153–167 (1989).
  • Gebhart GF, Sandkühler J, Thalhammer JG, Zimmermann M. Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat. J. Neurophysiol.51(1), 75–89 (1984).
  • Hosobuchi Y, Adams JE, Linchitz R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science197(4299), 183–186 (1977).
  • McMahon SB, Wall PD. Descending excitation and inhibition of spinal cord lamina I projection neurons. J. Neurophysiol.59(4), 1204–1219 (1988).
  • Sandkühler J. The organization and function of endogenous antinociceptive systems. Prog. Neurobiol.50(1), 49–81 (1996).
  • Reynolds DV. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science164, 444–445 (1969).
  • Weiller C, May A, Limmroth V et al. Brain stem activation in spontaneous human migraine attacks. Nat. Med.1(7), 658–660 (1995).
  • Goadsby PJ. Neurovascular headache and a midbrain vascular malformation: evidence for a role of the brainstem in chronic migraine. Cephalalgia22, 107–111 (2002).
  • Gee JR, Chang J, Dublin AB, Vijayan N. The association of brainstem lesions with migraine-like headache: an imaging study of multiple sclerosis. Headache45(6), 670–677 (2005).
  • Burstein R, Levy D, Jakubowski M, Woolf CJ. Peripheral and central sensitization related to headaches. In: The Headaches 3rd Edition. Olesen J, Goadsby PJ, Ramadan N, Tfelt-Hansen P, Welch KMA (Eds). Lippincott Williams and Wilkins, PA, USA, 121–129 (2006).
  • Strassman AM, Raymond SA, Burstein R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature384, 560–564 (1996).
  • Bolay H, Reuter U, Dunn AK et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med.8, 136–142 (2002).
  • Waeber C, Moskowitz MA. Migraine as an inflammatory disorder. Neurology64, S9–S15 (2005).
  • McCulloch J, Uddman R, Kingman TA et al. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc. Natl Acad. Sci. USA83, 5731–5735 (1986).
  • Edvinsson L, Ekman R, Jansen I et al, Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J. Cereb. Blood Flow Metab.7, 720–728 (1987).
  • Markowitz S, Saito K, Moskowitz MA. Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J. Neurosci.7, 4129–4136 (1987).
  • Shepheard SL, Williamson DJ, Hill RG. The non-peptide neurokinin1 receptor antagonist, RP 67580, blocks neurogenic plasma extravasation in the dura mater of rats. Br. J. Pharmacol.108(1), 11–12 (1993).
  • Kurosawa M, Messlinger K, Pawlak M, Schmidt RF. Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br. J. Pharmacol.114(7), 1397–1402 (1995).
  • Carmody J, Pawlak M, Messlinger K. Lack of a role for substance P in the control of dural arterial flow. Exp. Brain Res.111(3), 424–428 (1996).
  • Watkins L, Maier S. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev.82, 981–1011 (2002).
  • Hanani M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Brain Res. Rev.48, 457–476 (2005).
  • Watkins L, Milligan E, Maier S. Glial activation: a driving force for pathological pain. Trends Neurosci.24, 450–455 (2001).
  • Wieseler-Frank J, Maier S,Watkins L. Glial activation and pathological pain. Neurochem. Int.45, 389–395 (2004).
  • Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia27, 394–402 (2007).
  • Selby G, Lance JW. Observations on 500 cases of migraine and allied vascular headache. J. Neurol. Neurosurg. Psychiatry23, 23–32 (1960).
  • Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain123(Pt 8), 1703–1709 (2000).
  • Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann. Neurol.47(5), 614–624 (2000).
  • Burstein R, Collins B, Jakubowski M. Defeating migraine pain with triptans: a race against the development of cutaneous allodynia. Ann. Neurol.55(1), 19–26 (2004).
  • Lovati C, D’Amico D, Bertora P et al. Acute and interictal allodynia in patients with different headache forms: an Italian pilot study. Headache48(2), 272–277 (2008).
  • Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain89(2–3), 107–110 (2001).
  • Willis WD, Coggeshall RE. Sensory Mechanisms of the Spinal Cord. Plenum Press, NY, USA, 132–148 (1991).
  • Murase K, Ryu PD, Randic M. Substance P augments a persistent slow inward calcium-sensitive current in voltage-clamped spinal dorsal horn neurons of the rat. Brain Res.365(2), 369–376 (1986).
  • Sivilotti LG, Thompson SW, Woolf CJ. Rate of rise of the cumulative depolarization evoked by repetitive stimulation of small-caliber afferents is a predictor of action potential windup in rat spinal neurons in vitro. J. Neurophysiol.69(5), 1621–1631 (1993).
  • Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci.26(12), 696–705 (2003).
  • Kelman L. The aura: a tertiary care study of 952 migraine patients. Cephalalgia24, 728–734 (2004).
  • Leao AAP. Spreading depression of activity in cerebral cortex. J. Neurophysiol.117, 199–210 (1944).
  • Millner PM. Note on a possible correspondence between the scotomas of migraine and the spreading depression of Leao. Electroencephalogr. Clin. Neurophysiol.10, 705 (1959).
  • Fabricius M, Fuhr S, Bhatia R et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain129, 778–790 (2006).
  • Strong AJ, Fabricius M, Boutelle MG et al. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke33, 2738–2743 (2002).
  • Mayevsky A, Doron A, Manor T et al. Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res.740, 268–274 (1996).
  • Dreier JP, Major S, Manning A. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain132(7), 1866–1881 (2009).
  • Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain117, 199–210 (1994).
  • Lauritzen M. Cortical spreading depression in migraine. Cephalalgia21, 757–760 (2001).
  • Vinogradova LV, Koroleva VI, Bures J. Re-entry waves of Leao’s spreading depression between neocortex and caudate nucleus. Brain Res.538, 161–164 (1991).
  • Eikermann-Haerter K, Dilekoz E, Kudo C et al. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J. Clin. Invest.119, 99–109 (2009).
  • Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann. Neurol.9, 344–352 (1981).
  • Olesen J. Cerebral and extracranial circulatory disturbances in migraine: pathophysiological implications. Cerebrovas.Brain Metab. Rev.3, 1–28 (1991).
  • Brennan KC, Romero Reyes M, Lopez Valdes HE et al. Reduced threshold for cortical spreading depression in female mice. Ann. Neurol.61, 603–606 (2007).
  • Eikermann-Haerter K, Baum MJ, Ferrari MD et al. Androgenic suppression of spreading depression in amilial hemiplegic migraine type 1 mutant mice. Ann. Neurol.66, 564–568 (2009).
  • Ayata C, Jin H, Kudo C et al. Suppression of cortical spreading depression in migraine prophylaxis. Ann. Neurol.59, 652–661 (2006).
  • Buzzi MG, Bonamini M, Moskowitz MA. Neurogenic model of migraine. Cephalalgia15, 277–280 (1995).
  • Zhang X, Levy D, Kainz V et al. Activation of meningeal nociceptor by cortical spreading depression. Presented at: Society for Neuroscience Annual Meeting. Chicago, IL, USA, 17–21 October 2009.
  • Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J. Neurosci.13, 1167–1177 (1993).
  • Kunkler PE, Kraig RP. Hippocampal spreading depression bilaterally activates the caudal trigeminal nucleus in rodents. Hippocampus13, 835–844 (2003).
  • Charles AC, Merrill JE, Dirksen ER, Sanderson MJ. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron6, 983–992 (1991).
  • Peters O, Schipke CG, Hashimoto Y, Kettenmann H. Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J. Neurosci.23, 9888–9896 (2003).
  • Basarsky TA, Duffy SN, Andrew RD, MacVicar BA. Imaging spreading depression and associated intracellular calcium waves in brain slices. J. Neurosci.18, 7189–7199 (1998).
  • Chuquet J, Hollender L, Nimchinsky E. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J. Neurosci.27, 4036–4044 (2007).
  • Dohmen C, Sakowitz OW, Fabricius M et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann. Neurol.63, 720–728 (2008).
  • Schumacher GA, Ray BS, Wolff HG. Experimental studies on headache. Further analysis of histamine headache and its pain pathways. Arch. Neurol. Psychiatry44, 701–717 (1940).
  • Kunkle EC, Ray BS, Wolff HG. Experimental studies on headache. Arch. Neurol. Psychiatry49, 323–331 (1943).
  • Davis KD, Dostrovsky JO. Activation of trigeminal brain-stem nociceptive neurons by dural artery stimulation. Pain25, 395–401 (1986).
  • Maciewicz R, Strassman A, Mason P, Moskowitz M. Activation of nociceptive neurons in the spinal trigeminal nucleus by stimulation of dural blood vessels. Soc. Neurosci. Abstr.12, 30 (1986).
  • Lambert GA, Lowy AJ, Boers PM, Angus-Leppan H, Zagami AS. The spinal cord processing of input from the superior sagittal sinus: pathway and modulation by ergot alkaloids. Brain Res.597, 321–330 (1992).
  • Hoskin KL, Donaldson C, Zagami AS, Lambert GA. The 5-hydroxytryptamine1B/1D/1F receptor agonists eletriptan and naratriptan inhibit trigeminovascular input to the nucleus tractus solitarius in the cat. Brain Res.998, 91–99 (2004).
  • Zagami AS, Lambert GA, Lance JW. Stimulation of cranial vessels activates neurons in the thalamus of the cat. Soc. Neurosci. Abstr.14, 1164 (1988).
  • Davis KD, Dostrovsky JO. Properties of feline thalamic neurons activated by stimulation of the middle meningeal artery and sagittal sinus. Brain Res.454, 89–100 (1988).
  • Zagami AS, Lambert GA. Thalamic neurones with craniovascular input project to somatosensory cortex in the cat. J. Clin. Neurosci.4, 412 (1997).
  • Burstein R, Yamamura H, Malick A, Strassman AM. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J. Neurophysiol.79, 964–982 (1998).
  • Kaube H, Hoskin KL, Goadsby PJ. Activation of the trigeminovascular system by mechanical distension of the superior sagittal sinus in the cat. Cephalalgia12, 133–136 (1992).
  • Hoskin KL, Kaube H, Goadsby PJ. Mechanical distension of the superior sagittal sinus evokes c-Fos expression in trigeminal neurons – towards a better model of migraine. Cephalagia15(Suppl. 14), 104 (1995).
  • Moskowitz MA, Reinhard JF Jr, Romero J, Melamed E, Pettibone DJ. Neurotransmitters and the fifth cranial nerve: is there a relation to the headache phase of migraine? Lancet2(8148), 883–885 (1979).
  • Moskowitz MA. Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology43(6 Suppl. 3), S16–S20 (1993).
  • Branchet-Gumila MC, Boisnic S, Le Charpentier Y, Nonotte I, Montastier C, Breton L. Neurogenic modifications induced by substance P in an organ culture of human skin. Skin Pharmacol. Appl. Skin Physiol.12(4), 211–220 (1999).
  • Polley JS, Gaskin PJ, Perren MJ, Connor HE, Ward P, Beattie DT. The activity of GR205171, a potent non-peptide tachykinin NK1 receptor antagonist, in the trigeminovascular system. Regul. Pept.68(1), 23–29 (1997).
  • Beattie DT, Beresford IJ, Connor HE et al. The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist. Br. J. Pharmacol.116(8), 3149–3157 (1995).
  • Hunt SP, O’Brien JA, Palmer JA. Role of substance P in nociception, analgesia, and aggression. In: Molecular Basis of Pain Induction. Wood JN (Ed.). Wiley-Liss Publishers, NY, USA, 209–260 (2000).
  • Perini F, D’Andrea G, Galloni E et al. Plasma cytokine levels in migraineurs and controls. Headache45, 926–931 (2005).
  • Sarchielli P, Alberti A, Baldi A et al. Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally. Headache46, 200–207 (2006).
  • Lamonte M, Silberstein SD, Marcelis JF. Headache associated with aseptic meningitis. Headache35, 520–526 (1995).
  • Levy D, Strassman AM. Distinct sensitizing effects of the cAMPPKA second messenger cascade on rat dural mechanonociceptors. J. Physiol. (Lond.)538, 483–493 (2002).
  • Zhang X, Strassman AM, Burstein R, Levy D. Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators. J. Pharmacol. Exp. Ther.322, 806–812 (2007).
  • Bove GM, Moskowitz MA. Primary afferent neurons innervating guinea pig dura. J. Neurophysiol.77, 299–308 (1997).
  • Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain130, 166–176 (2007).
  • Fay T. Mechanisms of headache. Arch. Neurol. Psychiatry37, 471 (1937).
  • Levy D. Migraine pain and nociceptor activation – where do we stand? Headache50, 909–916 (2010).
  • Schmuck K, Ullmer C, Engels P, Lübbert H. Cloning and functional characterization of the human 5-HT2B serotonin receptor. FEBS Lett.42(1), 85–90 (1994).
  • Humphrey PP. 5-hydroxytryptamine and the pathophysiology of migraine. J. Neurol.238(Suppl. 1), S38–S44 (1991).
  • Hegerl U, Juckel G. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: a new hypothesis. Biol. Psychiatry33(3), 173–187 (1993).
  • Chugani DC, Niimura K, Chaturvedi S et al. Increased brain serotonin synthesis in migraine. Neurology53(7), 1473–1479 (1999).
  • Ferrari MD, Saxena PR. On serotonin and migraine: a clinical and pharmacological review. Cephalalgia13(3), 151–165 (1993).
  • Ferrari MD, Odink J, Tapparelli C, Van Kempen GM, Pennings EJ, Bruyn GW. Serotonin metabolism in migraine. Neurology39(9), 1239–1242 (1989).
  • Kalkman HO. Is migraine prophylactic activity caused by 5-HT2B or 5-HT2C receptor blockade? Life Sci.54(10) 64, 1–4 (1994).
  • De Vries P, Villalón CM, Saxena PR. Pharmacological aspects of experimental headache models in relation to acute antimigraine therapy. Eur. J. Pharmacol.375(1–3), 61–74 (1999).
  • Tfelt-Hansen P, De Vries P, Saxena PR. Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy. Drugs60(6), 1259–1287 (2000).
  • Goadsby PJ, Hargreaves RJ. Mechanisms of action of serotonin 5-HT1B/D agonists: insights into migraine pathophysiology using rizatriptan. Neurology55(9 Suppl 2), S8–S14 (2000).
  • Goadsby PJ, Lipton RB, Ferrari MD. Migraine – current understanding and treatment. N. Engl. J. Med.346(4), 257–270 (2002).
  • Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc. Natl Acad. Sci. USA101(12), 4274–4279 (2004).
  • Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem. J.298(2), 249–258 (1994).
  • Masini E, Di Bello MG, Pistelli A et al. Generation of nitric oxide from nitrovasodilators modulates the release of histamine from mast cells. J. Physiol. Pharmacol.45(1), 41–53 (1994).
  • Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron8(1), 3–11 (1992).
  • Fozard JR. The 5-hydroxytryptamine-nitric oxide connection: the key link in the initiation of migraine? Arch. Int. Pharmacodyn. Ther.329(1), 111–119 (1995).
  • Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature336(6197), 385–388 (1988).
  • Glusa E, Richter M. Endothelium-dependent relaxation of porcine pulmonary arteries via 5-HT1C-like receptors. Naunyn Schmiedebergs Arch. Pharmacol.347(5), 471–477 (1993).
  • Gray DW, Marshall I. Human α-calcitonin gene-related peptide stimulates adenylate cyclase and guanylate cyclase and relaxes rat thoracic aorta by releasing nitric oxide. Br. J. Pharmacol.107(3), 691–696 (1992).
  • Luscher TF, Vanhoutte PM. The Endothelium: Modulator of Cardiovascular Functions. CRC Press, FL, USA (1990).
  • Hadjikhani N, Sanchez Del Rio M, Wu O et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl Acad. Sci. USA98(8), 4687–4692 (2001).
  • Read SJ, Smith MI, Hunter AJ, Parsons AA. The dynamics of nitric oxide release measured directly and in real time following repeated waves of cortical spreading depression in the anaesthetised cat. Neurosci. Lett.232(3), 127–130 (1997).
  • Palacios J, Marusic ET, Lopez NC, Gonzalez M, Michea L. Estradiol-induced expression of N+-K+-ATPase catalytic isoforms in rat arteries: gender differences in activity mediated by nitric oxide donors. Am. J. Physiol. Heart Circ. Physiol.286(5), 1793–1800 (2004).
  • Moncada S. ‘Ottorino Rossi’ Award 1997. The biology of nitric oxide. Funct. Neurol. (3–4), 134–140 (1997).
  • Lowenstein CJ, Dinerman JL, Snyder SH. Nitric oxide: a physiologic messenger. Ann. Intern. Med.120(3), 227–237 (1994).
  • Radomski MW, Zakar T, Salas E. Nitric oxide in platelets. Methods Enzymol.69, 88–107 (1996).
  • Rand MJ. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin. Exp. Pharmacol. Physiol.19(3), 147–169 (1992)
  • Toda N, Okamura T. Mechanism underlying the response to vasodilator nerve stimulation in isolated dog and monkey cerebral arteries. Am. J. Physiol.259(5 Pt 2), H1511–H1517 (1990).
  • Urban MO, Gebhart GF. Supraspinal contributions to hyperalgesia. Proc. Natl Acad. Sci. USA96(14), 7687–7692 (1999).
  • Lepori M, Sartori C, Trueb L, Owlya R, Nicod P, Scherrer U. Haemodynamic and sympathetic effects of inhibition of nitric oxide synthase by systemic infusion of N(G)-monomethyl-L-arginine into humans are dose dependent. J. Hypertens.6(4), 519–523 (1998).
  • Wei EP, Moskowitz MA, Boccalini P, Kontos HA. Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ. Res.70(6), 1313–1319 (1992).
  • Sances G, Tassorelli C, Pucci E, Ghiotto N, Sandrini G, Nappi G. Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. Cephalalgia24(2), 110–119 (2004).
  • Thomsen LL, Kruuse C, Iversen HK et al. A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks. Eur. J. Neurol.1, 73–80 (1994).
  • Ekbom K. Nitroglycerin as a provocative agent in cluster headache. Arch. Neurol.19, 487–493 (1968).
  • Costa A, Ravaglia S, Sances G , Antonaci F, Pucci E, Nappi G. Nitric oxide pathway and response to nitroglycerin in cluster headache patients: plasma nitrite and citrulline levels. Cephalalgia23(6), 407–413 (2003).
  • Ashina M, Bendtsen L, Jensen R, Sakai F, Olesen J. Possible mechanisms of glyceryl-trinitrate-induced immediate headache in patients with chronic tension-type headache. Cephalalgia20(10), 919–924 (2000).
  • Hansen JM, Thomsen LL, Olesen J, Ashina M. Familial hemiplegic migraine type 1 shows no hypersensitivity to nitric oxide. Cephalalgia28(5), 496–505 (2008).
  • Hansen JM, Thomsen LL, Marconi R, Casari G, Olesen J, Ashina M. Familial hemiplegic migraine type 2 does not share hypersensitivity to nitric oxide with common types of migraine. Cephalalgia28(4), 367–375 (2008).
  • Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of man and the cat during activation of the trigeminovascular system. Ann. Neurol.23(2), 193–196 (1988).
  • Goadsby PJ, Edvinsson, L. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache34, 394–399 (1994).
  • Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterising cerebrovascular and neuro-peptide changes seen in man and cat. Ann. Neurol.33, 48–56 (1993).
  • Jansen-Olesen I, Mortensen A, Edvinsson L. Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenylyl cyclase. Cephalalgia16(5), 310–316 (1996).
  • Edvinsson L, Jansen I, Kingman TA, McCulloch J. Cerebrovascular responses to capsaicin in vitro and in situ. Br. J. Pharmacol.100(2), 312–318 (1990).
  • Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol. Rev.84(3), 903–934 (2004)
  • Gallai V, Sarchielli P, Floridi A et al. Vasoactive peptides levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia15, 384–390 (1995).
  • Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol.28, 183–187 (1990).
  • Fanciullacci M, Alessandri M, Figini M, Geppetti P, Michelacci S. Increase in plasma calcitonin gene-related peptide from extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain60, 119–123 (1995).
  • Goadsby PJ, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Brain117, 427–434 (1994).
  • Goadsby PJ, Edvinsson L. Neuropeptide changes in a case of chronic paroxysmal hemicrania-evidence for trigemino-parasympathetic activation. Cephalalgia16, 448–450 (1996).
  • Lassen LH, Haderslev PA, Jacobsen VB et al. CGRP may play a causative role in migraine. Cephalalgia22, 54–61 (2002).
  • Hansen JM, Thomsen LL, Olesen J, Ashina M. Calcitonin gene-related peptide does not cause the familial hemiplegic migraine phenotype. Neurology71(11), 841–847 (2008).
  • Williamson DJ, Hargreaves RJ. Neurogenic inflammation in the context of migraine. Microsc. Res. Tech.53(3), 167–178 (2001).
  • Dahlöf C. Integrating the triptans into clinical practice. Curr. Opin. Neurol.15, 317–322 (2002).
  • Salvatore CA, Hershey JC, Corcoran HA et al. Pharmacological characterization of MK-0974 [N-[(3R, 6 S)-6-(2, 3-difluorophenyl)-2-oxo-1-(2, 2, 2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2, 3-dihydro-1Himidazo[4, 5-b]pyridin-1-yl)piperidine-1-carboxamide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J. Pharmacol. Exp Ther.324, 416–421 (2008).
  • Ho TW, Ferrari, MD, Dodick DW et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene related peptide receptor, compared with olmitriptan for acute migraine: a randomized, placebo-controlled, parallel-treatment trial. Lancet372, 2115–2123 (2008).
  • Ho TW, Ferrari, MD, Dodick DW et al. Clinical profile of the novel oral CGRP receptor antagonist telcagepant for the acute treatment of migraine in two Phase 3 randomized placebo controlled trials. Neurology72, A250 (2009).
  • Durham PL, Vause CV. Calcitonin gene-related peptide (CGRP) receptor antagonists in the treatment of migraine. CNS Drugs24(7), 539–548 (2010).
  • Yu LC, Hou JF, Fu FH, Zhang YX. Roles of calcitonin gene-related peptide and its receptors in pain-related behavioral responses in the central nervous system. Neurosci. Biobehav. Rev.33(8), 1185–1191 (2009).
  • Schorscher-Petcu A, Austin JS, Mogil JS, Quirion R. Role of central calcitonin gene-related peptide (CGRP) in locomotor and anxiety- and depression-like behaviors in two mouse strains exhibiting a CGRP-dependent difference in thermal pain sensitivity. J. Mol. Neurosci.39(1–2), 125–136 (2009).
  • Borsook D, DaSilva AF, Ploghaus A, Becerra L. Specific and somatotopic functional magnetic resonance imaging activation in the trigeminal ganglion by brush and noxious heat. J. Neurosci.23(21), 7897–7903 (2003).
  • Hsieh JC, Ståhle-Bäckdahl M, Hägermark O, Stone-Elander S, Rosenquist G, Ingvar M. Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron emission tomography study. Pain64(2), 303–314 (1996).
  • Tracey I, Ploghaus A, Gati JS et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci.22(7), 2748–2752 (2002).
  • Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia – imaging a shared neuronal network. Science295(5560), 1737–1740 (2002)
  • Wager TD, Rilling JK, Smith EE et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science303(5661), 1162–1167 (2004).
  • Ploghaus A, Tracey I, Gati JS et al. Dissociating pain from its anticipation in the human brain. Science284(5422), 1979–1981 (1999).
  • Petrovic P, Petersson KM, Ghatan PH, Stone-Elander S, Ingvar M. Pain-related cerebral activation is altered by a distracting cognitive task. Pain (1–2), 19–30 (2000).
  • Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain125(Pt 2), 310–319 (2002).
  • Longe SE, Wise R, Bantick S et al. Counter-stimulatory effects on pain perception and processing are significantly altered by attention: an fMRI study. Neuroreport12(9), 2021–2025 (2001)
  • Hsieh JC, Hannerz J, Ingvar M. Right-lateralised central processing for pain of nitroglycerin-induced cluster headache. Pain67(1), 59–68 (1996).
  • Jones AK, Kulkarni B, Derbyshire SW. Pain mechanisms and their disorders. Br. Med. Bull.65, 83–93 (2003).
  • Peyron R. Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol. Clin.30, 263–288 (2000).
  • Valet M. Sprenger T. Boecker H et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain109, 399–408 (2004).
  • Schoonman GG, van der Grond J, Kortmann C, van der Geest RJ, Terwindt GM, Ferrari MD. Migraine headache is not associated with cerebral or meningeal vasodilatation – a 3T magnetic resonance angiography study. Brain131, 2192–2200 (2008).
  • Nagata E, Moriguchi H, Takizawa S, Horie T, Yanagimachi N, Takagi S. The middle meningial artery during a migraine attack: 3T magnetic resonance angiography study. Intern. Med.48, 2133–2135 (2009).
  • Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci.26(10), 523–530 (2003).
  • Woods RP, Iacoboni M, Mazziotta JC. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N. Engl. J. Med.331, 1689–1692 (1994).
  • Denuelle M, Fabre N, Payoux P et al. Posterior cerebral hypoperfusion in migraine without aura. Cephalalgia28, 856–862 (2008).
  • Chalaupka FD. Reversible imaging abnormalities consistent with CSD during migraine without aura attack. Headache48(8), 1229–1232 (2008).
  • May A, Kaube H, Buchel C et al. Experimental cranial pain elicited by capsaicin: a PET study. Pain74, 61–66 (1998)
  • Afridi SK, Giffin NJ, Kaube H et al. A positron emission tomographic study in spontaneous migraine. Arch. Neurol.62, 1270–1275 (2005).
  • Afridi SK, Matharu MS, Lee L et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain128, 932–939 (2005).
  • Denuelle M, Fabre N, Payoux P et al. Hypothalamic activation in spontaneous migraine attacks. Headache47, 1418–1426 (2007).
  • Bahra A, Matharu MS, Buchel C et al. Brainstem activation specific to migraine headache. Lancet357, 1016–1017 (2001).
  • Matharu MS, Bartsch T, Ward N et al. Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain127, 220–230 (2004).
  • Sanchez del Rio M, Bakker D, Wu O et al. Perfusion weighted imaging during migraine: spontaneous visual aura and headache. Cephalalgia19, 701–707 (1999).
  • Cao,Y, Welch KM, Aurora S et al. Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch. Neurol56, 548–554 (1999).
  • Lance JW, Lambert GA, Goadsby PJ et al. Brainstem influences on the cephalic circulation: experimental data from cat and monkey of relevance to the mechanism of migraine. Headache23, 258–265 (1983).
  • Goadsby PJ, Duckworth JW. Low frequency stimulation of the locus coeruleus reduces regional cerebral blood flow in the spinalized cat. Brain Res.476, 71–77 (1989).
  • May A, Bahra A, Buchel C et al. Hypothalamic activation in cluster headache attacks. Lancet352, 275–278 (1998).
  • Sprenger T, Boecker H, Tolle TR et al. Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology62, 516–517 (2004).
  • Lodi R, Pierangeli G, Tonon C et al. Study of hypothalamic metabolism in cluster headache by proton MR spectroscopy. Neurology66, 1264–1266 (2006).
  • Wang SJ, Lirng JF, Fuh JL et al. Reduction in hypothalamic 1H-MRS metabolite ratios in patients with cluster headache. J. Neurol. Neurosurg. Psychiatry77, 622–625 (2006).
  • Leone M, Proietti A, Cecchini AP et al. Lessons from 8 years’ experience of hypothalamic stimulation in cluster headache. Cephalalgia28, 787–797 (2008).
  • Sprenger T, Berthele A, Platzer S et al. What to learn from in vivo opioidergic brain imaging? Eur. J. Pain9, 117–121 (2005).
  • May A, Bahra A, Buchel C et al. Functional magnetic resonance imaging in spontaneous attacks of SUNCT: short-lasting neuralgiform headache with conjunctival injection and tearing. Ann. Neurol.46, 791–794 (1999).
  • Matharu MS, Cohen AS, Frackowiak RS et al. Posterior hypothalamic activation in paroxysmal hemicrania. Ann. Neurol.59, 535–545 (2006).
  • May A. Morphing voxels: the hype around structural imaging of headache patients. Brain132(6), 1419–1425 (2009).
  • Kuchinad A, Schweinhardt P, Seminowicz DA, Wood PB, Chizh BA, Bushnell MC. Accelerated brain grey matter loss in fibromyalgia patients: premature aging of the brain? J. Neurosci.27, 4004–4007 (2007).
  • Davis KD, Pope G, Chen J, Kwan CL, Crawley AP, Diamant NE. Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology70, 153–154 (2008).
  • Draganski B, Moser T, Lummel N et al. Decrease of thalamic grey matter following limb amputation. Neuroimage31, 951–957 (2006)
  • Apkarian AV, Sosa Y, Sonty S et al. Chronic back pain is associated with decreased prefrontal and thalamic grey matter density. J. Neurosci.24, 10410–10415 (2004).
  • Schmidt-Wilcke T, Leinisch E, Ganssbauer S et al. Affective components and intensity of pain correlate with structural differences in grey matter in chronic back pain patients. Pain125, 89–97 (2006).
  • Wrigley PJ, Gustin SM, Macey PM et al. Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury. Cereb. Cortex19, 224–232 (2008).
  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature427, 311–312 (2004).
  • Mendola JD, Conner IP, Roy A et al. Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum. Brain Mapp.25, 222–236 (2005).
  • Chan ST, Tang KW, Lam KC, Chan LK, Mendola JD, Kwong KK. Neuroanatomy of adult strabismus: a voxel-based morphometric analysis of magnetic resonance structural scans. Neuroimage22, 986–994 (2004).
  • Draganski B, May A. Training-induced structural changes in the adult human brain. Behav. Brain Res.192, 137–142 (2008).
  • Teutsch S, Herken W, Bingel U, Schoell E, May A. Changes in brain grey matter due to repetitive painful stimulation. Neuroimage42, 845–849 (2008).
  • Rocca MA, Ceccarelli A, Falini A et al. Brain grey matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke37, 1765–1770 (2006).
  • Kim JH, Suh SI, Seol HY et al. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia28, 598–604 (2008).
  • Valfre W, Rainero I, Bergui M, Pinessi L. Voxel-based morphometry reveals grey matter abnormalities in migraine. Headache48, 109–117 (2008).
  • Welch KM, Nagesh V. Aurora SK et al. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache41, 629–637 (2001).
  • May A. Hypothalamic deep-brain stimulation: target and potential mechanism for the treatment of cluster headache. Cephalalgia28, 799–803 (2008).
  • Leone M, Franzini A, Bussone G. Stereotactic stimulation of posterior hypothalamic grey matter in a patient with intractable cluster headache. N. Engl. J. Med.345, 1428–1429 (2001).
  • Holle D, Naegel S, Gaul C, Krebs S, Gizewski ER. Structural and functional changes in hypnic headache. Cephalalgia29, 2 (2009).
  • Schmidt-Wilcke T, Leinisch E, Straube A et al. Grey matter decrease in patients with chronic tension type headache. Neurology65, 1483–1486 (2005).
  • Golla FL, Winter AL. Analysis of cerebral responses to flicker in patients complaining of episodic headache. Electroencephalogr. Clin. Neurophysiol. Suppl.11, 539–549 (1959).
  • Gantenbein AR, Goadsby PJ, Kaube H. Chirp stimulation – H-response short and dynamic. Cephalalgia25, 1196–1197 (2005).
  • Chorlton P, Kane N. Investigation of the cerebral response to flicker stimulation in patients with neurological headache. Clin. Electroencephalogr.31, 83–87 (2000).
  • Diener HC, Scholz E, Dichgans J et al. Central effects of drugs used in migraine prophylaxis evaluated by visual evoked potentials. Ann. Neurol.25, 125–130 (1989).
  • Siniatchkin M, Kropp P, Gerber WD. What kind of habituation is impaired in migraine patients? Cephalalgia23, 511–518 (2003).
  • Judit A, Sandor PS, Schoenen J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia20, 714–719 (2000).
  • Ambrosini A, Rossi P, DePasqua V, Pierelli F, Schoenen J. Lack of habituation causes high intensity dependence of auditory evoked cortical potentials in migraine. Brain126(Pt 9), 2009–2015 (2003).
  • Wang W, Timsit-Berthier M, Schoenen J. Intensity dependence of auditory evoked potentials is pronounced in migraine: an indication of cortical potentiation and low serotonergic neurotransmission? Neurology46, 1404–1409 (1996).
  • de Tommaso M, Libro G, Guido M, Losito L, Lamberti P, Livrea P. Habituation of single CO2 laserevoked responses during interictal phase of migraine. J. Headache Pain6, 195–198 (2005).
  • Evers S, Bauer B, Grotemeyer KH, Kurlemann G, Husstedt IW. Event-related potentials (P300) in primary headache in childhood and adolescence. J. Child Neurol.13, 322–326 (1998).
  • Wang W, Schoenen J. Interictal potentiation of passive ‘oddball’ auditory event-related potentials in migraine. Cephalalgia18, 261–265 (1998).
  • Sandor PS, Afra J, Proietti-Cecchini A, Albert A, Schoenen J. Familial influences on cortical evoked potentials in migraine. Neuroreport10, 1235–1238 (1999).
  • Siniatchkin M, Kropp P, Neumann M, Gerber W, Stephani U. Intensity dependence of auditory provoked potentials in migraine families. Pain85, 247–254 (2000).
  • Coppola G, Pierelli F, Schoenen J. Habituation and migraine. Neurobiol. Learn. Mem.92, 249–259 (2009).
  • Katsarava Z, Lehnerdt G, Duda B, Ellrich J, Diener HC, Kaube H. Sensitization of trigeminal nociception specific for migraine but not pain of sinusitis. Neurology59, 1450–1453 (2002).
  • Katsarava Z, Giffin N, Diener HC, Kaube H. Abnormal habituation of ‘nociceptive’ blink reflex in migraine – evidence for increased excitability of trigeminal nociception. Cephalalgia23, 814–819 (2003).
  • de Tommaso M. Laser-evoked potentials in primary headaches and cranial neuralgias. Expert Rev. Neurother.8(9), 1339–1345 (2008).
  • Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology50, 1111–1114 (1998).
  • Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW. Visual cortex excitability in migraine with and without aura. Headache41, 565–572 (2001).
  • Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW. Suppression of perception in migraine: evidence for reduced inhibition in the visual cortex. Neurology56, 178–183 (2001)
  • Aurora SK, Chronicle EP. Migraine’s magnetic attraction. Lancet Neurol.1, 211 (2002).
  • Battelli L, Black KR, Wray SH. Transcranial magnetic stimulation of visual area V5 in migraine. Neurology58, 1066–1069 (2002).
  • Antal A, Arlt S, Nitsche MA, Chadaide Z, Paulus W. Higher variability of phosphene thresholds in migraineurs than in controls: a consecutive transcranial magnetic stimulation study. Cephalalgia26, 865–870 (2006).
  • Afra J, Mascia A, Gerard P, Maertens de Noordhout A, Schoenen J. Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann. Neurol.44, 209–215 (1998).
  • Bohotin V, Fumal A, Vandenheede M, Bohotin C, Schoenen J. Excitability of visual V1–V2 and motor cortices to single transcranial magnetic stimuli in migraine: a reappraisal using a figure-of-eight coil. Cephalalgia23, 264–270 (2003).
  • Coppola G, Vandenheede M, Di Clemente L et al. Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain128, 98–103 (2005).
  • Pichiecchio A, Bastianello S, Ghiotto N et al. An fMRI time and space spread post-analysis of the visual cortex in migraine with aura: preliminary results. Cephalalgia27(621), B074 (2007).
  • Aurora S, Kori S, Barrodale P, Nelsen A, McDonald S. Gastric stasis occurs in spontaneous, visually induced, and interictal migraine. Headache47(10), 1443–1446 (2007).
  • Aurora SK, Kori SH, Barrodale P, McDonald SA, Haseley D. Gastric stasis in migraine: more than just a paroxysmal abnormality during a migraine attack. Headache46(1), 57–63 (2006).
  • Ashkenazi A, Mushtaq A, Yang I, Oshinsky ML. Ictal and interictal phonophobia in migraine-a quantitative controlled study. Cephalalgia (10), 1042–1048 (2009).
  • de Tommaso M, Sciruicchio V, Guido M, Sasanelli G, Specchio LM, Puca FM. EEG spectral analysis in migraine without aura attacks. Cephalalgia18, 324–328 (1998).
  • Schoenen J, Jamart B, Delwaide PJ. Electroencephalographic mapping in migraine during the headache. Rev. Electroencephalogr. Neurophysiol. Clin.17, 289–299 (1987).
  • Kropp P, Gerber WD. Contingent negative variation during migraine attack and interval: evidence for normalization of slow cortical potentials during the attack. Cephalalgia15(2), 123–128; discussion 78–79 (1995).
  • Kropp P, Gerber WD. Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neurosci. Lett.257, 73–76 (1998).
  • Siniatchkin M, Gerber WD, Kropp P, Vein A. How the brain anticipates an attack: a study of neurophysiological periodicity in migraine. Funct. Neurol.14, 69–77 (1999).
  • Holroyd KA, France JL, Nash JM, Hursey K. Pain state as artifact in the psychological assessment of recurrent headache sufferers. Pain53(2), 229–235 (1993).
  • Jensen R. Pathophysiological mechanisms of tension-type headache: a review of epidemiological and experimental studies. Cephalalgia19(6), 602–621 (1999).
  • Lipchik GL, Holroyd KA, O’Donnell FJ et al. Exteroceptive suppression periods and pericranial muscle tenderness in chronic tension-type headache: effects of psychopathology, chronicity and disability. Cephalalgia20(7), 638–646 (2000).
  • Bendtsen L. Central sensitization in tension-type headache – possible pathophysiological mechanisms. Cephalalgia20(5), 486–508 (2000).
  • Langemark M, Bach FW, Jensen TS, Olesen J. Decreased nociceptive flexion reflex threshold in chronic tension-type headache. Arch. Neurol.50(10), 1061–1064 (1993).
  • Schoenen J, Bottin D, Hardy F, Gerard P. Cephalic and extracephalic pressure pain thresholds in chronic tension-type headache. Pain47(2), 145–149 (1991).
  • Ashina M. Neurobiology of chronic tension-type headache. Cephalalgia24(3), 161–172 (2004).
  • Sarchielli P, Alberti A, Floridi A, Gallai V. L-Arginine/nitric oxide pathway in chronic tension-type headache: relation with serotonin content and secretion and glutamate content. Neurol. Sci.15, 198(1–2), 9–15 (2002).
  • Lipton RB, Cady RK, Stewart WF, Wilks K, Hall C. Diagnostic lessons from the spectrum study. Neurology58(9 Suppl. 6), S27–S31 (2002).
  • Cady RK, Lipton RB, Hall C, Stewart WF, O’Quinn S, Gutterman D. Treatment of mild headache in disabled migraine sufferers: results of the Spectrum Study. Headache40(10), 792–797 (2000).
  • Cady R, Schreiber C, Farmer K, Sheftell F. Primary headaches: a convergence hypothesis. Headache42(3), 204–216 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.