72
Views
12
CrossRef citations to date
0
Altmetric
Theme: Demyelinating diseases - Review

Relaxation time mapping in multiple sclerosis

, , , &
Pages 441-450 | Published online: 09 Jan 2014

References

  • Fazekas F, Barkhof F, Filippi M et al. The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology53(3), 448–456 (1999).
  • Miller DH, Albert PS, Barkhof F et al. Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. US National MS Society Task Force. Ann. Neurol.39(1), 6–16 (1996).
  • Strasser-Fuchs S, Enzinger C, Ropele S, Wallner M, Fazekas F. Clinically benign multiple sclerosis despite large T2 lesion load: can we explain this paradox? Mult. Scler.14(2), 205–211 (2008).
  • Rocca MA, Absinta M, Valsasina P et al. Abnormal connectivity of the sensorimotor network in patients with MS: a multicenter fMRI study. Hum. Brain Mapp.30(8), 2412–2425 (2009).
  • Bloch F. Nuclear induction. Phys. Rev.70, 460 (1946).
  • Fatouros PP, Marmarou A, Kraft KA, Inao S, Schwarz FP. In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn. Reson. Med.17(2), 402–413 (1991).
  • Labadie C, Lee JH, Jarchow S et al. Detection of the myelin water fraction in 4 Tesla longitudinal relaxation data by cross-regularized inverse laplace transform. Proc. Intl. Soc. Mag. Reson. Med.16, 2243 (2008).
  • Labadie C, Jochimsen TH, Lee J, Möller HE. Comparison of myelin water fraction in cross-regularized T1-relaxograms of normal white matter at 3T and 7T and of normal-appearing white matter at 3T Proc. Intl. Soc. Mag. Reson. Med.17, 3210 (2009).
  • Koenig SH, Brown RD 3rd, Spiller M, Lundbom N. Relaxometry of brain: why white matter appears bright in MRI. Magn. Reson. Med.14(3), 482–495 (1990).
  • Koenig SH, Brown RD 3rd, Adams D, Emerson D, Harrison CG. Magnetic field dependence of 1/T1 of protons in tissue. Invest. Radiol.19(2), 76–81 (1984).
  • Tofts PS, Jackson JS, Tozer DJ et al. Imaging cadavers: cold FLAIR and noninvasive brain thermometry using CSF diffusion. Magn. Reson. Med.59(1), 190–195 (2008).
  • Ogg RJ, Steen RG. Age-related changes in brain T1 are correlated with iron concentration. Magn. Reson. Med.40(5), 749–753 (1998).
  • Lacomis D, Osbakken M, Gross G. Spin-lattice relaxation (T1) times of cerebral white matter in multiple sclerosis. Magn. Reson. Med.3(2), 194–202 (1986).
  • Axel L. Relaxation times and NMR signals. Magn. Reson. Imaging2(2), 121–130 (1984).
  • van Walderveen MA, van Schijndel RA, Pouwels PJ, Polman CH, Barkhof F. Multislice T1 relaxation time measurements in the brain using IR-EPI: reproducibility, normal values, and histogram analysis in patients with multiple sclerosis. J. Magn. Reson. Imaging18(6), 656–664 (2003).
  • Wright PJ, Mougin OE, Totman JJ et al. Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA21(1–2), 121–130 (2008).
  • Bluml S, Schad LR, Stepanow B, Lorenz WJ. Spin-lattice relaxation time measurement by means of a TurboFLASH technique. Magn. Reson. Med.30(3), 289–295 (1993).
  • Dixon WT, Engels H, Castillo M, Sardashti M. Incidental magnetization transfer contrast in standard multislice imaging. Magn. Reson. Imaging8(4), 417–422 (1990).
  • Venkatesan R, Lin W, Haacke EM. Accurate determination of spin-density and T1 in the presence of RF-field inhomogeneities and flip-angle miscalibration. Magn. Reson. Med.40(4), 592–602 (1998).
  • Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn. Reson. Med.49(3), 515–526 (2003).
  • Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn. Reson. Med.53(1), 237–241 (2005).
  • Deoni SC. High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI). J. Magn. Reson. Imaging26(4), 1106–1111 (2007).
  • Ropele S, Fazekas F. Magnetization transfer MR imaging in multiple sclerosis. Neuroimaging Clin. N. Am.19(1), 27–36 (2009).
  • Fralix TA, Ceckler TL, Wolff SD, Simon SA, Balaban RS. Lipid bilayer and water proton magnetization transfer: effect of cholesterol. Magn. Reson. Med.18(1), 214–223 (1991).
  • Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn. Reson. Med.33(4), 475–482 (1995).
  • Sled JG, Pike GB. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn. Reson. Med.46(5), 923–931 (2001).
  • Ramani A, Dalton C, Miller DH, Tofts PS, Barker GJ. Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn. Reson. Imaging20(10), 721–731 (2002).
  • Yarnykh VL. Pulsed Z-spectroscopic imaging of cross-relaxation parameters in tissues for human MRI: theory and clinical applications. Magn. Reson. Med.47(5), 929–939 (2002).
  • Ropele S, Seifert T, Enzinger C, Fazekas F. Method for quantitative imaging of the macromolecular 1H fraction in tissues. Magn. Reson. Med.49(5), 864–871 (2003).
  • Bieri O, Scheffler K. SSFP signal with finite RF pulses. Magn. Reson. Med.62(5), 1232–1241 (2009).
  • Gloor M, Scheffler K, Bieri O. Quantitative magnetization transfer imaging using balanced SSFP. Magn. Reson. Med.60(3), 691–700 (2008).
  • Beaulieu C, Fenrich FR, Allen PS. Multicomponent water proton transverse relaxation and T2-discriminated water diffusion in myelinated and nonmyelinated nerve. Magn. Reson. Imaging16(10), 1201–1210 (1998).
  • MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn. Reson. Med.31(6), 673–677 (1994).
  • Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR. Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS. J. Magn. Reson. Imaging11(6), 586–595 (2000).
  • Moore GR, Leung E, MacKay AL et al. A pathology-MRI study of the short-T2 component in formalin-fixed multiple sclerosis brain. Neurology55(10), 1506–1510 (2000).
  • Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A. Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology35(2), 119–124 (1993).
  • Rinck PA, Meindl S, Higer HP, Bieler EU, Pfannenstiel P. Brain tumors: detection and typing by use of CPMG sequences and in vivo T2 measurements. Radiology157(1), 103–106 (1985).
  • Schneiders NJ, Post H, Brunner P, Ford J, Bryan RN, Willcott MR. Accurate T2 NMR images. Med. Phys.10(5), 642–645 (1983).
  • Jones CK, Xiang QS, Whittall KP, MacKay AL. Linear combination of multiecho data: short T2 component selection. Magn. Reson. Med.51(3), 495–502 (2004).
  • Hwang D, Du YP. Improved myelin water quantification using spatially regularized non-negative least squares algorithm. J. Magn. Reson. Imaging30(1), 203–208 (2009).
  • Whittall KP, MacKay AL. Quantitative interpretation of NMR relaxation data. J. Magn. Reson.84(1), 19 (1989).
  • Stewart WA, MacKay AL, Whittall KP, Moore GR, Paty DW. Spin-spin relaxation in experimental allergic encephalomyelitis. Analysis of CPMG data using a non-linear least squares method and linear inverse theory. Magn. Reson. Med.29(6), 767–775 (1993).
  • Pell GS, Briellmann RS, Waites AB, Abbott DF, Lewis DP, Jackson GD. Optimized clinical T2 relaxometry with a standard CPMG sequence. J. Magn. Reson. Imaging23(2), 248–252 (2006).
  • Poon CS, Henkelman RM. Practical T2 quantitation for clinical applications. J. Magn. Reson. Imaging2(5), 541–553 (1992).
  • Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn. Reson. Imaging24(1), 33–43 (2006).
  • Travis AR, Does MD. Selective excitation of myelin water using inversion-recovery-based preparations. Magn. Reson. Med.54(3), 743–747 (2005).
  • Vidarsson L, Conolly SM, Lim KO, Gold GE, Pauly JM. Echo time optimization for linear combination myelin imaging. Magn. Reson. Med.53(2), 398–407 (2005).
  • Lenz C, Klarhofer M, Scheffler K. Limitations of rapid myelin water quantification using 3D bSSFP. MAGMA23(3), 139–151 (2010).
  • Haacke EM, Cheng NY, House MJ et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn. Reson. Imaging23(1), 1–25 (2005).
  • Hwang D, Kim DH, Du YP. In vivo multi-slice mapping of myelin water content using T(2)(*) decay. Neuroimage52(1), 198–204 (2010).
  • Du YP, Chu R, Hwang D et al. Fast multislice mapping of the myelin water fraction using multicompartment analysis of T2* decay at 3T: a preliminary postmortem study. Magn. Reson. Med.58(5), 865–870 (2007).
  • Langkammer C, Krebs N, Goessler W et al. Quantitative MRI of brain iron: a postmortem validation study. Radiology257(2), 455–462 (2010).
  • Dahnke H, Schaeffter T. Limits of detection of SPIO at 3.0 T using T2 relaxometry. Magn. Reson. Med.53(5), 1202–1206 (2005).
  • Eissa A, Lebel RM, Korzan JR et al. Detecting lesions in multiple sclerosis at 4.7 Tesla using phase susceptibility-weighting and T2-weighting. J. Magn. Reson. Imaging30(4), 737–742 (2009).
  • Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am. J. Neuroradiol.30(2), 232–252 (2009).
  • Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am. J. Neuroradiol.30(1), 19–30 (2009).
  • Ormerod IE, Bronstein A, Rudge P et al. Magnetic resonance imaging in clinically isolated lesions of the brain stem. J. Neurol. Neurosurg. Psychiatry49(7), 737–743 (1986).
  • Stevenson VL, Parker GJ, Barker GJ et al. Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis. J. Neurol. Sci.178(2), 81–87 (2000).
  • Vavasour IM, Li DK, Laule C, Traboulsee AL, Moore GR, Mackay AL. Multi-parametric MR assessment of T(1) black holes in multiple sclerosis : evidence that myelin loss is not greater in hypointense versus isointense T(1) lesions. J. Neurol.254(12), 1653–1659 (2007).
  • Ropele S, Strasser-Fuchs S, Augustin M et al. A comparison of magnetization transfer ratio, magnetization transfer rate, and the native relaxation time of water protons related to relapsing–remitting multiple sclerosis. AJNR Am. J. Neuroradiol.21(10), 1885–1891 (2000).
  • Vrenken H, Geurts JJ, Knol DL et al. Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology240(3), 811–820 (2006).
  • Neema M, Goldberg-Zimring D, Guss ZD et al. 3 T MRI relaxometry detects T2 prolongation in the cerebral normal-appearing white matter in multiple sclerosis. Neuroimage46(3), 633–641 (2009).
  • Catalaa I, Grossman RI, Kolson DL et al. Multiple sclerosis: magnetization transfer histogram analysis of segmented normal-appearing white matter. Radiology216(2), 351–355 (2000).
  • Filippi M, Campi A, Dousset V et al. A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology45(3 Pt 1), 478–482 (1995).
  • Vrenken H, Geurts JJ, Knol DL et al. Normal-appearing white matter changes vary with distance to lesions in multiple sclerosis. AJNR Am. J. Neuroradiol.27(9), 2005–2011 (2006).
  • Laule C, Vavasour IM, Moore GR et al. Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J. Neurol.251(3), 284–293 (2004).
  • Davies GR, Tozer DJ, Cercignani M et al. Estimation of the macromolecular proton fraction and bound pool T2 in multiple sclerosis. Mult. Scler.10(6), 607–613 (2004).
  • Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS. Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn. Reson. Med.50(1), 83–91 (2003).
  • Schmierer K, Parkes HG, So PW et al. High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis. Brain133(Pt 3), 858–867 (2010).
  • Schmierer K, Wheeler-Kingshott CA, Tozer DJ et al. Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation. Magn. Reson. Med.59(2), 268–277 (2008).
  • Laule C, Leung E, Lis DK et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult. Scler.12(6), 747–753 (2006).
  • Dula AN, Gochberg DF, Valentine HL, Valentine WM, Does MD. Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord. Magn. Reson. Med.63(4), 902–909 (2010).
  • Dawe RJ, Bennett DA, Schneider JA, Vasireddi SK, Arfanakis K. Postmortem MRI of human brain hemispheres: T2 relaxation times during formaldehyde fixation. Magn. Reson. Med.61(4), 810–818 (2009).
  • Craelius W, Migdal MW, Luessenhop CP, Sugar A, Mihalakis I. Iron deposits surrounding multiple sclerosis plaques. Arch. Pathol. Lab. Med.106(8), 397–399 (1982).
  • LeVine SM. Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res.760(1–2), 298–303 (1997).
  • Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol.17(2), 210–218 (2007).
  • Neema M, Arora A, Healy BC et al. Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis. J. Neuroimaging19(1), 3–8 (2009).
  • Zhang Y, Zabad RK, Wei X, Metz LM, Hill MD, Mitchell JR. Deep grey matter ‘black T2’ on 3 Tesla magnetic resonance imaging correlates with disability in multiple sclerosis. Mult. Scler.13(7), 880–883 (2007).
  • Khalil M, Enzinger C, Langkammer C et al. Quantitative assessment of brain iron by R(2)* relaxometry in patients with clinically isolated syndrome and relapsing–remitting multiple sclerosis. Mult. Scler.15(9), 1048–1054 (2009).
  • Papadopoulos K, Tozer DJ, Fisniku L et al. TI-relaxation time changes over five years in relapsing–remitting multiple sclerosis. Mult. Scler.16(4), 427–433 (2010).
  • Davies GR, Hadjiprocopis A, Altmann DR et al. Normal-appearing grey and white matter T1 abnormality in early relapsing–remitting multiple sclerosis: a longitudinal study. Mult. Scler.13(2), 169–177 (2007).
  • Manfredonia F, Ciccarelli O, Khaleeli Z et al. Normal-appearing brain T1 relaxation time predicts disability in early primary progressive multiple sclerosis. Arch. Neurol.64(3), 411–415 (2007).
  • Parry A, Clare S, Jenkinson M, Smith S, Palace J, Matthews PM. MRI brain T1 relaxation time changes in MS patients increase over time in both the white matter and the cortex. J. Neuroimaging13(3), 234–239 (2003).
  • Fazekas F, Ropele S, Enzinger C, Seifert T, Strasser-Fuchs S. Quantitative magnetization transfer imaging of pre-lesional white-matter changes in multiple sclerosis. Mult. Scler.8(6), 479–484 (2002).
  • Giacomini PS, Levesque IR, Ribeiro L et al. Measuring demyelination and remyelination in acute multiple sclerosis lesion voxels. Arch. Neurol.66(3), 375–381 (2009).
  • Levesque IR, Giacomini PS, Narayanan S et al. Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions. Magn. Reson. Med.63(3), 633–640 (2010).
  • Vavasour IM, Laule C, Li DK et al. Longitudinal changes in myelin water fraction in two MS patients with active disease. J. Neurol. Sci.276(1–2), 49–53 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.