136
Views
7
CrossRef citations to date
0
Altmetric
Theme: Parkinson’s disease - Review

Gene therapy for Parkinson’s disease: where are we now and where are we going?

, &
Pages 1839-1845 | Published online: 09 Jan 2014

References

  • Aposhian HV. The use of DNA for gene therapy – the need, experimental approach, and implications. Perspect. Biol. Med.14(1), 98–108 (1970).
  • Fox MS, Littlefield JW. Reservations concerning gene therapy. Science173(993), 195 (1971).
  • Osterman JV, Waddell A, Aposhian HV. Gene therapy systems: the need, experimental approach, and implications. Ann. NY Acad. Sci.179, 514–519 (1971).
  • Qasba PK, Aposhian HV. DNA and gene therapy: transfer of mouse DNA to human and mouse embryonic cells by polyoma pseudovirions. Proc. Natl Acad. Sci. USA68(10), 2345–2349 (1971).
  • Rogers S. Gene therapy: a potentially invaluable aid to medicine and mankind. Res. Commun. Chem. Pathol. Pharmacol.2(4), 587–600 (1971).
  • Freese E. Prospects of gene therapy. Science175(25), 1024–1025 (1972).
  • Friedmann T, Roblin R. Gene therapy for human genetic disease? Science175(25), 949–955 (1972).
  • Frank SA, Wilson R, Holloway RG et al. Ethics of sham surgery: perspective of patients. Mov. Disord.23(1), 63–68 (2008).
  • Kim SY, Holloway RG, Frank S et al. Volunteering for early phase gene transfer research in Parkinson disease. Neurology66(7), 1010–1015 (2006).
  • Ravina B, Swearingen C, Elm J, Kamp C, Kieburtz K, Kim SY. Long term understanding of study information in research participants with Parkinson’s disease. Parkinsonism Relat. Disord.16(1), 60–63 (2010).
  • Kaplitt MG, Feigin A, Tang C et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, Phase I trial. Lancet369(9579), 2097–2105 (2007).
  • Azzouz M, Martin-Rendon E, Barber RD et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J. Neurosci.22(23), 10302–10312 (2002).
  • Jarraya B, Boulet S, Ralph GS et al. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci. Transl. Med.1(2), 2ra4 (2009).
  • Perlmutter JS, Mink JW. Deep brain stimulation. Annu. Rev. Neurosci.29, 229–257 (2006).
  • Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol.8(1), 67–81 (2009).
  • Levy R, Lang AE, Dostrovsky JO et al. Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain124(Pt 10), 2105–2118 (2001).
  • Chen L, Xie JX, Fung KS, Yung WH. Zolpidem modulates GABA(A) receptor function in subthalamic nucleus. Neurosci. Res.58(1), 77–85 (2007).
  • Luo J, Kaplitt MG, Fitzsimons HL et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science298(5592), 425–429 (2002).
  • Zander JF, Munster-Wandowski A, Brunk I et al. Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J. Neurosci.30(22), 7634–7645 (2010).
  • Galvan A, Charara A, Pare JF, Levey AI, Smith Y. Differential subcellular and subsynaptic distribution of GABA(A) and GABA(B) receptors in the monkey subthalamic nucleus. Neuroscience127(3), 709–721 (2004).
  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron7(1), 91–100 (1991).
  • Emborg ME, Carbon M, Holden JE et al. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J. Cereb. Blood Flow Metab.27(3), 501–509 (2007).
  • Bankiewicz KS, Daadi M, Pivirotto P et al. Focal striatal dopamine may potentiate dyskinesias in parkinsonian monkeys. Exp. Neurol.197(2), 363–372 (2006).
  • Forsayeth JR, Eberling JL, Sanftner LM et al. A dose-ranging study of AAV–hAADC therapy in parkinsonian monkeys. Mol. Ther.14(4), 571–577 (2006).
  • Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2–hAADC. Mol. Ther.18(8), 1458–1461 (2010).
  • Eberling JL, Jagust WJ, Christine CW et al. Results from a Phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology70(21), 1980–1983 (2008).
  • Christine CW, Starr PA, Larson PS et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology73(20), 1662–1669 (2009).
  • DeJesus OT, Endres CJ, Shelton SE, Nickles RJ, Holden JE. Evaluation of fluorinated m-tyrosine analogs as PET imaging agents of dopamine nerve terminals: comparison with 6-fluoroDOPA. J. Nucl. Med.38(4), 630–636 (1997).
  • Jordan S, Eberling JL, Bankiewicz KS et al. 6-[18F]fluoro-L-m-tyrosine: metabolism, positron emission tomography kinetics, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine lesions in primates. Brain Res.750(1–2), 264–276 (1997).
  • Doudet DJ, Chan GL, Jivan S et al. Evaluation of dopaminergic presynaptic integrity: 6-[18F]fluoro-L-dopa versus 6-[18F]fluoro-L-m-tyrosine. J. Cereb. Blood Flow Metab.19(3), 278–287 (1999).
  • Bankiewicz KS, Forsayeth J, Eberling JL et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther.14(4), 564–570 (2006).
  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science260(5111), 1130–1132 (1993).
  • Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J. The GDNF family ligands and receptors – implications for neural development. Curr. Opin. Neurobiol.10(1), 103–110 (2000).
  • Akerud P, Alberch J, Eketjall S, Wagner J, Arenas E. Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons. J. Neurochem.73(1), 70–78 (1999).
  • Rosenblad C, Kirik D, Devausx B, Moffat B, Phillips HS, Bjorklund A. Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle. Eur. J. Neurosci.111, 1554–1566 (1999).
  • Fiandaca M, Forsayeth J, Bankiewicz K. Current status of gene therapy trials for Parkinson’s disease. Exp. Neurol.209(1), 51–57 (2008).
  • Kordower JH, Herzog CD, Dass B et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann. Neurol.60(6), 706–715 (2006).
  • Eberling JL, Kells AP, Pivirotto P et al. Functional effects of AAV2–GDNF on the dopaminergic nigrostriatal pathway in parkinsonian rhesus monkeys. Hum. Gene Ther.20(5), 511–518 (2009).
  • Su X, Kells AP, Huang EJ et al. Safety evaluation of AAV2–GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum. Gene Ther.20(12), 1627–1640 (2009).
  • Kells AP, Eberling J, Su X et al. Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2–GDNF. J. Neurosci.30(28), 9567–9577 (2010).
  • Johnston LC, Eberling J, Pivirotto P et al. Clinically relevant effects of convection-enhanced delivery of AAV2–GDNF on the dopaminergic nigrostriatal pathway in aged rhesus monkeys. Hum. Gene Ther.20(5), 497–510 (2009).
  • Manfredsson FP, Tumer N, Erdos B et al. Nigrostriatal rAAV-mediated GDNF overexpression induces robust weight loss in a rat model of age-related obesity. Mol. Ther.17(6), 980–991 (2009).
  • Palfi S, Leventhal L, Chu Y et al. Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J. Neurosci.22(12), 4942–4954 (2002).
  • Marks WJ Jr, Ostrem JL, Verhagen L et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, Phase I trial. Lancet Neurol.7(5), 400–408 (2008).
  • Hadaczek P, Forsayeth J, Mirek H et al. Transduction of nonhuman primate brain with adeno-associated virus serotype 1: vector trafficking and immune response. Hum. Gene Ther.20(3), 225–237 (2009).
  • Chirmule N, Xiao W, Truneh A et al. Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle. J. Virol.74(5), 2420–2425 (2000).
  • Sanftner LM, Suzuki BM, Doroudchi MM et al. Striatal delivery of rAAV–hAADC to rats with preexisting immunity to AAV. Mol. Ther.9(3), 403–409 (2004).
  • Peden CS, Burger C, Muzyczka N, Mandel RJ. Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J. Virol.78(12), 6344–6359 (2004).
  • Peden CS, Manfredsson FP, Reimsnider SK et al. Striatal readministration of rAAV vectors reveals an immune response against AAV2 capsids that can be circumvented. Mol. Ther.17(3), 524–537 (2009).
  • Wright JF, Qu G, Tang C, Sommer JM. Recombinant adeno-associated virus: formulation challenges and strategies for a gene therapy vector. Curr. Opin. Drug Discov. Devel.6(2), 174–178 (2003).
  • Hadaczek P, Yamashita Y, Mirek H et al. The ‘perivascular pump’ driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol. Ther.14(1), 69–78 (2006).
  • Passini MA, Macauley SL, Huff MR et al. AAV vector-mediated correction of brain pathology in a mouse model of Niemann-Pick A disease. Mol. Ther.11(5), 754–762 (2005).
  • Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science301(5634), 839–842 (2003).
  • Hollis ER 2nd, Jamshidi P, Lorenzana AO et al. Transient demyelination increases the efficiency of retrograde AAV transduction. Mol. Ther.18(8), 1496–1500 (2010).
  • Arvidsson A, Kirik D, Lundberg C et al. Elevated GDNF levels following viral vector-mediated gene transfer can increase neuronal death after stroke in rats. Neurobiol. Dis.14(3), 542–556 (2003).
  • Hadaczek P, Mirek H, Bringas J, Cunningham J, Bankiewicz K. Basic fibroblast growth factor enhances transduction, distribution, and axonal transport of adeno-associated virus type 2 vector in rat brain. Hum. Gene Ther.15(5), 469–479 (2004).
  • Kells AP, Hadaczek P, Yin D et al. Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc. Natl Acad. Sci. USA106(7), 2407–2411 (2009).
  • Krauze MT, Saito R, Noble C et al. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J. Neurosurg.103(5), 923–929 (2005).
  • Varenika V, Dickenson P, Bringas J et al. Real-time imaging of CED in the brain permits detection of infusate leakage. J. Neurosurg.109, 874–880 (2008).
  • Fiandaca MS, Varenika V, Eberling J et al. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage47(Suppl. 2), T27–T35 (2009).
  • Yin D, Valles FE, Fiandaca MS et al. Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage187(1), 46–51 (2009).
  • Yin D, Richardson RM, Fiandaca MS et al. Cannula placement for effective convection-enhanced delivery in the non-human primate thalamus and brainstem: implications for clinical delivery of therapeutics. J. Neurosurg.113(2), 240–248 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.