324
Views
101
CrossRef citations to date
0
Altmetric
Theme: Alzheimer's disease - Review

Cerebral glucose metabolism in preclinical and prodromal Alzheimer’s disease

Pages 1667-1673 | Published online: 09 Jan 2014

References

  • Dubois B, Feldman HH, Jacova C et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol.6, 734–746 (2007).
  • Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch. Neurol.62, 1160–1163; discussion 1167 (2005).
  • Khachaturian AS, Corcoran CD, Mayer LS, Zandi PP, Breitner JC. Apolipoprotein E ε4 count affects age at onset of Alzheimer disease, but not lifetime susceptibility: the cache county study. Arch. Gen. Psychiatry61, 518–524 (2004).
  • Herholz K. FDG-PET: Imaging cerebral glucose metabolism with positron emission tomography. In: The Dementias – Early Diagnosis and Evaluation. Herholz K, Perani D, Morris C (Eds). Taylor & Francis, NY, USA, 229–252 (2006).
  • Langbaum JB, Chen K, Lee W et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer‘s Disease Neuroimaging Initiative (ADNI). NeuroImage45, 1107–1116 (2009).
  • Fleisher AS, Donohue M, Chen K, Brewer JB, Aisen PS. Applications of neuroimaging to disease-modification trials in Alzheimer’s disease. Behav. Neurol.21, 129–136 (2009).
  • Varrone A, Asenbaum S, Vander Borght T et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur. J. Nucl. Med. Mol. Imaging DOI: 10.1007/s00259-009-1264-0 (2009) (Epub ahead of print).
  • Herholz K. PET studies in dementia. Ann. Nucl. Med.17, 79–89 (2003).
  • Herholz K, Perani D, Salmon E et al. Comparability of FDG-PET studies in probable Alzheimer‘s disease. J. Nucl. Med.34, 1460–1466 (1993).
  • Herholz K, Nordberg A, Salmon E et al. Impairment of neocortical metabolism predicts progression in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord.10, 494–504 (1999).
  • Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three- dimensional stereotactic surface projections of fluorine-18-FDG-PET. J. Nucl. Med.36, 1238–1248 (1995).
  • Signorini M, Paulesu E, Friston K et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG-PET: a clinical validation of statistical parametric mapping. Neuroimage9, 63–80 (1999).
  • Herholz K, Salmon E, Perani D et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG-PET. Neuroimage17, 302–316 (2002).
  • Kippenhan JS, Barker WW, Nagel J, Grady C, Duara R. Neural-network classification of normal and Alzheimer’s disease subjects using high-resolution and low-resolution PET cameras. J. Nucl. Med.35, 7–15 (1994).
  • Sayeed A, Petrou M, Spyrou N, Kadyrov A, Spinks T. Diagnostic features of Alzheimer’s disease extracted from PET sinograms. Phys. Med. Biol.47, 137–148 (2002).
  • Nobili F, Salmaso D, Morbelli S et al. Principal component analysis of FDG-PET in amnestic MCI. Eur. J. Nucl. Med. Mol. Imaging35, 2191–2202 (2008).
  • Salmon E, Kerrouche N, Perani D et al. On the multivariate nature of brain metabolic impairment in Alzheimer’s disease. Neurobiol. Aging30, 186–197 (2009).
  • Higdon R, Foster NL, Koeppe RA et al. A comparison of classification methods for differentiating frontotemporal dementia from Alzheimer’s disease using FDG-PET imaging. Stat. Med.23, 315–326 (2004).
  • Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD. Estimation of local cerebral glucose utilization by positron emission tomography of 18F]2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures. J. Cereb. Blood Flow Metab.5, 115–125 (1985).
  • Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp.2, 189–210 (1995).
  • Yakushev I, Hammers A, Fellgiebel A et al. SPM-based count normalization provides excellent discrimination of mild Alzheimer’s disease and amnestic mild cognitive impairment from healthy aging. Neuroimage44, 43–50 (2009).
  • Heiss WD, Pawlik G, Holthoff V, Kessler J, Szelies B. PET correlates of normal and impaired memory functions. Cerebrovasc. Brain Metab. Rev.4, 1–27 (1992).
  • Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann. Neurol.54, 343–351 (2003).
  • De Santi S, de Leon MJ, Rusinek H et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging22, 529–539 (2001).
  • Mosconi L, Tsui WH, Herholz K et al. Multicenter standardized 18F-FDG-PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J. Nucl. Med.49, 390–398 (2008).
  • Aston JA, Cunningham VJ, Asselin MC, Hammers A, Evans AC, Gunn RN. Positron emission tomography partial volume correction: estimation and algorithms. J. Cereb. Blood Flow Metab.22, 1019–1034 (2002).
  • Klein JC, Herholz K, Wienhard K, Heiss WD. Cortical flattening applied to high-resolution 18F-FDG-PET. J. Nucl. Med.49, 44–49 (2008).
  • Mourik JE, Lubberink M, van Velden FH et al. In vivo validation of reconstruction-based resolution recovery for human brain studies. J. Cereb. Blood Flow Metab.30(2), 381–389 (2009).
  • Pardo JV, Lee JT, Sheikh SA et al. Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. Neuroimage35, 1231–1237 (2007).
  • Sakamoto S, Ishii K, Sasaki M et al. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease. J. Neurol. Sci.200, 27–32 (2002).
  • Haense C, Herholz K, Jagust WJ, Heiss WD. Performance of FDG-PET for detection of alzheimer’s disease in two independent multicenter samples (NEST-DD and ADNI). Dement. Geriatr. Cogn. Disord.28, 259–266 (2009).
  • Silverman DH, Small GW, Chang CY et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA286, 2120–2127 (2001).
  • Foster NL, Heidebrink JL, Clark CM et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain130, 2616–2635 (2007).
  • Jagust W, Reed B, Mungas D, Ellis W, DeCarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology69, 871–877 (2007).
  • Small GW, Mazziotta JC, Collins MT et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA273, 942–947 (1995).
  • Reiman EM, Caselli RJ, Yun LS et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the ε 4 allele for apolipoprotein E. N. Eng. J. Med.334, 752–758 (1996).
  • Reiman EM, Chen K, Alexander GE et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl Acad. Sci. USA101, 284–289 (2004).
  • Small GW, Ercoli LM, Silverman DH et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA97, 6037–6042 (2000).
  • de Leon MJ, Convit A, Wolf OT et al. Prediction of cognitive decline in normal elderly subjects with 2-F-18-fluoro-2-deoxy-D-glucose positron-emission tomography (FDG-PET). Proc. Natl Acad. Sci. USA98, 10966–10971 (2001).
  • Hampel H, Frank R, Broich K et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat. Rev. Drug Discov.9, 560–574 (2010).
  • Mosconi L, Tsui WH, DeSanti S et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology641860–1867 (2005).
  • Clerici F, Del Sole A, Chiti A et al. Differences in hippocampal metabolism between amnestic and non-amnestic MCI subjects: automated FDG-PET image analysis. Q. J. Nucl. Med. Mol. Imaging53, 646–657 (2009).
  • Jauhiainen AM, Kangasmaa T, Rusanen M et al. Differential hypometabolism patterns according to mild cognitive impairment subtypes. Dement. Geriatr. Cogn. Disord.26, 490–498 (2008).
  • Chetelat G, Desgranges B, Landeau B et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain131, 60–71 (2008).
  • Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann. Neurol.42, 85–94 (1997).
  • Berent S, Giordani B, Foster N et al. Neuropsychological function and cerebral glucose utilization in isolated memory impairment and Alzheimer’s disease. J. Psychiatr. Res.33, 7–16 (1999).
  • Arnaiz E, Jelic V, Almkvist O et al. Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport12, 851–855 (2001).
  • Drzezga A, Grimmer T, Riemenschneider M et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG-PET. J. Nucl. Med.46, 1625–1632 (2005).
  • Anchisi D, Borroni B, Franceschi M et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch. Neurol.62, 1728–1733 (2005).
  • Fellgiebel A, Siessmeier T, Scheurich A et al. Association of elevated phospho-tau levels with Alzheimer-typical 18F-fluoro-2-deoxy-D-glucose positron emission tomography findings in patients with mild cognitive impairment. Biol. Psychiatry56, 279–283 (2004).
  • Fellgiebel A, Scheurich A, Bartenstein P, Muller MJ. FDG-PET and CSF phospho-tau for prediction of cognitive decline in mild cognitive impairment. Psychiatry Res.155, 167–171 (2007).
  • Landau SM, Harvey D, Madison CM et al.; on behalf of the Alzheimer’s Disease Neuroimaging Initiative. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology75, 230–238 (2010).
  • Mosconi L, Tsui WH, Pupi A et al.18F-FDG-PET Database of longitudinally confirmed healthy elderly individuals improves detection of mild cognitive impairment and Alzheimer’s disease. J. Nucl. Med.48, 1129–1134 (2007).
  • Drzezga A, Lautenschlager N, Siebner H et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur. J. Nucl. Med. Mol. Imaging30, 1104–1113 (2003).
  • Jagust WJ, Friedland RP, Budinger TF, Koss E, Ober B. Longitudinal studies of regional cerebral metabolism in Alzheimer’s disease. Neurology38, 909–912 (1988).
  • Haxby JV, Grady CL, Koss E et al. Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch. Neurol.47, 753–760 (1990).
  • Brown DRP, Hunter R, Wyper DJ et al. Longitudinal changes in cognitive function and regional cerebral function in Alzheimer’s disease: A SPECT blood flow study. J. Psychiatr. Res.30, 109–126 (1996).
  • Mosconi L, Mistur R, Switalski R et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging36, 811–822 (2009).
  • Mosconi L, Perani D, Sorbi S et al. Brain metabolism predicts conversion from mild cognitive impairment to dementia in individual carriers of the ApoE E4 allele. Eur. J. Neurol.11(Suppl. 2), 27 (2004).
  • Haxby JV, Rapoport SI. Abnormalities of regional brain metabolism in Alzheimer’s disease and their relation to functional impairment. Prog. Neuropsychopharmacol. Biol. Psychiatry10, 427–438 (1986).
  • Desgranges B, Baron JC, Lalevee C et al. The neural substrates of episodic memory impairment in Alzheimer’s disease as revealed by FDG-PET: relationship to degree of deterioration. Brain125, 1116–1124 (2002).
  • Cummings JL. Integrating ADNI results into Alzheimer’s disease drug development programs. Neurobiol. Aging31, 1481–1492 (2010).
  • Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am. J. Psychiatry159, 738–745 (2002).
  • Hirono N, Hashimoto M, Ishii K, Kazui H, Mori E. One-year change in cerebral glucose metabolism in patients with Alzheimer’s disease. J. Neuropsychiatry Clin. Neurosci.16, 488–492 (2004).
  • Holland D, Brewer JB, Hagler DJ et al. Subregional neuroanatomical change as a biomarker for Alzheimer’s disease. Proc. Natl Acad. Sci. USA106, 20954–20959 (2009).
  • Landau SM, Harvey D, Madison CM et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging DOI: 10.1016/j.neurobiolaging.2009.07.002 (2009).
  • Chen K, Langbaum JB, Fleisher AS et al. Twelve-month metabolic declines in probable Alzheimer‘s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer‘s Disease Neuroimaging Initiative. Neuroimage51, 654–664 (2010).
  • Garibotto V, Borroni B, Kalbe E et al. Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology71, 1342–1349 (2008).
  • Edison P, Archer HA, Hinz R et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG-PET study. Neurology68, 501–508 (2007).
  • Li Y, Rinne JO, Mosconi L et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging35, 2169–2181 (2008).
  • Cohen AD, Price JC, Weissfeld LA et al. Basal cerebral metabolism may modulate the cognitive effects of Aβ in mild cognitive impairment: an example of brain reserve. J. Neurosci.29, 14770–14778 (2009).
  • Lowe VJ, Kemp BJ, Jack CR Jr et al. Comparison of 18F-FDG and PiB PET in cognitive impairment. J. Nucl. Med.50, 878–886 (2009).
  • Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology60, 1374–1377 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.