188
Views
30
CrossRef citations to date
0
Altmetric
Review

Importance of oligodendrocyte protection, BBB breakdown and inflammation for remyelination

, &
Pages 441-457 | Published online: 09 Jan 2014

References

  • Compston A, Coles A. Multiple sclerosis. Lancet359(9313), 1221–1231 (2002).
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N. Engl. J. Med.343(13), 938–952 (2000).
  • Raine CS, Scheinberg LC. On the immunopathology of plaque development and repair in multiple sclerosis. J. Neuroimmunol.20(2–3), 189–201 (1988).
  • Paterson PY. Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J. Exp. Med.111, 119–136 (1960).
  • Ben-Nun A, Wekerle H, Cohen IR. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol.11(3), 195–199 (1981).
  • Rodriguez M, Scheithauer BW, Forbes G, Kelly PJ. Oligodendrocyte injury is an early event in lesions of multiple sclerosis. Mayo Clin. Proc.68(7), 627–636 (1993).
  • Rodriguez M, Scheithauer B. Ultrastructure of multiple sclerosis. Ultrastruct. Pathol.18(1–2), 3–13 (1994).
  • Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol.55(4), 458–468 (2004).
  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol.47(6), 707–717 (2000).
  • Lipton HL, Liang Z, Hertzler S, Son KN. A specific viral cause of multiple sclerosis: one virus, one disease. Ann. Neurol.61(6), 514–523 (2007).
  • Ozawa K, Suchanek G, Breitschopf H et al. Patterns of oligodendroglia pathology in multiple sclerosis. Brain117(Pt 6), 1311–1322 (1994).
  • Wolswijk G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain123(Pt 1), 105–115 (2000).
  • Wolswijk G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J. Neurosci.18(2), 601–609 (1998).
  • Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Brück W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain131(Pt 7), 1749–1758 (2008).
  • Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med.346(3), 165–173 (2002).
  • Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci.20(17), 6404–6412 (2000).
  • Peterson JW, Bö L, Mörk S, Chang A, Ransohoff RM, Trapp BD. VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J. Neuropathol. Exp. Neurol.61(6), 539–546 (2002).
  • Dowling P, Husar W, Menonna J, Donnenfeld H, Cook S, Sidhu M. Cell death and birth in multiple sclerosis brain. J. Neurol. Sci.149(1), 1–11 (1997).
  • Breij EC, Brink BP, Veerhuis R et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann. Neurol.63(1), 16–25 (2008).
  • Bonetti B, Raine CS. Multiple sclerosis: oligodendrocytes display cell death-related molecules in situ but do not undergo apoptosis. Ann. Neurol.42(1), 74–84 (1997).
  • Cannella B, Gaupp S, Omari KM, Raine CS. Multiple sclerosis: death receptor expression and oligodendrocyte apoptosis in established lesions. J. Neuroimmunol.188(1–2), 128–137 (2007).
  • Raine CS. Multiple sclerosis: classification revisited reveals homogeneity and recapitulation. Ann. Neurol.63(1), 1–3 (2008).
  • Ming X, Li W, Maeda Y et al. Caspase-1 expression in multiple sclerosis plaques and cultured glial cells. J. Neurol. Sci.197(1–2), 9–18 (2002).
  • Hisahara S, Yuan J, Momoi T, Okano H, Miura M. Caspase-11 mediates oligodendrocyte cell death and pathogenesis of autoimmune-mediated demyelination. J. Exp. Med.193(1), 111–122 (2001).
  • Furlan R, Martino G, Galbiati F et al. Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J. Immunol.163(5), 2403–2409 (1999).
  • Hisahara S, Araki T, Sugiyama F et al. Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J.19(3), 341–348 (2000).
  • Neumann H, Medana IM, Bauer J, Lassmann H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci.25(6), 313–319 (2002).
  • Neumann H. Molecular mechanisms of axonal damage in inflammatory central nervous system diseases. Curr. Opin. Neurol.16(3), 267–273 (2003).
  • Jurewicz A, Biddison WE, Antel JP. MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J. Immunol.160(6), 3056–3059 (1998).
  • Saxena A, Bauer J, Scheikl T et al. Cutting edge: multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. J. Immunol.181(3), 1617–1621 (2008).
  • Antel JP, McCrea E, Ladiwala U, Qin YF, Becher B. Non-MHC-restricted cell-mediated lysis of human oligodendrocytes in vitro: relation with CD56 expression. J. Immunol.160(4), 1606–1611 (1998).
  • Hestvik AL, Skorstad G, Vartdal F, Holmøy T. Idiotope-specific CD4(+) T cells induce apoptosis of human oligodendrocytes. J. Autoimmun.32(2), 125–132 (2009).
  • Traugott U, Raine CS. Further lymphocyte characterization in the central nervous system in multiple sclerosis. Ann. NY Acad. Sci.436, 163–180 (1984).
  • Wucherpfennig KW, Newcombe J, Li H, Keddy C, Cuzner ML, Hafler DA. γδ T-cell receptor repertoire in acute multiple sclerosis lesions. Proc. Natl Acad. Sci. USA89(10), 4588–4592 (1992).
  • Morse RH, Séguin R, McCrea EL, Antel JP. NK cell-mediated lysis of autologous human oligodendrocytes. J. Neuroimmunol.116(1), 107–115 (2001).
  • Selmaj K, Brosnan CF, Raine CS. Colocalization of lymphocytes bearing g d T-cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple sclerosis. Proc. Natl Acad. Sci. USA88(15), 6452–6456 (1991).
  • Zeine R, Pon R, Ladiwala U, Antel JP, Filion LG, Freedman MS. Mechanism of γδ T cell-induced human oligodendrocyte cytotoxicity: relevance to multiple sclerosis. J. Neuroimmunol.87(1–2), 49–61 (1998).
  • Zeine R, Cammer W, Barbarese E, Liu CC, Raine CS. Structural dynamics of oligodendrocyte lysis by perforin in culture: relevance to multiple sclerosis. J. Neurosci. Res.64(4), 380–391 (2001).
  • Chavez-Galan L, Arenas-Del Angel MC, Zenteno E, Chávez R, Lascurain R. Cell death mechanisms induced by cytotoxic lymphocytes. Cell. Mol. Immunol.6(1), 15–25 (2009).
  • Mannick JB. Immunoregulatory and antimicrobial effects of nitrogen oxides. Proc. Am. Thorac. Soc.3(2), 161–165 (2006).
  • Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev.43(2), 109–142 (1991).
  • Lim W, Kim JH, Gook E et al. Inhibition of mitochondria-dependent apoptosis by 635-nm irradiation in sodium nitroprusside-treated SH-SY5Y cells. Free Radic. Biol. Med.47(6), 850–857 (2009).
  • Smith KJ, Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol.1(4), 232–241 (2002).
  • Brown GC, Borutaiten V. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic. Biol. Med.33(11), 1440–1450 (2002).
  • Brown GC, Borutaite V. Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem. Soc. Trans.34(Pt 5), 953–956 (2006).
  • Bo L, Dawson TM, Wesselingh S et al. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol.36(5), 778–786 (1994).
  • Forstermann U, Gath I, Schwarz P, Closs EI, Kleinert H. Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem. Pharmacol.50(9), 1321–1332 (1995).
  • Forstermann U, Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schmiedebergs Arch. Pharmacol.352(4), 351–364 (1995).
  • Forstermann U, Kleinert H, Gath I, Schwarz P, Closs EI, Dun NJ. Expression and expressional control of nitric oxide synthases in various cell types. Adv. Pharmacol.34, 171–186 (1995).
  • Giovannoni G, Heales SJ, Land JM, Thompson EJ. The potential role of nitric oxide in multiple sclerosis. Mult. Scler.4(3), 212–216 (1998).
  • Bitsch A, Wegener C, da Costa C et al. Lesion development in Marburg’s type of acute multiple sclerosis: from inflammation to demyelination. Mult. Scler.5(3), 138–146 (1999).
  • Hill KE, Wegener C, da Costa C. Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage. J. Neuroimmunol.151(1–2), 171–179 (2004).
  • Liu JS, Zhao ML, Brosnan CF, Lee SC. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am. J. Pathol.158(6), 2057–2066 (2001).
  • Oleszak EL, Zaczynska E, Bhattacharjee M, Butunoi C, Legido A, Katsetos CD. Inducible nitric oxide synthase and nitrotyrosine are found in monocytes/macrophages and/or astrocytes in acute, but not in chronic, multiple sclerosis. Clin. Diagn. Lab. Immunol.5(4), 438–445 (1998).
  • Brune B. The intimate relation between nitric oxide and superoxide in apoptosis and cell survival. Antioxid. Redox Signal.7(3–4), 497–507 (2005).
  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health, disease. Physiol. Rev.87(1), 315–424 (2007).
  • Brune B, Schneiderhan N. Nitric oxide evoked p53-accumulation and apoptosis. Toxicol. Lett.139(2–3), 119–123 (2003).
  • Vousden KH, Lane DP. p53 in health and disease. Nat. Rev. Mol. Cell. Biol.8(4), 275–283 (2007).
  • Lee HS, Namkoong K, Kim DH. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc. Res.68(3), 231–238 (2004).
  • Van der Goes A, Wouters D, Van Der Pol SM. Reactive oxygen species enhance the migration of monocytes across the blood–brain barrier in vitro.FASEB J.15(10), 1852–1854 (2001).
  • Van der Goes A, Brouwer J, Hoekstra K, Roos D, van den Berg TK, Dijkstra CD. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J. Neuroimmunol.92(1–2), 67–75 (1998).
  • Mronga T, Stahnke T, Goldbaum O, Richter-Landsberg. Mitochondrial pathway is involved in hydrogen-peroxide-induced apoptotic cell death of oligodendrocytes. Glia46(4), 446–455 (2004).
  • van Meeteren ME, Hendriks JJ, Dijkstra CD, van Tol EA. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem. Pharmacol.67(5), 967–975 (2004).
  • Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J. Neurol.251(3), 261–268 (2004).
  • Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD. Macrophages and neurodegeneration. Brain Res. Brain Res. Rev.48(2), 185–195 (2005).
  • Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol. Immunotoxicol.31(1), 13–29 (2009).
  • van Horssen J, Schreibelt G, Drexhage J. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med.45(12), 1729–1737 (2008).
  • Chabot S, Williams G, Yong VW. Microglial production of TNF-α is induced by activated T lymphocytes. Involvement of VLA-4 and inhibition by interferonβ-1b. J. Clin. Invest.100(3), 604–612 (1997).
  • Heppner FL, Greter M, Marino D. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med.11(2), 146–152 (2005).
  • Akassoglou K, Bauer J, Kassiotis G et al. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am. J. Pathol.153(3), 801–813 (1998).
  • Selmaj KW, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro.Ann. Neurol.23(4), 339–346 (1988).
  • Robbins DS, Shirazi Y, Drysdale BE, Lieberman A, Shin HS, Shin ML. Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J. Immunol.139(8), 2593–2597 (1987).
  • Jurewicz A, Matysiak M, Tybor K, Kilianek L, Raine CS, Selmaj K. Tumour necrosis factor-induced death of adult human oligodendrocytes is mediated by apoptosis inducing factor. Brain128(Pt 11), 2675–2688 (2005).
  • Louis JC, Magal E, Takayama S, Varon S. CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death. Science259(5095), 689–692 (1993).
  • Hisahara S, Shoji S, Okano H, Miura M. ICE/CED-3 family executes oligodendrocyte apoptosis by tumor necrosis factor. J. Neurochem.69(1), 10–20 (1997).
  • Daugas E, Susin SA, Zamzami N et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J.14(5), 729–739 (2000).
  • Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D. Mitochondrial endonuclease G is important for apoptosis in C. elegans.Nature412(6842), 90–94 (2001).
  • Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature412(6842), 95–99 (2001).
  • Bonetti B, Stegagno C, Cannella B, Rizzuto N, Moretto G, Raine CS. Activation of NF-κB and c-jun transcription factors in multiple sclerosis lesions. Implications for oligodendrocyte pathology. Am. J. Pathol.155(5), 1433–1438 (1999).
  • Jurewicz A, Matysiak M, Tybor K, Selmaj K. TNF-induced death of adult human oligodendrocytes is mediated by c-jun NH2-terminal kinase-3. Brain126(Pt 6), 1358–1370 (2003).
  • Howe CL, Bieber AJ, Warrington AE, Pease LR, Rodriguez M. Antiapoptotic signaling by a remyelination-promoting human antimyelin antibody. Neurobiol. Dis.15(1), 120–131 (2004).
  • Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol.151(4), 2132–2141 (1993).
  • Mohan N, Edwards ET, Cupps TR et al. Demyelination occurring during anti-tumor necrosis factor a therapy for inflammatory arthritides. Arthritis Rheum.44(12), 2862–2869 (2001).
  • Tanno M, Nakamura I, Kobayashi S, Kurihara K, Ito K. New-onset demyelination induced by infliximab therapy in two rheumatoid arthritis patients. Clin. Rheumatol.25(6), 929–933 (2006).
  • Lozeron P, Denier C, Lacroix C, Adams D. Long-term course of demyelinating neuropathies occurring during tumor necrosis factor-α-blocker therapy. Arch. Neurol.66(4), 490–497 (2009).
  • Sharma K, Wang RX, Zhang LY et al. Death the Fas way: regulation and pathophysiology of CD95 and its ligand. Pharmacol. Ther.88(3), 333–347 (2000).
  • D’Souza SD, Bonetti B, Balasingam V et al. Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J. Exp. Med.184(6), 2361–2370 (1996).
  • Dowling P, Shang G, Raval S, Menonna J, Cook S, Husar W. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain. J. Exp. Med.184(4), 1513–1518 (1996).
  • Bonetti B, Pohl J, Gao YL, Raine CS. Cell death during autoimmune demyelination: effector but not target cells are eliminated by apoptosis. J. Immunol.159(11), 5733–5741 (1997).
  • Pouly S, Becher B, Blain M, Antel JP. Interferon-g modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J. Neuropathol. Exp. Neurol.59(4), 280–286 (2000).
  • Li W, Maeda Y, Ming X et al. Apoptotic death following Fas activation in human oligodendrocyte hybrid cultures. J. Neurosci. Res.69(2), 189–196 (2002).
  • Wosik K, Antel J, Kuhlmann T, Brück W, Massie B, Nalbantoglu J. Oligodendrocyte injury in multiple sclerosis: a role for p53. J. Neurochem.85(3), 635–644 (2003).
  • Speidel D. Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell. Biol. doi:10.1016/j.tcb.2009.10.002 (2009) (Epub ahead of print).
  • Hoffmann O, Zipp F, Weber JR. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in central nervous system inflammation. J. Mol. Med.87(8), 753–763 (2009).
  • Bodmer JL, Burns K, Schneider P et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity6(1), 79–88 (1997).
  • Wiley SR, Schooley K, Smolak PJ et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity3(6), 673–682 (1995).
  • Walczak H, Degli-Esposti MA, Johnson RS et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J.16(17), 5386–5397 (1997).
  • Sheridan JP, Marsters SA, Pitti RM et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science277(5327), 818–821 (1997).
  • Pan G, O’Rourke K, Chinnaiyan AM et al. The receptor for the cytotoxic ligand TRAIL. Science276(5309), 111–113 (1997).
  • Degli-Esposti MA, Smolak PJ, Walczak H et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med.186(7), 1165–1170 (1997).
  • Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG. The novel receptor TRAIL-R4 induces NF-κB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity7(6), 813–820 (1997).
  • Harrison DC, Roberts J, Campbell CA et al. TR3 death receptor expression in the normal and ischaemic brain. Neuroscience96(1), 147–160 (2000).
  • Matysiak M, Jurewicz A, Jaskolski D, Selmaj K. TRAIL induces death of human oligodendrocytes isolated from adult brain. Brain125(Pt 11), 2469–2480 (2002).
  • Jurewicz A, Matysiak M, Andrzejak S, Selmaj K. TRAIL-induced death of human adult oligodendrocytes is mediated by JNK pathway. Glia53(2), 158–166 (2006).
  • Schoenborn JR, Wilson CB. Regulation of interferon-g during innate and adaptive immune responses. Adv. Immunol.96, 41–101 (2007).
  • Sanders P, De Keyser J. Janus faces of microglia in multiple sclerosis. Brain Res. Rev.54(2), 274–285 (2007).
  • Lin W, Bailey SL, Ho H et al.The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J. Clin. Invest.117(2), 448–456 (2007).
  • Furlan R, Brambilla E, Ruffini F et al. Intrathecal delivery of IFN-γ protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J. Immunol.167(3), 1821–1829 (2001).
  • Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol.157(8), 3223–3227 (1996).
  • Willenborg DO, Fordham SA, Staykova MA, Ramshaw IA, Cowden WB. IFN-γ is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J. Immunol.163(10), 5278–5286 (1999).
  • Butovsky O, Talpatar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol. Cell. Neurosci.29(3), 381–393 (2005).
  • Panitch HS, Hirsch RL, Schindler J, Johnson KP. Treatment of multiple sclerosis with g interferon: exacerbations associated with activation of the immune system. Neurology37(7), 1097–1102 (1987).
  • Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with γ interferon. Lancet1(8538), 893–895 (1987).
  • Andrews T, Zhang P, Bhat NR. TNFa potentiates IFN-γ-induced cell death in oligodendrocyte progenitors. J. Neurosci. Res.54(5), 574–583 (1998).
  • Lin W, Kemper A, Dupree JL, Harding HP, Ron D, Popko B. Interferon-g inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain129(Pt 5), 1306–1318 (2006).
  • Werner P, Pitt D, Raine CS. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann. Neurol.50(2), 169–180 (2001).
  • Pitt D, Werner P, Raine CS. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med.6(1), 67–70 (2000).
  • Sanchez-Gomez MV, Alberdi E, Ibarretxe G, Torre I, Matute C. Caspase-dependent and caspase-independent oligodendrocyte death mediated by AMPA and kainate receptors. J. Neurosci.23(29), 9519–9528 (2003).
  • Matute C, Sánchez-Gómez MV, Martínez-Millán L, Miledi R. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc. Natl Acad. Sci. USA94(16), 8830–8835 (1997).
  • Smith T, Groom A, Zhu B, Turski L et al. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat. Med.6(1), 62–66 (2000).
  • Alberdi E, Sánchez-Gómez MV, Torre I et al. Activation of kainate receptors sensitizes oligodendrocytes to complement attack. J. Neurosci.26(12), 3220–3228 (2006).
  • Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci.24(4), 224–320 (2001).
  • Blakemore WF. Pattern of remyelination in the CNS. Nature249(457), 577–578 (1974).
  • Ludwin SK, Maitland M. Long-term remyelination fails to reconstitute normal thickness of central myelin sheaths. J. Neurol. Sci.64(2), 193–198 (1984).
  • Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJ. Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol.13(3), 329–339 (2003).
  • Di Bello IC, Dawson MR, Levine JM, Reynolds R. Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation. J. Neurocytol.28(4–5), 365–381 (1999).
  • Levine JM, Reynolds R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp. Neurol.160(2), 333–347 (1999).
  • Miller DJ, Rodriguez M. Spontaneous central nervous system remyelination in strain A mice after infection with the Daniel’s (DA) strain of Theiler’s virus. Acta Neuropathol.91(6), 559–565 (1996).
  • Reynolds R, Wilkin GP. Cellular reaction to an acute demyelinating/remyelinating lesion of the rat brain stem: localisation of γδ3 ganglioside immunoreactivity. J. Neurosci. Res.36(4), 405–422 (1993).
  • Jeffery ND, Blakemore WF. Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain120(Pt 1), 27–37 (1997).
  • Murray PD, McGavern DB, Sathornsumetee S, Rodriguez M. Spontaneous remyelination following extensive demyelination is associated with improved neurological function in a viral model of multiple sclerosis. Brain124(Pt 7), 1403–1416 (2001).
  • Prineas JW, Kwon EE, Cho ES, Sharer LR. Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques. Ann. NY Acad. Sci.436, 11–32 (1984).
  • Prineas JW, Connell F. Remyelination in multiple sclerosis. Ann. Neurol.5(1), 22–31 (1979).
  • Lucchinetti CF, Brück W, Rodriguez M, Lassmann H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol.6(3), 259–274 (1996).
  • Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho ES. Multiple sclerosis: remyelination of nascent lesions. Ann. Neurol.33(2), 137–151 (1993).
  • Raine CS, Wu E. Multiple sclerosis: remyelination in acute lesions. J. Neuropathol. Exp. Neurol.52(3), 199–204 (1993).
  • Perier O, Gregoire A. Electron microscopic features of multiple sclerosis lesions. Brain88(5), 937–952 (1965).
  • Patani R, Balaratnam M, Vora A, Reynolds R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol.33(3), 277–287 (2007).
  • Carroll WM, Jennings AR. Early recruitment of oligodendrocyte precursors in CNS demyelination. Brain117(Pt 3), 563–578 (1994).
  • Gensert JM, Goldman JE. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron19(1), 197–203 (1997).
  • Horner PJ, Power AE, Kempermann G et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci.20(6), 2218–2228 (2000).
  • Watanabe M, Toyama Y, Nishiyama A. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J. Neurosci. Res.69(6), 826–836 (2002).
  • Zhang SC, Ge B, Duncan ID. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc. Natl Acad. Sci. USA96(7), 4089–4094 (1999).
  • Windrem MS, Roy NS, Wang J et al. Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J. Neurosci. Res.69(6), 966–975 (2002).
  • Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB. Co-localization of NG2 proteoglycan and PDGF α-receptor on O2A progenitor cells in the developing rat brain. J. Neurosci. Res.43(3), 299–314 (1996).
  • Dawson MR, Levine JM, Reynolds R. NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J. Neurosci. Res.61(5), 471–479 (2000).
  • Dawson MR, Polito A, Levine JM, Reynolds R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci.24(2), 476–488 (2003).
  • Keirstead HS, Blakemore WF. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J. Neuropathol. Exp. Neurol.56(11), 1191–1201 (1997).
  • Targett MP, Sussman J, Scolding N, O’Leary MT, Compston DA, Blakemore WF. Failure to achieve remyelination of demyelinated rat axons following transplantation of glial cells obtained from the adult human brain. Neuropathol. Appl. Neurobiol.22(3), 199–206 (1996).
  • Rhodes KE, Raivich G, Fawcett JW. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience140(1), 87–100 (2006).
  • Fitch MT, Silver J. Activated macrophages and the blood–brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp. Neurol.148(2), 587–603 (1997).
  • Hampton DW, Rhodes KE, Zhao C, Franklin RJ, Fawcett JW. The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience127(4), 813–820 (2004).
  • Wilson HC, Scolding NJ, Raine CS. Co-expression of PDGF α receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J. Neuroimmunol.176(1–2), 162–173 (2006).
  • Schonrock LM, Kuhlmann T, Adler S, Bitsch A, Brück W. Identification of glial cell proliferation in early multiple sclerosis lesions. Neuropathol. Appl. Neurobiol.24(4), 320–330 (1998).
  • Dumoulin FL, Raivich G, Streit WJ, Kreutzberg GW. Differential regulation of calcitonin gene-related peptide (CGRP) in regenerating rat facial nucleus and dorsal root ganglion. Eur. J. Neurosci.3(4), 338–342 (1991).
  • Raivich G, Moreno-Flores MT, Möller JC, Kreutzberg GW. Inhibition of posttraumatic microglial proliferation in a genetic model of macrophage colony-stimulating factor deficiency in the mouse. Eur. J. Neurosci.6(10), 1615–1618 (1994).
  • Raivich G, Jones LL, Kloss CU, Werner A, Neumann H, Kreutzberg GW. Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J. Neurosci.18(15), 5804–5816 (1998).
  • Raivich G, Gehrmann J, Kreutzberg GW. Increase of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor receptors in the regenerating rat facial nucleus. J. Neurosci. Res.30(4), 682–686 (1991).
  • Werner A, Kloss CU, Walter J, Kreutzberg GW, Raivich G. Intercellular adhesion molecule-1 (ICAM-1) in the mouse facial motor nucleus after axonal injury and during regeneration. J. Neurocytol.27(4), 219–232 (1998).
  • Morioka T, Streit WJ. Expression of immunomolecules on microglial cells following neonatal sciatic nerve axotomy. J. Neuroimmunol.35(1–3), 21–30 (1991).
  • Kloss CU, Werner A, Klein MA et al. Integrin family of cell adhesion molecules in the injured brain: regulation and cellular localization in the normal and regenerating mouse facial motor nucleus. J. Comp. Neurol.411(1), 162–178 (1999).
  • Jones LL, Liu Z, Shen J, Werner A, Kreutzberg GW, Raivich G. Regulation of the cell adhesion molecule CD44 after nerve transection and direct trauma to the mouse brain. J. Comp. Neurol.426(3), 468–492 (2000).
  • Redwine JM, Armstrong RC. In vivo proliferation of oligodendrocyte progenitors expressing PDGFaR during early remyelination. J. Neurobiol.37(3), 413–428 (1998).
  • Ong WY, Levine JM. A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate-lesioned rat hippocampus. Neuroscience92(1), 83–95 (1999).
  • McTigue DM, Wei P, Stokes BT. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J. Neurosci.21(10), 3392–3400 (2001).
  • Levine JM, Enquist LW, Card JP. Reactions of oligodendrocyte precursor cells to a herpesvirus infection of the central nervous system. Glia23(4), 316–328 (1998).
  • Levine JM. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J. Neurosci.14(8), 4716–4730 (1994).
  • Keirstead HS, Levine JM, Blakemore WF. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia22(2), 161–170 (1998).
  • Watanabe M, Hadzic T, Nishiyama A. Transient upregulation of Nkx2.2 expression in oligodendrocyte lineage cells during remyelination. Glia46(3), 311–322 (2004).
  • Vana AC, Flint NC, Harwood NE, Le TQ, Fruttiger M, Armstrong RC. Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J. Neuropathol. Exp. Neurol.66(11), 975–988 (2007).
  • Talbott JF, Loy DN, Liu Y et al. Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. Exp. Neurol.192(1), 11–24 (2005).
  • Shen S, Sandoval J, Swiss VA et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat. Neurosci.11(9), 1024–1034 (2008).
  • Fancy SP, Zhao C, Franklin RJ. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol. Cell. Neurosci.27(3), 247–254 (2004).
  • Jones LL, Yamaguchi Y, Stallcup WB, Tuszynski MH. NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J. Neurosci.22(7), 2792–2803 (2002).
  • Bakker DA, Ludwin SK. Blood–brain barrier permeability during Cuprizone-induced demyelination. Implications for the pathogenesis of immune-mediated demyelinating diseases. J. Neurol. Sci.78(2), 125–137 (1987).
  • Kumar S, Biancotti JC, Yamaguchi M, de Vellis J. Combination of growth factors enhances remyelination in a cuprizone-induced demyelination mouse model. Neurochem. Res.32(4–5), 783–797 (2007).
  • Woodruff RH, Fruttiger M, Richardson WD, Franklin RJ. Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol. Cell. Neurosci.25(2), 252–262 (2004).
  • Rhodes KE, Moon LD, Fawcett JW. Inhibiting cell proliferation during formation of the glial scar: effects on axon regeneration in the CNS. Neuroscience120(1), 41–56 (2003).
  • Ong WY, Garey LJ. A light and electron microscopic study of GluR4-positive cells in human cerebral cortex. Neurosci. Lett.210(2), 107–110 (1996).
  • Butt AM, Kiff J, Hubbard P, Berry M. Synantocytes: new functions for novel NG2 expressing glia. J. Neurocytol.31(6–7), 551–565 (2002).
  • Butt AM, Duncan A, Hornby MF. Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia26(1), 84–91 (1999).
  • Bergles DE, Roberts JD, Somogyi P, Jahr CE. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature405(6783), 187–191 (2000).
  • McQuaid S, Cunnea P, McMahon J, Fitzgerald U. The effects of blood–brain barrier disruption on glial cell function in multiple sclerosis. Biochem. Soc. Trans.37(Pt 1), 329–331 (2009).
  • Broman T. Blood–brain barrier damage in multiple sclerosis supravital test-observations. Acta Neurol. Scand. Suppl.40(Suppl. 10), 21–24 (1964).
  • Gay D, Esiri M. Blood–brain barrier damage in acute multiple sclerosis plaques. An immunocytological study. Brain114 (Pt 1B), 557–572 (1991).
  • Kwon EE, Prineas JW. Blood–brain barrier abnormalities in longstanding multiple sclerosis lesions. An immunohistochemical study. J. Neuropathol. Exp. Neurol.53(6), 625–636 (1994).
  • Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood–brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol.90(3), 228–238 (1995).
  • Lassmann H, Schwerer B, Kitz K, Egghart M, Bernheimer H. Pathogenetic aspects of demyelinating lesions in chronic relapsing experimental allergic encephalomyelitis: possible interaction of cellular and humoral immune mechanisms. Prog. Brain. Res.59, 305–315 (1983).
  • Engelhardt B, Vestweber D, Hallmann R, Schulz M. E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood–brain barrier in experimental autoimmune encephalomyelitis. Blood90(11), 4459–4472 (1997).
  • Vos CM, Geurts JJ, Montagne L et al. Blood–brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol. Dis.20(3), 953–960 (2005).
  • Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ. Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain130(Pt 11), 2800–2815 (2007).
  • Kermode AG, Thompson AJ, Tofts P et al. Breakdown of the blood–brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain113(Pt 5), 1477–1489 (1990).
  • Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol.43(6), 809–814 (1998).
  • Furtado GC, Piña B, Tacke F et al. A novel model of demyelinating encephalomyelitis induced by monocytes and dendritic cells. J. Immunol.177(10), 6871–6879 (2006).
  • Adams R.A, Bauer J, Flick MJ et al. The fibrin-derived g377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J. Exp. Med.204(3), 571–582 (2007).
  • Sobel RA, Mitchell ME. Fibronectin in multiple sclerosis lesions. Am. J. Pathol.135(1), 161–168 (1989).
  • Sobel RA, Chen M, Maeda A, Hinojoza JR. Vitronectin and integrin vitronectin receptor localization in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol.54(2), 202–213 (1995).
  • Sobel RA. The extracellular matrix in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol.57(3), 205–217 (1998).
  • Milner R, Crocker SJ, Hung S, Wang X, Frausto RF, del Zoppo GJ. Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins α5β1 and αvβ5. J. Immunol.178(12), 8158–8167 (2007).
  • Larsen PH, Wells JE, Stallcup WB, Opdenakker G, Yong VW. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci.23(35), 11127–11135 (2003).
  • Fidler PS, Schuette K, Asher RA et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci.19(20), 8778–8788 (1999).
  • Dou CL, Levine JM. Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J. Neurosci.14(12), 7616–7628 (1994).
  • Polito A, Reynolds R. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J. Anat.207(6), 707–716 (2005).
  • Prineas JW, Kwon EE, Goldenberg PZ et al. Multiple sclerosis. Oligodendrocyte proliferation and differentiation in fresh lesions. Lab. Invest.61(5), 489–503 (1989).
  • Messersmith DJ, Murtie JC, Le TQ, Frost EE, Armstrong RC. Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. J. Neurosci. Res.62(2), 241–256 (2000).
  • Hinks GL, Franklin RJ. Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-β1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol. Cell. Neurosci.14(2), 153–168 (1999).
  • Crockett DP, Burshteyn M, Garcia C, Muggironi M, Casaccia-Bonnefil P. Number of oligodendrocyte progenitors recruited to the lesioned spinal cord is modulated by the levels of the cell cycle regulatory protein p27Kip-1. Glia49(2), 301–308 (2005).
  • Richardson WD, Burshteyn M, Garcia C, Muggironi M, Casaccia-Bonnefil P. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell53(2), 309–319 (1988).
  • McKinnon RD, Matsui T, Dubois-Dalcq M, Aaronson SA. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron5(5), 603–614 (1990).
  • McMorris FA, Dubois-Dalcq M. Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro.J. Neurosci. Res.21(2–4), 199–209 (1988).
  • Milner R, Anderson HJ, Rippon RF et al. Contrasting effects of mitogenic growth factors on oligodendrocyte precursor cell migration. Glia19(1), 85–90 (1997).
  • Milner R. Understanding the molecular basis of cell migration; implications for clinical therapy in multiple sclerosis. Clin. Sci. (Lond.)92(2), 113–122 (1997).
  • Armstrong RC, Harvath L, Dubois-Dalcq M. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J. Neurosci. Res.27(3), 400–407 (1990).
  • Barres BA, Hart IK, Coles HS et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell70(1), 31–46 (1992).
  • Wolswijk G, Noble M. Cooperation between PDGF and FGF converts slowly dividing O-2A adult progenitor cells to rapidly dividing cells with characteristics of O-2A perinatal progenitor cells. J. Cell. Biol.118(4), 889–900 (1992).
  • Engel U, Wolswijk G. Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristics and response to PDGF, bFGF and NT-3. Glia16(1), 16–26 (1996).
  • Zhou YX, Flint NC, Murtie JC, Le TQ, Armstrong RC. Retroviral lineage analysis of fibroblast growth factor receptor signaling in FGF2 inhibition of oligodendrocyte progenitor differentiation. Glia54(6), 578–590 (2006).
  • Murtie JC, Zhou YX, Le TQ, Vana AC, Armstrong RC. PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol. Dis.19(1–2), 171–182 (2005).
  • Armstrong RC, Le TQ, Frost EE, Borke RC, Vana AC. Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter. J. Neurosci.22(19), 8574–8585 (2002).
  • Mason JL, Xuan S, Dragatsis I, Efstratiadis A, Goldman JE. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J. Neurosci.23(20), 7710–7718 (2003).
  • Ye P, D’Ercole AJ. Insulin-like growth factor I protects oligodendrocytes from tumor necrosis factor-α-induced injury. Endocrinology140(7), 3063–3072 (1999).
  • Mason JL, Ye P, Suzuki K, D’Ercole AJ, Matsushima GK. Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyelination. J. Neurosci.20(15), 5703–5708 (2000).
  • Barres BA, Schmid R, Sendnter M, Raff MC. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development118(1), 283–295 (1993).
  • Mozell RL, McMorris FA. Insulin-like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures. J. Neurosci. Res.30(2), 382–390 (1991).
  • Mason JL, Goldman JE. A2B5+ and O4+ Cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol. Cell. Neurosci.20(1), 30–42 (2002).
  • Yao DL, West NR, Bondy CA et al. Cryogenic spinal cord injury induces astrocytic gene expression of insulin-like growth factor I and insulin-like growth factor binding protein 2 during myelin regeneration. J. Neurosci. Res.40(5), 647–659 (1995).
  • Mason JL, Jones JJ, Taniike M, Morell P, Suzuki K, Matsushima GK. Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J. Neurosci. Res.61(3), 251–262 (2000).
  • Liu X, Yao DL, Bondy CA et al. Astrocytes express insulin-like growth factor-I (IGF-I) and its binding protein, IGFBP-2, during demyelination induced by experimental autoimmune encephalomyelitis. Mol. Cell. Neurosci.5(5), 418–430 (1994).
  • Ludwin SK. Chronic demyelination inhibits remyelination in the central nervous system. An analysis of contributing factors. Lab. Invest.43(4), 382–387 (1980).
  • Graca DL, Blakemore WF. Delayed remyelination in rat spinal cord following ethidium bromide injection. Neuropathol. Appl. Neurobiol.12(6), 593–605 (1986).
  • Njenga MK, Murray PD, McGavern D, Lin X, Drescher KM, Rodriguez M. Absence of spontaneous central nervous system remyelination in class II-deficient mice infected with Theiler’s virus. J. Neuropathol. Exp. Neurol.58(1), 78–91 (1999).
  • Mason JL, Suzuki K, Chaplin DD, Matsushima GK. Interleukin-1b promotes repair of the CNS. J. Neurosci.21(18), 7046–7052 (2001).
  • Li WW, Setzu A, Zhao C, Franklin RJ. Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J. Neuroimmunol.158(1–2), 58–66 (2005).
  • Kotter MR, Zhao C, van Rooijen N, Franklin RJ. Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol. Dis.18(1), 166–175 (2005).
  • Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJ. Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia35(3), 204–212 (2001).
  • Bieber AJ, Kerr S, Rodriguez M. Efficient central nervous system remyelination requires T cells. Ann. Neurol.53(5), 680–684 (2003).
  • Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP. Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J. Neurosci.23(30), 9824–9832 (2003).
  • Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF α promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci.4(11), 1116–11122 (2001).
  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain122(Pt 12), 2279–2295 (1999).
  • Biancotti JC, Kumar S, de Vellis J. Activation of inflammatory response by a combination of growth factors in cuprizone-induced demyelinated brain leads to myelin repair. Neurochem. Res.33(12), 2615–2628 (2008).
  • Plant SR, Iocca HA, Wang Y et al. Lymphotoxin β receptor (Lt βR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt βR-Ig protein. J. Neurosci.27(28), 7429–7437 (2007).
  • Syed YA, Baer AS, Lubec G, Hoeger H, Widhalm G, Kotter MR. Inhibition of oligodendrocyte precursor cell differentiation by myelin-associated proteins. Neurosurg. Focus24(3–4), E5 (2008).
  • Miller RH. Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation. Dev. Biol.216(1), 359–368 (1999).
  • Kotter MR, Li WW, Zhao C, Franklin RJ. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci.26(1), 328–332 (2006).
  • Foote AK, Blakemore WF. Inflammation stimulates remyelination in areas of chronic demyelination. Brain128(Pt 3), 528–539 (2005).
  • O’Leary MT, Blakemore WF. Oligodendrocyte precursors survive poorly and do not migrate following transplantation into the normal adult central nervous system. J. Neurosci. Res.48(2), 159–167 (1997).
  • Chari DM, Crang AJ, Blakemore WF. Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J. Neuropathol. Exp. Neurol.62(9), 908–916 (2003).
  • Chari DM, Blakemore WF. Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia37(4), 307–313 (2002).
  • Blakemore WF, Chari DM, Gilson JM, Crang AJ. Modelling large areas of demyelination in the rat reveals the potential and possible limitations of transplanted glial cells for remyelination in the CNS. Glia38(2), 155–168 (2002).
  • Sato M, Sano H, Iwaki D et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J. Immunol.171(1), 417–425 (2003).
  • Setzu A, Lathia JD, Zhao C. Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia54(4), 297–303 (2006).
  • Williams A, Piaton G, Aigrot MS et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain130(Pt 10), 2554–2565 (2007).
  • Franklin RJ, Crang AJ, Blakemore WF. Transplanted type-1 astrocytes facilitate repair of demyelinating lesions by host oligodendrocytes in adult rat spinal cord. J. Neurocytol.20(5), 420–430 (1991).
  • Albrecht PJ, Murtie JC, Ness JK et al. Astrocytes produce CNTF during the remyelination phase of viral-induced spinal cord demyelination to stimulate FGF-2 production. Neurobiol. Dis.13(2), 89–101 (2003).
  • Blakemore WF. Regeneration and repair in multiple sclerosis: the view of experimental pathology. J. Neurol. Sci.265(1–2), 1–4 (2008).
  • Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci.9(11), 839–855 (2008).
  • Windrem MS, Nunes MC, Rashbaum WK et al. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat. Med.10(1), 93–97 (2004).
  • Groves AK, Barnett SC, Franklin RJ et al. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature362(6419), 453–455 (1993).
  • Honmou O, Felts PA, Waxman SG, Kocsis JD. Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J. Neurosci.16(10), 3199–3208 (1996).
  • Blakemore WF, Crang AJ. The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J. Neurol. Sci.70(2), 207–223 (1985).
  • Blakemore WF. Limited remyelination of CNS axons by Schwann cells transplanted into the sub-arachnoid space. J. Neurol. Sci.64(3), 265–276 (1984).
  • Hammang JP, Archer DR, Duncan ID. Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp. Neurol.147(1), 84–95 (1997).
  • Brustle O, Jones KN, Learish RD et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science285(5428), 754–756 (1999).
  • Baron-Van Evercooren A. Remyelination through engraftment. In: Myelin Biology and Disorders. Lazzarini R (Ed.). Academic Press, PA, USA 143–172 (2004).
  • Clarke D, Frisen J. Differentiation potential of adult stem cells. Curr. Opin. Genet. Dev.11(5), 575–580 (2001).
  • Pluchino S, Quattrini A, Brambilla E et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature422(6933), 688–694 (2003).
  • Teng YD, Lavik EB, Qu X et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl Acad. Sci. USA99(5), 3024–3029 (2002).
  • Ben-Hur T, Einstein O, Mizrachi-Kol R et al. Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia41(1), 73–80 (2003).
  • Pluchino S, Zanotti L, Rossi B et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature436(7048), 266–271 (2005).
  • Einstein O, Fainstein N, Vaknin I et al. Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann. Neurol.61(3), 209–218 (2007).
  • Chandran S, Compston A, Jauniaux E, Gilson J, Blakemore W, Svendsen C. Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursors. Glia47(4), 314–324 (2004).
  • Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia49(3), 385–396 (2005).
  • Mi S, Miller RH, Lee X et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci.8(6), 745–751 (2005).
  • Mi S, Lee X, Shao Z et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci.7(3), 221–228 (2004).
  • Lee X, Yang Z, Shao Z et al. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. J. Neurosci.27(1), 220–225 (2007).
  • Mi S, Miller RH, Tang W et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol.65(3), 304–315 (2009).
  • Mi S, Hu B, Hahm K et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med.13(10), 1228–1233 (2007).
  • Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M. A recombinant human IgM promotes myelin repair after a single, very low dose. J. Neurosci. Res.85(5), 967–976 (2007).
  • Warrington AE, Asakura K, Bieber AJ et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc. Natl Acad. Sci. USA97(12), 6820–6825 (2000).
  • Pavelko KD, van Engelen BG, Rodriguez M. Acceleration in the rate of CNS remyelination in lysolecithin-induced demyelination. J. Neurosci.18(7), 2498–2505 (1998).
  • Miller DJ, Sanborn KS, Katzmann JA, Rodriguez M. Monoclonal autoantibodies promote central nervous system repair in an animal model of multiple sclerosis. J. Neurosci.14(10), 6230–6238 (1994).
  • Asakura K, Pogulis RJ, Pease LR, Rodriguez M. A monoclonal autoantibody which promotes central nervous system remyelination is highly polyreactive to multiple known and novel antigens. J. Neuroimmunol.65(1), 11–19 (1996).
  • Asakura K, Miller DJ, Murray K, Bansal R, Pfeiffer SE, Rodriguez M. Monoclonal autoantibody SCH94.03, which promotes central nervous system remyelination, recognizes an antigen on the surface of oligodendrocytes. J. Neurosci. Res.43(3), 273–281 (1996).
  • Paz Soldan MM, Warrington AE, Bieber AJ et al. Remyelination-promoting antibodies activate distinct Ca2+ influx pathways in astrocytes and oligodendrocytes: relationship to the mechanism of myelin repair. Mol. Cell. Neurosci.22(1), 14–24 (2003).
  • Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N. Engl. J. Med.339(5), 285–291 (1998).
  • Gregg C, Shikar V, Larsen P et al. White matter plasticity and enhanced remyelination in the maternal CNS. J. Neurosci.27(8), 1812–1823 (2007).
  • Franco PG, Silvestroff L, Soto EF, Pasquini JM. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination. Exp. Neurol.212(2), 458–467 (2008).
  • Fernandez M, Giuliani A, Pirondi S et al. Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease. Proc. Natl Acad. Sci. USA101(46), 16363–16368 (2004).
  • Armstrong RC, Le TQ, Flint NC, Vana AC, Zhou YX. Endogenous cell repair of chronic demyelination. J. Neuropathol. Exp. Neurol.65(3), 245–256 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.