354
Views
55
CrossRef citations to date
0
Altmetric
Review

Animal models of headache: from bedside to bench and back to bedside

, , , &
Pages 389-411 | Published online: 09 Jan 2014

References

  • Rasmussen BK, Jensen R, Schroll M, Olesen J. Epidemiology of headache in a general population – a prevalence study. J. Clin. Epidemiol.44(11), 1147–1157 (1991).
  • Leonardi M, Musicco M, Nappi G. Headache as a major public health problem: current status. Cephalalgia18(S21), 66–69 (1998).
  • Menken M, Munsat TL, Toole JF. The global burden of disease study: implications for neurology. Arch. Neurol.57(3), 418–420 (2000).
  • Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders: 2nd edition. Cephalalgia24(S1), 9–160 (2004).
  • Rasmussen BK, Olesen J. Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia12(4), 221–228 (1992).
  • Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR. Neurobiology of migraine. Neuroscience161(2), 327–341 (2009).
  • Lance JW, Goadsby PJ. Mechanism and Management of Headache. Butterworth Heinemann, MA, USA (2005).
  • Olesen J, Goadsby PJ, Ramadan N, Tfelt-Hansen P, Welch KMA. The Headaches. Lippincott, Williams & Wilkins, PA, USA (2005).
  • Lipton RB, Bigal M. Migraine and Other Headache Disorders. Marcel Dekker, Taylor & Francis Group, NY, USA (2006).
  • Wolff HG. Headache and Other Head Pain. Oxford University Press, NY, USA (1948).
  • McNaughton F, Feindel WH. Innervation of intracranial structures: a reappraisal. In: Physiological Aspects of Clinical Neurology. Rose FC (Ed.). Blackwell Scientific Publications, Oxford, UK 279–293 (1977).
  • Arbab MA, Wiklund L, Svendgaard NA. Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience19(3), 695–708 (1986).
  • Uddman R, Edvinsson L, Hara H. Axonal tracing of autonomic nerve fibers to the superficial temporal artery in the rat. Cell Tissue Res.256(3), 559–565 (1989).
  • Edvinsson L, Goadsby PJ. Neuropeptides in headache. Eur. J. Neurol.5(4), 329–341 (1998).
  • Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol.28(2), 183–187 (1990).
  • Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann. Neurol.33(1), 48–56 (1993).
  • Olesen J, Diener HC, Husstedt IW et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N. Engl. J. Med.350(11), 1104–1110 (2004).
  • Ho TW, Ferrari MD, Dodick DW et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet372(9656), 2115–2123 (2009).
  • Goadsby PJ, Classey JD. Glutamatergic transmission in the trigeminal nucleus assessed with local blood flow. Brain Res.875(1–2), 119–124 (2000).
  • Classey JD, Knight YE, Goadsby PJ. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervical complex following superior sagittal sinus stimulation in the cat. Brain Res.907(1–2), 117–124 (2001).
  • Kaube H, Keay KA, Hoskin KL, Bandler R, Goadsby PJ. Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res.629(1), 95–102 (1993).
  • Bartsch T, Goadsby PJ. The trigeminocervical complex and migraine: current concepts and synthesis. Curr. Pain Headache Rep.7(5), 371–376 (2003).
  • Goadsby PJ, Zagami AS. Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain114(Pt 2), 1001–1011 (1991).
  • Percheron G. Thalamus. In: The Human Nervous System. Paxinos G, May J (Eds). Elsevier, Amsterdam, The Netherlands 592–675 (2003).
  • Afridi SK, Goadsby PJ. Neuroimaging of migraine. Curr. Pain Headache Rep.10(3), 221–224 (2006).
  • Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain123(Pt 8), 1703–1709 (2000).
  • Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache46(S4), 182–191 (2006).
  • Weiller C, May A, Limmroth V et al. Brain stem activation in spontaneous human migraine attacks. Nat. Med.1(7), 658–660 (1995).
  • Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ. Brainstem activation specific to migraine headache. Lancet357(9261), 1016–1017 (2001).
  • Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Brainstem and hypothalamic activation in spontaneous migraine attacks: a PET study. Cephalalgia24(9), 782–782 (2004).
  • Goadsby PJ. Advances in the understanding of headache. Br. Med. Bull.73–74, 83–92 (2005).
  • Veloso F, Kumar K, Toth C. Headache secondary to deep brain implantation. Headache38(7), 507–515 (1998).
  • Raskin NH, Hosobuchi Y, Lamb S. Headache may arise from perturbation of brain. Headache27(8), 416–420 (1987).
  • Olesen J. Regional cerebral blood flow and oxygen metabolism during migraine with and without aura. Cephalalgia18(1), 2–4 (1998).
  • Olesen J, Friberg L, Olsen TS et al. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann. Neurol.28(6), 791–798 (1990).
  • Noble-Topham SE, Cader MZ, Dyment DA et al. Genetic loading in familial migraine with aura. J. Neurol. Neurosurg. Psychiatry74(8), 1128–1130 (2003).
  • Ziegler DK, Hur YM, Bouchard TJ Jr, Hassanein RS, Barter R. Migraine in twins raised together and apart. Headache38(6), 417–422 (1998).
  • Goadsby PJ, Lipton RB, Ferrari MD. Migraine – current understanding and treatment. N. Engl. J. Med.346(4), 257–270 (2002).
  • Iversen HK, Olesen J, Tfelt-Hansen P. Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain38(1), 17–24 (1989).
  • Afridi SK, Kaube H, Goadsby PJ. Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain110(3), 675–680 (2004).
  • Bates E, Nikai T, Brennan K et al. Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia DOI: 10.111/j.1468-2982.2009.01864.x (2009) (Epub ahead of print).
  • Offenhauser N, Zinck T, Hoffmann J et al. CGRP release and c-fos expression within trigeminal nucleus caudalis of the rat following glyceryltrinitrate infusion. Cephalalgia25(3), 225–236 (2005).
  • Iversen HK, Olesen J. Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs. Cephalalgia16(6), 412–418 (1996).
  • Neeb L, Reuter U. Nitric oxide in migraine. CNS Neurol. Disord. Drug Targets6(4), 258–264 (2007).
  • De Vries P, Villalon CM, Saxena PR. Pharmacological aspects of experimental headache models in relation to acute antimigraine therapy. Eur. J. Pharmacol.375(1–3), 61–74 (1999).
  • Schoonman GG, van der Grond J, Kortmann C et al. Migraine headache is not associated with cerebral or meningeal vasodilatation – a 3T magnetic resonance angiography study. Brain131(Pt 8), 2192–2200 (2008).
  • Rahmann A, Wienecke T, Hansen JM et al. Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia28(3), 226–236 (2008).
  • Schytz HW, Birk S, Wienecke T et al. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain132(Pt 1), 16–25 (2009).
  • Heyck H. Pathogenesis of migraine. Res. Clin. Stud. Headache2, 1–28 (1969).
  • Saxena PR, Verdouw PD. Tissue blood flow and localization of arteriovenous anastomoses in pigs with microspheres of four different sizes. Pflugers Arch.403(2), 128–135 (1985).
  • Drummond PD, Lance JW. Facial temperature in migraine, tension-vascular and tension headache. Cephalalgia4(3), 149–158 (1984).
  • Den Boer MO, Van Woerkens LJ, Somers JA et al. On the preservation and regulation of vascular tone in arteriovenous anastomoses during anesthesia. J. Appl. Physiol.75(2), 782–789 (1993).
  • Kapoor K, Willems EW, Maassen VanDenBrink A et al. Assessment of antimigraine potential of a novel α-adrenoceptor agonist S19014: effects on porcine carotid and regional haemodynamics and human coronary artery. Cephalalgia24(6), 425–438 (2004).
  • Wienecke T, Hansen JM, Petersen J et al. Sumatriptan does not affect arteriovenous oxygen differences in jugular and cubital veins in normal human subjects. Cephalalgia28(10), 1081–1085 (2008).
  • Verheggen R, Hundeshagen AG, Brown AM, Schindler M, Kaumann AJ. 5-HT1B receptor-mediated contractions in human temporal artery: evidence from selective antagonists and 5-HT receptor mRNA expression. Br. J. Pharmacol.124(7), 1345–1354 (1998).
  • Franco-Cereceda A, Rudehill A, Lundberg JM. Calcitonin gene-related peptide but not substance P mimics capsaicin-induced coronary vasodilation in the pig. Eur. J. Pharmacol.142(2), 235–243 (1987).
  • Petersen KA, Nilsson E, Olesen J, Edvinsson L. Presence and function of the calcitonin gene-related peptide receptor on rat pial arteries investigated in vitro and in vivo. Cephalalgia25(6), 424–432 (2005).
  • Nilsson T, Longmore J, Shaw D, Olesen IJ, Edvinsson L. Contractile 5-HT1B receptors in human cerebral arteries: pharmacological characterization and localization with immunocytochemistry. Br. J. Pharmacol.128(6), 1133–1140 (1999).
  • Sams A, Jansen-Olesen I. Expression of calcitonin receptor-like receptor and receptor-activity-modifying proteins in human cranial arteries. Neurosci. Lett.258(1), 41–44 (1998).
  • Johnson KW, Dieckman DK, Phebus LA et al. GLUR5 antagonists as novel migraine therapies. Cephalalgia21(4), 268 (2001).
  • Cohen ML, Schenck K. Contractile responses to sumatriptan and ergotamine in the rabbit saphenous vein: effect of selective 5-HT(1F) receptor agonists and PGF(2α). Br. J. Pharmacol.131(3), 562–568 (2000).
  • Pilgrim AJ, Dussault B, Rupniak NMJ et al. COL-144, an orally bioavailable selective 5-HT1F receptor agonist for acute migraine therapy. Cephalalgia29, 24–25 (2009).
  • Goldstein DJ, Roon KI, Offen WW et al. Selective seratonin 1F (5-HT(1F)) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet358(9289), 1230–1234 (2001).
  • Sang CN, Ramadan NM, Wallihan RG et al. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia24(7), 596–602 (2004).
  • Reuter U, Del Rio MS, Diener HC et al. Migraines with and without aura and their response to preventive therapy with topiramate. Cephalalgia DOI: 10.1111/j.1468-2982.2009.0199.x (2009) (Epub ahead of print).
  • Edvinsson L, Goadsby PJ. Neuropeptides in migraine and cluster headache. Cephalalgia14(5), 320–327 (1994).
  • Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL. Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat – intravital microscope studies. Cephalalgia17(4), 525–531 (1997).
  • Akerman S, Williamson DJ, Hill RG, Goadsby PJ. The effect of adrenergic compounds on neurogenic dural vasodilatation. Eur. J. Pharmacol.424(1), 53–58 (2001).
  • Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL. Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural vessel diameter in the anaesthetized rat. Cephalalgia17(4), 518–524 (1997).
  • Goldstein DJ, Offen WW, Klein EG et al. Lanepitant, an NK-1 antagonist, in migraine prevention. Cephalalgia21(2), 102–106 (2001).
  • Goldstein DJ, Wang O, Saper JR et al. Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia17(7), 785–790 (1997).
  • Petersen KA, Birk S, Doods H, Edvinsson L, Olesen J. Inhibitory effect of BIBN4096BS on cephalic vasodilatation induced by CGRP or transcranial electrical stimulation in the rat. Br. J. Pharmacol.143(6), 697–704 (2004).
  • Williamson DJ, Shepheard SL, Hill RG, Hargreaves RJ. The novel antimigraine agent rizatriptan inhibits neurogenic dural vasodilation and extravasation. Eur. J. Pharmacol.328(1), 61–64 (1997).
  • Akerman S, Goadsby PJ. Topiramate inhibits trigeminovascular activation: an intravital microscopy study. Br. J. Pharmacol.146(1), 7–14 (2005).
  • Williamson DJ, Hargreaves RJ. Neurogenic inflammation in the context of migraine. Microsc. Res. Tech.53(3), 167–178 (2001).
  • Akerman S, Williamson DJ, Goadsby PJ. Voltage-dependent calcium channels are involved in neurogenic dural vasodilatation via a presynaptic transmitter release mechanism. Br. J. Pharmacol.140(3), 558–566 (2003).
  • Akerman S, Holland PR, Goadsby PJ. Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J. Pharmacol. Exp. Ther.320(1), 64–71 (2007).
  • Honey AC, Bland-Ward PA, Connor HE, Feniuk W, Humphrey PP. Study of an adenosine A1 receptor agonist on trigeminally evoked dural blood vessel dilation in the anaesthetized rat. Cephalalgia22(4), 260–264 (2002).
  • Holland PR, Akerman S, Goadsby PJ. Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J. Pharmacol. Exp. Ther.315(3), 1380–1385 (2005).
  • Lassen LH, Haderslev PA, Jacobsen VB et al. CGRP may play a causative role in migraine. Cephalalgia22(1), 54–61 (2002).
  • Akerman S, Williamson DJ, Kaube H, Goadsby PJ. The effect of antimigraine compounds on nitric oxide-induced dilation of dural meningeal vessels. Eur. J. Pharmacol.452(2), 223–228 (2002).
  • Akerman S, Williamson DJ, Kaube H, Goadsby PJ. Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br. J. Pharmacol.137(1), 62–68 (2002).
  • Akerman S, Kaube H, Goadsby PJ. Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J. Pharmacol. Exp. Ther.309(1), 56–63 (2004).
  • Gupta S, Akerman S, van den Maagdenberg AM et al. Intravital microscopy on a closed cranial window in mice: a model to study trigeminovascular mechanisms involved in migraine. Cephalalgia26(11), 1294–1303 (2006).
  • Williamson DJ, Hill RG, Shepheard SL, Hargreaves RJ. The antimigraine 5-HT(1B/1D) agonist rizatriptan inhibits neurogenic dural vasodilation in anaesthetized guinea-pigs. Br. J. Pharmacol.133(7), 1029–1034 (2001).
  • Bellamy J, Bowen EJ, Russo AF, Durham PL. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur. J. Neurosci.23(8), 2057–2066 (2006).
  • Li J, Vause CV, Durham PL. Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res.1196, 22–32 (2008).
  • Summ O, Akerman S, Holland PR, Goadsby PJ. The TRPV1 receptor antagonist, A-993610, shows no effect on neurogenic dural dilation but is able to block capsaicin induced dilation. Cephalalgia29(Suppl. 1), 136 (2009).
  • Shepheard S, Edvinsson L, Cumberbatch M et al. Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia19(10), 851–858 (1999).
  • Andreou AP, Holland PR, Goadsby PJ. Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation. Br. J. Pharmacol.157(3), 464–473 (2009).
  • Messlinger K, Hotta H, Pawlak M, Schmidt RF. Effects of the 5-HT1 receptor agonists, sumatriptan and CP 93,129, on dural arterial flow in the rat. Eur. J. Pharmacol.332(2), 173–181 (1997).
  • Kurosawa M, Messlinger K, Pawlak M, Schmidt RF. Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br. J. Pharmacol.114(7), 1397–1402 (1995).
  • Lambert G, Michalicek J. Effect of antimigraine drugs on dural blood flows and resistances and the responses to trigeminal stimulation. Eur. J. Pharmacol.311(2–3), 141–151 (1996).
  • Carmody J, Pawlak M, Messlinger K. Lack of a role for substance P in the control of dural arterial flow. Exp. Brain Res.111(3), 424–428 (1996).
  • Goldstein DJ, Offen WW, Klein EG, Phebus LA. Lanepitant an NK-1 antagonist in migraine prophylaxis. Cephalalgia19(4), 377 (1999).
  • Messlinger K, Suzuki A, Pawlak M, Zehnter A, Schmidt RF. Involvement of nitric oxide in the modulation of dural arterial blood flow in the rat. Br. J. Pharmacol.129(7), 1397–1404 (2000).
  • Strecker T, Dux M, Messlinger K. Nitric oxide releases calcitonin-gene-related peptide from rat dura mater encephali promoting increases in meningeal blood flow. J. Vasc. Res.39(6), 489–496 (2002).
  • Dux M, Rosta J, Santha P, Jancso G. Involvement of capsaicin-sensitive afferent nerves in the proteinase-activated receptor 2-mediated vasodilatation in the rat dura mater. Neuroscience161(3), 887–894 (2009).
  • Schwenger N, Dux M, de Col R, Carr R, Messlinger K. Interaction of calcitonin gene-related peptide, nitric oxide and histamine release in neurogenic blood flow and afferent activation in the rat cranial dura mater. Cephalalgia27(6), 481–491 (2007).
  • Pawlak M, Messlinger K, Zehnter A, Schmidt RF. Somatostatin reduces the meningeal arterial blood flow in the rat. Neurosci. Lett.276(1), 33–36 (1999).
  • Moskowitz MA. Basic mechanisms in vascular headache. Neurol. Clin.8(4), 801–815 (1990).
  • Markowitz S, Saito K, Moskowitz MA. Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J. Neurosci.7(12), 4129–4136 (1987).
  • Dimitriadou V, Buzzi MG, Moskowitz MA, Theoharides TC. Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience44(1), 97–112 (1991).
  • Dimitriadou V, Buzzi MG, Theoharides TC, Moskowitz MA. Ultrastructural evidence for neurogenically mediated changes in blood vessels of the rat dura mater and tongue following antidromic trigeminal stimulation. Neuroscience48(1), 187–203 (1992).
  • Strassman AM, Raymond SA, Burstein R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature384(6609), 560–564 (1996).
  • Kandere-Grzybowska K, Gheorghe D, Priller J et al. Stress-induced dura vascular permeability does not develop in mast cell-deficient and neurokinin-1 receptor knockout mice. Brain Res.980(2), 213–220 (2003).
  • Delepine L, Aubineau P. Plasma protein extravasation induced in the rat dura mater by stimulation of the parasympathetic sphenopalatine ganglion. Exp. Neurol.147(2), 389–400 (1997).
  • Lee WS, Limmroth V, Ayata C et al. Peripheral GABAA receptor-mediated effects of sodium valproate on dural plasma protein extravasation to substance P and trigeminal stimulation. Br. J. Pharmacol.116(1), 1661–1667 (1995).
  • Markowitz S, Saito K, Moskowitz MA. Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache. Cephalalgia8(2), 83–91 (1988).
  • Buzzi MG, Sakas DE, Moskowitz MA. Indomethacin and acetylsalicylic acid block neurogenic plasma protein extravasation in rat dura mater. Eur. J. Pharmacol.165(2–3), 251–258 (1989).
  • Schuh-Hofer S, Tayefeh M, Reuter U, Dirnagl U, Arnold G. Effects of parecoxib on plasma protein extravasation and c-fos expression in the rat. Headache46(2), 276–285 (2006).
  • Phebus LA, Johnson KW, Zgombick JM et al. Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci.61(21), 2117–2126 (1997).
  • Yu XJ, Cutrer FM, Moskowitz MA, Waeber C. The 5-HT1D receptor antagonist GR-127,935 prevents inhibitory effects of sumatriptan but not CP-122,288 and 5-CT on neurogenic plasma extravasation within guinea pig dura mater. Neuropharmacology36(1), 83–91 (1997).
  • Cutrer FM, Yu XJ, Ayata G, Moskowitz MA, Waeber C. Effects of PNU-109,291, a selective 5-HT1D receptor agonist, on electrically induced dural plasma extravasation and capsaicin-evoked c-fos immunoreactivity within trigeminal nucleus caudalis. Neuropharmacology38(7), 1043–1053 (1999).
  • Buzzi MG, Moskowitz MA. The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br. J. Pharmacol.99(1), 202–206 (1990).
  • Huang Z, Byun B, Matsubara T, Moskowitz MA. Time-dependent blockade of neurogenic plasma extravasation in dura mater by 5-HT1B/D agonists and endopeptidase 24.11. Br. J. Pharmacol.108(2), 331–335 (1993).
  • Hashimoto M, Yamamoto Y, Takagi H. Effects of KB-2796 on plasma extravasation following antidromic trigeminal stimulation in the rat. Res. Commun. Mol. Pathol. Pharmacol.97(1), 79–94 (1997).
  • Johnson KW, Nelson DL, Dieckman DK et al. Neurogenic dural protein extravasation induced by meta-chlorophenylpiperazine (mCPP) involves nitric oxide and 5-HT2B receptor activation. Cephalalgia23(2), 117–123 (2003).
  • Weiss B, Alt A, Ogden AM et al. Pharmacological characterization of the competitive GLUK5 receptor antagonist decahydroisoquinoline LY466195 in vitro and in vivo.J. Pharmacol. Exp. Ther.318(2), 772–781 (2006).
  • May A, Shepheard SL, Knorr M et al. Retinal plasma extravasation in animals but not in humans: implications for the pathophysiology of migraine. Brain121(Pt 7), 1231–1237 (1998).
  • Polley JS, Gaskin PJ, Perren MJ et al. The activity of GR205171, a potent non-peptide tachykinin NK1 receptor antagonist, in the trigeminovascular system. Regul. Pept.68(1), 23–29 (1997).
  • Phebus LA, Johnson KW, Stengel PW et al. The non-peptide NK-1 receptor antagonist LY303870 inhibits neurogenic dural inflammation in guinea pigs. Life Sci.60(18), 1553–1561 (1997).
  • Peroutka SJ. Neurogenic inflammation and migraine: implications for the therapeutics. Mol. Interv.5(5), 304–311 (2005).
  • Shepherd SL, Williamson DJ, Beer MS, Hill RG, Hargreaves RJ. Differential effects of 5-HT1B/1D receptor agonists on neurogenic dural plasma extravasation and vasodilation in anaesthetized rats. Neuropharmacology36(4–5), 525–533 (1997).
  • Reuter U, Bolay H, Jansen-Olesen I et al. Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain124(Pt 12), 2490–2502 (2001).
  • De Alba J, Clayton NM, Collins SD et al. GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain120(1–2), 170–181 (2006).
  • Palmer JE, Guillard FL, Laurijssens BE et al. A randomised, single-blind, placebo-controlled, adaptive clinical trial of GW274150, a selective iNOS inhibitor, in the treatment of acute migraine. Cephalalgia29(1), 124 (2009).
  • Høye K, Laurijssens BE, Harnisch LO et al. Efficacy and tolerability of the iNOS inhibitor GW274150 administered up to 120 mg daily for 12 weeks in the prophylactic treatment of migraine. Cephalalgia29(1), 132 (2009).
  • Kruuse C, Thomsen LL, Birk S, Olesen J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain126(Pt 1), 241–247 (2003).
  • Goadsby PJ. Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol. Med.13(1), 39–44 (2007).
  • Morgan JI, Curran T. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci.12(11), 459–462 (1989).
  • Ashmawi HA, Chambergo FS, Araujo Palmeira CC, de Paula Posso I. The effects of pyrilamine and cimetidine on mRNA C-fos expression and nociceptive flinching behavior in rats. Anesth. Analg.97(2), 541–546 (2003).
  • Nakagawa T, Katsuya A, Tanimoto S et al. Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci. Lett.344(3), 197–200 (2003).
  • Benjamin L, Levy MJ, Lasalandra MP et al. Hypothalamic activation after stimulation of the superior sagittal sinus in the cat: a Fos study. Neurobiol. Dis.16(3), 500–505 (2004).
  • Strassman AM, Mineta Y, Vos BP. Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J. Neurosci.14(6), 3725–3735 (1994).
  • Goadsby PJ, Hoskin KL. The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J. Anat.190(Pt 3), 367–375 (1997).
  • Burstein R, Yamamura H, Malick A, Strassman AM. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J. Neurophysiol.79(2), 964–982 (1998).
  • Bullitt E. Induction of c-fos-like protein within the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res.493(2), 391–397 (1989).
  • Keay KA, Bandler R. Vascular head pain selectively activates ventrolateral periaqueductal gray in the cat. Neurosci. Lett.245(1), 58–60 (1998).
  • Maneepak M, le Grand S, Srikiatkhachorn A. Serotonin depletion increases nociception-evoked trigeminal NMDA receptor phosphorylation. Headache49(3), 375–382 (2009).
  • Greco R, Tassorelli C, Armentero MT et al. Role of central dopaminergic circuitry in pain processing and nitroglycerin-induced hyperalgesia. Brain Res.1238, 215–223 (2008).
  • Hoskin KL, Bulmer DC, Lasalandra M, Jonkman A, Goadsby PJ. Fos expression in the midbrain periaqueductal grey after trigeminovascular stimulation. J. Anat.198(Pt 1), 29–35 (2001).
  • Malick A, Jakubowski M, Elmquist JK, Saper CB, Burstein R. A neurohistochemical blueprint for pain-induced loss of appetite. Proc. Natl Acad. Sci. USA98(17), 9930–9935 (2001).
  • Gvilia I, Angara C, McGinty D, Szymusiak R. Different neuronal populations of the rat median preoptic nucleus express c-fos during sleep and in response to hypertonic saline or angiotensin-II. J. Physiol.569(Pt 2), 587–599 (2005).
  • Holland PR, Akerman KE, Goadsby P. Hypothalamic neurons that contain orexin A and B express c-fos in response to superior sagittal sinus (SSS) stimulation in the cat. Cephalalgia25(12), 1194–1195 (2005).
  • Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci. Lett.266(3), 173–176 (1999).
  • Knyihar-Csillik E, Tajti J, Csillik AE et al. Effects of eletriptan on the peptidergic innervation of the cerebral dura mater and trigeminal ganglion, and on the expression of c-fos and c-jun in the trigeminal complex of the rat in an experimental migraine model. Eur. J. Neurosci.12(11), 3991–4002 (2000).
  • Hoskin KL, Goadsby PJ. Comparison of more and less lipophilic serotonin (5HT1B/1D) agonists in a model of trigeminovascular nociception in cat. Exp. Neurol.150(1), 45–51 (1998).
  • Filla SA, Winter MA, Johnson KW et al. Ethyl (3S,4aR,6S,8aR)-6-(4-ethoxycar- bonylimidazol-1-ylmethyl)decahydroiso-quinoline-3-carboxylic ester: a prodrug of a GluR5 kainate receptor antagonist active in two animal models of acute migraine. J. Med. Chem.45(20), 4383–4386 (2002).
  • Mitsikostas DD, Sanchez del Rio M, Waeber C et al. Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br. J. Pharmacol.127(3), 623–630 (1999).
  • Mitsikostas DD, Sanchez del Rio M, Waeber C, Moskowitz MA, Cutrer FM. The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis. Pain76(1–2), 239–248 (1998).
  • Edling Y, Ingelman-Sundberg M, Simi A. Glutamate activates c-fos in glial cells via a novel mechanism involving the glutamate receptor subtype mGlu5 and the transcriptional repressor DREAM. Glia55(3), 328–340 (2007).
  • Knyihar-Csillik E, Mihaly A, Krisztin-Peva B et al. The kynurenate analog SZR-72 prevents the nitroglycerol-induced increase of c-fos immunoreactivity in the rat caudal trigeminal nucleus: comparative studies of the effects of SZR-72 and kynurenic acid. Neurosci. Res.61(4), 429–432 (2008).
  • Mitsikostas DD, Sanchez del Rio M, Waeber C. 5-Hydroxytryptamine(1B/1D) and 5-hydroxytryptamine1F receptors inhibit capsaicin-induced c-fos immunoreactivity within mouse trigeminal nucleus caudalis. Cephalalgia22(5), 384–394 (2002).
  • Tanuri FC, de Lima E, Peres MF et al. Melatonin treatment decreases c-fos expression in a headache model induced by capsaicin. J. Headache Pain10(2), 105–110 (2009).
  • Cutrer FM, Limmroth V, Ayata G, Moskowitz MA. Attenuation by valproate of c-fos immunoreactivity in trigeminal nucleus caudalis induced by intracisternal capsaicin. Br. J. Pharmacol.116(8), 3199–3204 (1995).
  • Sixt ML, Messlinger K, Fischer MJ. Calcitonin gene-related peptide receptor antagonist olcegepant acts in the spinal trigeminal nucleus. Brain132(Pt 11), 3134–3141 (2009).
  • Greco R, Gasperi V, Sandrini G et al. Alterations of the endocannabinoid system in an animal model of migraine: evaluation in cerebral areas of rat. Cephalalgia DOI: 10.111/j.1468-2982.2009.01924.x (2009) (Epub ahead of print).
  • Lima D, Avelino A. Spinal c-fos expression is differentially induced by brief or persistent noxious stimulation. Neuroreport5(15), 1853–1856 (1994).
  • Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature328(6131), 632–634 (1987).
  • Flores C, Arvanitogiannis A, Shizgal P. Fos-like immunoreactivity in forebrain regions following self-stimulation of the lateral hypothalamus and the ventral tegmental area. Behav. Brain Res.87(2), 239–251 (1997).
  • Dragunow M, de Castro D, Faull RL. Induction of Fos in glia-like cells after focal brain injury but not during wallerian degeneration. Brain Res.527(1), 41–54 (1990).
  • Goadsby PJ, Knight YE, Hoskin KL. Stimulation of the greater occipital nerve increases metabolic activity in the trigeminal nucleus caudalis and cervical dorsal horn of the cat. Pain73(1), 23–28 (1997).
  • Lambert GA, Goadsby PJ, Zagami AS, Duckworth JW. Comparative effects of stimulation of the trigeminal ganglion and the superior sagittal sinus on cerebral blood flow and evoked potentials in the cat. Brain Res.453(1–2), 143–149 (1988).
  • Escott KJ, Beattie DT, Connor HE, Brain SD. Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene-related peptide. Brain Res.669(1), 93–99 (1995).
  • Diener HC, Peters C, Rudzio M et al. Ergotamine, flunarizine and sumatriptan do not change cerebral blood flow velocity in normal subjects and migraneurs. J. Neurol.238(5), 245–250 (1991).
  • Penfield W. A contribution to the mechanism of intracranial pain. Res. Publ. Assoc. Res. Nerv. Ment. Dis. (15), 399–415 (1934).
  • Ray BS, Wolff HG. Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch. Surg.41, 813–856 (1940).
  • Davis KD, Dostrovsky JO. Activation of trigeminal brain-stem nociceptive neurons by dural artery stimulation. Pain25(3), 395–401 (1986).
  • Strassman A, Mason P, Moskowitz M, Maciewicz R. Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res.379(2), 242–250 (1986).
  • Bolton S, O’Shaughnessy CT, Goadsby PJ. Properties of neurons in the trigeminal nucleus caudalis responding to noxious dural and facial stimulation. Brain Res.1046(1–2), 122–129 (2005).
  • Xiao Y, Richter JA, Hurley JH. Release of glutamate and CGRP from trigeminal ganglion neurons: role of calcium channels and 5-HT1 receptor signaling. Mol. Pain4, 12 (2008).
  • Hoskin KL, Kaube H, Goadsby PJ. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study. Brain119(Pt 1), 249–256 (1996).
  • Bergerot A, Storer RJ, Goadsby PJ. Dopamine inhibits trigeminovascular transmission in the rat. Ann. Neurol.61(3), 251–262 (2007).
  • Cumberbatch MJ, Hill RG, Hargreaves RJ. Rizatriptan has central antinociceptive effects against durally evoked responses. Eur. J. Pharmacol.328(1), 37–40 (1997).
  • Cumberbatch MJ, Hill RG, Hargreaves RJ. Differential effects of the 5HT1B/1D receptor agonist naratriptan on trigeminal versus spinal nociceptive responses. Cephalalgia18(10), 659–663 (1998).
  • Cumberbatch MJ, Williamson DJ, Mason GS, Hill RG, Hargreaves RJ. Dural vasodilation causes a sensitization of rat caudal trigeminal neurones in vivo that is blocked by a 5-HT1B/1D agonist. Br. J. Pharmacol.126(6), 1478–1486 (1999).
  • Fischer MJ, Koulchitsky S, Messlinger K. The nonpeptide calcitonin gene-related peptide receptor antagonist BIBN4096BS lowers the activity of neurons with meningeal input in the rat spinal trigeminal nucleus. J. Neurosci.25(25), 5877–5883 (2005).
  • Storer RJ, Goadsby PJ. Topiramate inhibits trigeminovascular neurons in the cat. Cephalalgia24(12), 1049–1056 (2004).
  • Andreou AP, Goadsby PJ. Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin. Investig. Drugs18(6), 789–803 (2009).
  • Storer RJ, Goadsby PJ. Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience90(4), 1371–1376 (1999).
  • Andreou AP, Goadsby PJ. LY466195, a clinically active compound in the acute treatment of migraine, inhibits activation in the trigeminocervical complex and the ventroposteromedial thalamus after nociceptive trigeminovascular activation. Cephalalgia29(S1), 132–132 (2009).
  • Goadsby PJ, Hoskin KL, Storer RJ, Edvinsson L, Connor HE. Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission. Brain125(Pt 6), 1392–1401 (2002).
  • Bigal M, Rapoport A, Sheftell F, Tepper D, Tepper S. Memantine in the preventive treatment of refractory migraine. Headache48(9), 1337–1342 (2008).
  • Bertolini A, Ferrari A, Ottani A et al. Paracetamol: new vistas of an old drug. CNS Drug Rev.12(3–4), 250–275 (2006).
  • Holland PR, Akerman S, Goadsby PJ. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur. J. Neurosci.24(10), 2825–2833 (2006).
  • Charbit A, Akerman S, Goadsby P. Comparison of the effects of central and peripheral dopamine receptor activation on evoked firing in the trigeminocervical complex. J. Pharmacol. Exp. Ther.331(2), 752–763 (2009).
  • Lambert GA, Davis JB, Appleby JM et al. The effects of the TRPV1 receptor antagonist SB-705498 on trigeminovascular sensitisation and neurotransmission. Naunyn Schmiedebergs Arch. Pharmacol.380(4), 311–325 (2009).
  • Summ O, Holland P, Akerman S, Goadsby P. The TRPV1 receptor antagonist A-993610 shows no effect on trigeminal firing recorded in the trigeminocervical complex. Cephalalgia29(1), 109 (2009).
  • Lambert GA, Lowy AJ, Boers PM, Angus-Leppan H, Zagami AS. The spinal cord processing of input from the superior sagittal sinus: pathway and modulation by ergot alkaloids. Brain Res.597(2), 321–330 (1992).
  • Storer RJ, Goadsby PJ. Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat. Brain120(Pt 12), 2171–2177 (1997).
  • Donaldson C, Boers PM, Hoskin KL, Zagami AS, Lambert GA. The role of 5-HT1B and 5-HT1D receptors in the selective inhibitory effect of naratriptan on trigeminovascular neurons. Neuropharmacology42(3), 374–385 (2002).
  • Lambert GA, Boers PM, Hoskin KL, Donaldson C, Zagami AS. Suppression by eletriptan of the activation of trigeminovascular sensory neurons by glyceryl trinitrate. Brain Res.953(1–2), 181–188 (2002).
  • Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br. J. Pharmacol.142(7), 1171–1181 (2004).
  • Shields KG, Storer RJ, Akerman S, Goadsby PJ. Calcium channels modulate nociceptive transmission in the trigeminal nucleus of the cat. Neuroscience135(1), 203–212 (2005).
  • Storer RJ, Akerman S, Goadsby PJ. Characterization of opioid receptors that modulate nociceptive neurotransmission in the trigeminocervical complex. Br. J. Pharmacol.138(2), 317–324 (2003).
  • Storer RJ, Akerman S, Shields KG, Goadsby PJ. GABAA receptor modulation of trigeminovascular nociceptive neurotransmission by midazolam is antagonized by flumazenil. Brain Res.1013(2), 188–193 (2004).
  • Johnson KW, Nisenbaum ES, Johnson MP et al. Innovative drug development for headache disorders: glutamate. In: Frontiers in Headache Research. Olesen J, Ramadan N (Eds). Oxford University Press, NY, USA 185–194 (2008).
  • Murphy MF, Mellberg SJ, Kurtz NM, Graham EA. AMPA/Kainate receptor antagonist Tezampanel is effective in treating acute migraine. Headache48(S1), 8 (2008).
  • Mulleners WM, Chronicle EP. Anticonvulsants in migraine prophylaxis: a Cochrane review. Cephalalgia28(6), 585–597 (2008).
  • Rosenfeld WE. Topiramate: a review of preclinical, pharmacokinetic, and clinical data. Clin. Ther.19(6), 1294–1308 (1997).
  • Andreou AP, Storer RJ, Holland PR, Goadsby PJ. CNQX inhibits trigeminovascular neurons in the rat: a microiontophoresis study. Cephalalgia26(11), 1383 (2006).
  • Andreou A, Goadsby P, Holland P. Pre- and postsynaptic involvement of GluR5 kainate receptors in trigeminovascular nociceptive processing. Cephalalgia27(6), 605 (2007).
  • Storer RJ, Goadsby PJ. N-methyl-D-aspartate receptor channel complex blockers including memantine and magnesium inhibit nociceptive traffic in the trigeminocervical complex of the rat. Cephalalgia29(Suppl. 1), 135 (2009).
  • Bartsch T, Goadsby PJ. Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain125(Pt 7), 1496–1509 (2002).
  • Lipton RB, Bigal ME, Ashina S et al. Cutaneous allodynia in the migraine population. Ann. Neurol.63(2), 148–158 (2008).
  • Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain89(2–3), 107–110 (2001).
  • Goadsby PJ. Migraine, allodynia, sensitisation and all of that. Eur. Neurol.53(S1), 10–16 (2005).
  • Selby G, Lance JW. Observations on 500 cases of migraine and allied vascular headache. J. Neurol. Neurosurg. Psychiatry23, 23–32 (1960).
  • Ebersberger A, Ringkamp M, Reeh PW, Handwerker HO. Recordings from brain stem neurons responding to chemical stimulation of the subarachnoid space. J. Neurophysiol.77(6), 3122–3133 (1997).
  • Schepelmann K, Ebersberger A, Pawlak M, Oppmann M, Messlinger K. Response properties of trigeminal brain stem neurons with input from dura mater encephali in the rat. Neuroscience90(2), 543–554 (1999).
  • Oshinsky ML, Luo J. Neurochemistry of trigeminal activation in an animal model of migraine. Headache46(S1), S39–S44 (2006).
  • Levy D, Burstein R, Strassman AM. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann. Neurol.58(5), 698–705 (2005).
  • Burstein R, Jakubowski M. Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization. Ann. Neurol.55(1), 27–36 (2004).
  • Pozo-Rosich P, Oshinsky M. Dihydroergotamine (DHE) reverses central sensitization in the trigeminal nucleus caudalis. Headache45(6), 767 (2005).
  • Jakubowski M, Levy D, Goor-Aryeh I et al. Terminating migraine with allodynia and ongoing central sensitization using parenteral administration of COX1/COX2 inhibitors. Headache45(7), 850–861 (2005).
  • Jakubowski M, Levy D, Kainz V et al. Sensitization of central trigeminovascular neurons: blockade by intravenous naproxen infusion. Neuroscience148(2), 573–583 (2007).
  • Levy D, Zhang XC, Jakubowski M, Burstein R. Sensitization of meningeal nociceptors: inhibition by naproxen. Eur. J. Neurosci.27(4), 917–922 (2008).
  • Goadsby PJ, Zanchin G, Geraud G et al. Early vs non-early intervention in acute migraine – ‘Act when Mild (AwM)’. A double-blind, placebo-controlled trial of almotriptan. Cephalalgia28(4), 383–391 (2008).
  • Cady R, Martin V, Mauskop A et al. Symptoms of cutaneous sensitivity pre-treatment and post-treatment: results from the rizatriptan TAME studies. Cephalalgia27(9), 1055–1060 (2007).
  • Knight YE, Bartsch T, Kaube H, Goadsby PJ. P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J. Neurosci.22(5), RC213 (2002).
  • Bartsch T, Knight YE, Goadsby PJ. Activation of 5-HT(1B/1D) receptor in the periaqueductal gray inhibits nociception. Ann. Neurol.56(3), 371–381 (2004).
  • Goadsby PJ, Lambert GA, Lance JW. Differential effects on the internal and external carotid circulation of the monkey evoked by locus coeruleus stimulation. Brain Res.249(2), 247–254 (1982).
  • Goadsby PJ, Zagami AS, Lambert GA. Neural processing of craniovascular pain: a synthesis of the central structures involved in migraine. Headache31(6), 365–371 (1991).
  • Lambert GA, Hoskin KL, Zagami AS. Cortico-NRM influences on trigeminal neuronal sensation. Cephalalgia28(6), 640–652 (2008).
  • Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache47(10), 1418–1426 (2007).
  • The Rat Brain in Stereotaxic Coordinates. Paxinos G, Watson C (Eds). Elsevier Academic Press, London, UK (2005).
  • Swanson LW, Kuypers HG. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol.194(3), 555–570 (1980).
  • Skagerberg G, Bjorklund A, Lindvall O, Schmidt RH. Origin and termination of the diencephalo-spinal dopamine system in the rat. Brain Res. Bull.9(1–6), 237–244 (1982).
  • Holstege JC, Van Dijken H, Buijs RM et al. Distribution of dopamine immunoreactivity in the rat, cat and monkey spinal cord. J. Comp. Neurol.376(4), 631–652 (1996).
  • Charbit AR, Akerman S, Holland PR, Goadsby PJ. Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J. Neurosci.29(40), 12532–12541 (2009).
  • Zagami AS, Lambert GA. Stimulation of cranial vessels excites nociceptive neurones in several thalamic nuclei of the cat. Exp. Brain Res.81(3), 552–566 (1990).
  • Zagami AS, Lambert GA. Craniovascular application of capsaicin activates nociceptive thalamic neurones in the cat. Neurosci. Lett.121(1–2), 187–190 (1991).
  • Shields KG, Goadsby PJ. Propranolol modulates trigeminovascular responses in thalamic ventroposteromedial nucleus: a role in migraine? Brain128(Pt 1), 86–97 (2005).
  • Shields KG, Goadsby PJ. Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol. Dis.23(3), 491–501 (2006).
  • Davis KD, Dostrovsky JO. Properties of feline thalamic neurons activated by stimulation of the middle meningeal artery and sagittal sinus. Brain Res.454(1–2), 89–100 (1988).
  • Andreou AP, Shields KG, Goadsby PJ. GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiol. Dis.37(2), 314–323 (2010).
  • Silva E, Quinones B, Freund N, Gonzalez LE, Hernandez L. Extracellular glutamate, aspartate and arginine increase in the ventral posterolateral thalamic nucleus during nociceptive stimulation. Brain Res.923(1–2), 45–49 (2001).
  • Andreou AP, Holland PR, Goadsby PJ. iGluR5 kainate receptors modulate trigeminovascular nociceptive transmission in thalamic ventroposteromedial nucleus. Headache48(S1), 5–6 (2008).
  • Andreou AP, Shields KG, Goadsby PJ. Sodium valproate but not gabapentin modulates trigeminovascular nociceptive transmission in the thalamus via GABA(A) receptor mechanisms: implications for migraine. Cephalalgia29, 140 (2009).
  • Gervil M, Ulrich V, Kyvik KO, Olesen J, Russell MB. Migraine without aura: a population-based twin study. Ann. Neurol.46(4), 606–611 (1999).
  • Russell MB, Olesen J. Increased familial risk and evidence of genetic factor in migraine. BMJ311(7004), 541–544 (1995).
  • Ulrich V, Gervil M, Kyvik KO, Olesen J, Russell MB. Evidence of a genetic factor in migraine with aura: a population-based Danish twin study. Ann. Neurol.45(2), 242–246 (1999).
  • van den Maagdenberg AM, Haan J, Terwindt GM, Ferrari MD. Migraine: gene mutations and functional consequences. Curr. Opin. Neurol.20(3), 299–305 (2007).
  • Eikermann-Haerter K, Dilekoz E, Kudo C et al. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J. Clin. Invest.119(1), 99–109 (2009).
  • Ayata C, Shimizu-Sasamata M, Lo EH, Noebels JL, Moskowitz MA. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the a1A subunit of P/Q type calcium channels. Neuroscience95(3), 639–645 (2000).
  • Tottene A, Conti R, Fabbro A et al. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron61(5), 762–773 (2009).
  • Xiong ZQ, Stringer JL. Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J. Neurophysiol.83(3), 1443–1451 (2000).
  • Dichgans M, Freilinger T, Eckstein G et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet366(9483), 371–377 (2005).
  • Vanmolkot KR, Babini E, de Vries B et al. The novel p.L1649Q mutation in the SCN1A epilepsy gene is associated with familial hemiplegic migraine: genetic and functional studies. Mutation in brief #957. Online. Hum. Mutat.28(5), 522 (2007).
  • Vahedi K, Depienne C, Le Fort D et al. Elicited repetitive daily blindness: a new phenotype associated with hemiplegic migraine and SCN1A mutations. Neurology72(13), 1178–1183 (2009).
  • Lingrel JB, Williams MT, Vorhees CV, Moseley AE. Na,K-ATPase and the role of a isoforms in behavior. J. Bioenerg. Biomembr.39(5–6), 385–389 (2007).
  • Mathew R, Chami L, Bergerot A et al. Reduced expression of calcitonon gene related peptide in mice with familial hemiplegic migraine (FHM) 1 mutation. Cephalalgia27(10), 1190 (2007).
  • Hansen JM, Thomsen LL, Olesen J, Ashina M. Familial hemiplegic migraine type 1 shows no hypersensitivity to nitric oxide. Cephalalgia28(5), 496–505 (2008).
  • Hansen JM, Thomsen LL, Olesen J, Ashina M. Calcitonin gene-related peptide does not cause the familial hemiplegic migraine phenotype. Neurology71(11), 841–847 (2008).
  • Oshinsky ML, Gomonchareonsiri S. Episodic dural stimulation in awake rats: a model for recurrent headache. Headache47(7), 1026–1036 (2007).
  • Mulleners WM, Aurora SK, Chronicle EP et al. Self-reported photophobic symptoms in migraineurs and controls are reliable and predict diagnostic category accurately. Headache41(1), 31–39 (2001).
  • Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav.13(2), 167–170 (1980).
  • Recober A, Kuburas A, Zhang Z et al. Role of calcitonin gene-related peptide in light-aversive behavior: implications for migraine. J. Neurosci.29(27), 8798–8804 (2009).
  • Recober A, Russo AF. Olcegepant, a non-peptide CGRP1 antagonist for migraine treatment. IDrugs10(8), 566–574 (2007).
  • Leao AAP. Spreading depression of activity in cerebral cortex. J. Neurophysiol.7, 359–390 (1944).
  • Gorji A, Scheller D, Straub H et al. Spreading depression in human neocortical slices. Brain Res.906(1–2), 74–83 (2001).
  • Gorji A, Zahn PK, Pogatzki EM, Speckmann EJ. Spinal and cortical spreading depression enhance spinal cord activity. Neurobiol. Dis.15(1), 70–79 (2004).
  • Haghir H, Kovac S, Speckmann EJ, Zilles K, Gorji A. Patterns of neurotransmitter receptor distributions following cortical spreading depression. Neuroscience163(4), 1340–1352 (2009).
  • Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J. Neurosci.13(3), 1167–1177 (1993).
  • Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog. Neurobiol.50(2–3), 83–107 (1996).
  • Ebersberger A, Schaible HG, Averbeck B, Richter F. Is there a correlation between spreading depression, neurogenic inflammation, and nociception that might cause migraine headache? Ann. Neurol.49(1), 7–13 (2001).
  • Olesen J. Cerebral and extracranial circulatory disturbances in migraine: pathophysiological implications. Cerebrovasc. Brain Metab. Rev.3(1), 1–28 (1991).
  • Brennan KC, Beltran-Parrazal L, Lopez-Valdes HE et al. Distinct vascular conduction with cortical spreading depression. J. Neurophysiol.97(6), 4143–4151 (2007).
  • Charles A, Brennan K. Cortical spreading depression – new insights and persistent questions. Cephalalgia29(10), 1115–1124 (2009).
  • Akerman S, Holland PR, Goadsby PJ. Mechanically-induced cortical spreading depression associated regional cerebral blood flow changes are blocked by Na+ ion channel blockade. Brain Res.1229, 27–36 (2008).
  • Kaube H, Herzog J, Kaufer T, Dichgans M, Diener HC. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology55(1), 139–141 (2000).
  • Shimazawa M, Hara H. An experimental model of migraine with aura: cortical hypoperfusion following spreading depression in the awake and freely moving rat. Clin. Exp. Pharmacol. Physiol.23(10–11), 890–892 (1996).
  • Bolay H, Akcali D, Yalcinkaya D, Sara Y. Behavioral changes associated with cortical spreading depression in awake rats. Cephalalgia29(1), 142 (2009).
  • Vinogradova LV, Kuznetsova GD, Coenen AM. Unilateral cortical spreading depression induced by sound in rats. Brain Res.1286, 201–207 (2009).
  • Ayata C. Spreading depression: from serendipity to targeted therapy in migraine prophylaxis. Cephalalgia29(10), 1095–1114 (2009).
  • Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA. Suppression of cortical spreading depression in migraine prophylaxis. Ann. Neurol.59(4), 652–661 (2006).
  • Bogdanov VB, Chauvel V, Multon S, Makarchuk MY, Schoenen J. Preventive antimigraine drugs differentially affect KCl-induced cortical sreading depression in rat. Cephalalgia29(1), 131 (2009).
  • Holland PR, Akerman S, Goadsby PJ. Amiloride-sensitive epithelial sodium channels: a novel therapy for migraine with aura? Cephalalgia29, 48 (2009).
  • Read SJ, Hirst WD, Upton N, Parsons AA. Cortical spreading depression produces increased cGMP levels in cortex and brain stem that is inhibited by tonabersat (SB-220453) but not sumatriptan. Brain Res.891(1–2), 69–77 (2001).
  • Brennan KC, Romero Reyes M, Lopez-Valdes HE, Arnold AP, Charles AC. Reduced threshold for cortical spreading depression in female mice. Ann. Neurol.61(6), 603–606 (2007).
  • Sachs M, Pape HC, Speckmann EJ, Gorji A. The effect of estrogen and progesterone on spreading depression in rat neocortical tissues. Neurobiol. Dis.25(1), 27–34 (2007).
  • Goadsby PJ, Ferrari MD, Csanyi A, Olesen J, Mills JG. Randomized, double-blind, placebo-controlled, proof-of-concept study of the cortical spreading depression inhibiting agent tonabersat in migraine prophylaxis. Cephalalgia29(7), 742–750 (2009).
  • Cohen AS, Burns B, Goadsby PJ. High-flow oxygen for treatment of cluster headache: a randomized trial. JAMA302(22), 2451–2457 (2009).
  • Cittadini E, Matharu MS, Goadsby PJ. Paroxysmal hemicrania: a prospective clinical study of 31 cases. Brain131(Pt 4), 1142–1155 (2008).
  • Spencer SE, Sawyer WB, Wada H, Platt KB, Loewy AD. CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res.534(1–2), 149–169 (1990).
  • Mizuta K, Kuchiiwa S, Saito T et al. Involvement of trigeminal spinal nucleus in parasympathetic reflex vasodilatation in cat lower lip. Am. J. Physiol. Regul. Integr. Comp. Physiol.282(2), R492–R500 (2002).
  • Knight YE, Classey JD, Lasalandra MP et al. Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat. Brain Res.1045(1–2), 1–11 (2005).
  • Goadsby PJ, Shelley S. High-frequency stimulation of the facial nerve results in local cortical release of vasoactive intestinal polypeptide in the anesthetised cat. Neurosci. Lett.112(2–3), 282–289 (1990).
  • Suzuki N, Hardebo JE, Kahrstrom J, Owman C. Selective electrical stimulation of postganglionic cerebrovascular parasympathetic nerve fibers originating from the sphenopalatine ganglion enhances cortical blood flow in the rat. J. Cereb. Blood Flow Metab.10(3), 383–391 (1990).
  • Nakai M, Tamaki K, Ogata J, Matsui Y, Maeda M. Parasympathetic cerebrovasodilator center of the facial nerve. Circ. Res.72(2), 470–475 (1993).
  • Gottselig R, Messlinger K. Noxious chemical stimulation of rat facial mucosa increases intracranial blood flow through a trigemino-parasympathetic reflex – an experimental model for vascular dysfunctions in cluster headache. Cephalalgia24(3), 206–214 (2004).
  • Goadsby PJ, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain117(Pt 3), 427–434 (1994).
  • Frese A, Evers S, May A. Autonomic activation in experimental trigeminal pain. Cephalalgia23(1), 67–68 (2003).
  • Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Oxygen inhibits neuronal activation in the trigeminocervical complex after stimulation of trigeminal autonomic reflex, but not during direct dural activation of trigeminal afferents. Headache49(8), 1131–1143 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.