288
Views
46
CrossRef citations to date
0
Altmetric
Theme: Alzheimer's disease - Review

Quantitative structural MRI for early detection of Alzheimer’s disease

&
Pages 1675-1688 | Published online: 09 Jan 2014

References

  • The Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement.6(2), 158–194 (2010).
  • Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci.11(2), 111–128 (2009).
  • Ferri CP, Prince M, Brayne C et al. Global prevalence of dementia: a Delphi consensus study. Lancet366(9503), 2112–2117 (2005).
  • Rafii MS, Aisen PS. Recent developments in Alzheimer’s disease therapeutics. BMC Med.7, 7 (2009).
  • Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology69(16), 1622–1634 (2007).
  • Aisen PS. Commentary on “a roadmap for the prevention of dementia II. Leon Thal Symposium 2008.” Facilitating Alzheimer’s disease drug development in the United States. Alzheimers Dement.5(2), 125–127 (2009).
  • Ellis KA, Rowe CC, Villemagne VL et al. Addressing population aging and Alzheimer’s disease through the Australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement.6(3), 291–296 (2010).
  • Frisoni GB. Alzheimer’s disease neuroimaging initiative in Europe. Alzheimers Dement.6(3), 280–285 (2010).
  • Iwatsubo T. Japanese Alzheimer’s Disease Neuroimaging Initiative: present status and future. Alzheimers Dement.6(3), 297–299 (2010).
  • Weiner MW, Aisen PS, Jack CR Jr et al. The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimers Dement.6(3), 202–211 e207 (2010).
  • Mueller SG, Weiner MW, Thal LJ et al. Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement.1(1), 55–66 (2005).
  • Aisen PS, Petersen RC, Donohue MC et al. Clinical core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans. Alzheimers Dement.6(3), 239–246 (2010).
  • Jack CR Jr, Bernstein MA, Borowski BJ et al. Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement.6(3), 212–220 (2010).
  • Jagust WJ, Bandy D, Chen K et al. The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement.6(3), 221–229 (2010).
  • Trojanowski JQ, Vandeerstichele H, Korecka M et al. Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimers Dement.6(3), 230–238 (2010).
  • Citron M. Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov.9(5), 387–398 (2010).
  • Grill JD, Cummings JL. Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev. Neurother.10(5), 711–728 (2010).
  • Braak H, Braak E. Staging of Alzheimer-related cortical destruction. Int. Psychogeriatr.9(Suppl. 1), 257–261; discussion 269–272 (1997).
  • Bennett DA, Schneider JA, Arvanitakis Z et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology66(12), 1837–1844 (2006).
  • Price JL, McKeel DW Jr, Buckles VD et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol. Aging30(7), 1026–1036 (2009).
  • Lee HG, Zhu X, Castellani RJ, Nunomura A, Perry G, Smith MA. Amyloid-β in Alzheimer disease: the null versus the alternate hypotheses. J. Pharmacol. Exp. Ther.321(3), 823–829 (2007).
  • Iqbal K, Grundke-Iqbal I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J. Cell. Mol. Med.12(1), 38–55 (2008).
  • Castellani RJ, Lee HG, Siedlak SL et al. Reexamining Alzheimer’s disease: evidence for a protective role for amyloid-β protein precursor and amyloid-β. J. Alzheimers Dis.18(2), 447–452 (2009).
  • Pimplikar SW. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int. J. Biochem. Cell Biol.41(6), 1261–1268 (2009).
  • Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. (Berl.)82(4), 239–259 (1991).
  • Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. (Berl.)112(4), 389–404 (2006).
  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology34(7), 939–944 (1984).
  • Dubois B, Feldman HH, Jacova C et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol.6(8), 734–746 (2007).
  • Dubois B, Picard G, Sarazin M. Early detection of Alzheimer’s disease: new diagnostic criteria. Dialogues Clin. Neurosci.11(2), 135–139 (2009).
  • Sarazin M, Berr C, De Rotrou J et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology69(19), 1859–1867 (2007).
  • Jacobson MW, McEvoy LK, Dale A, Fennema-Notestine C. Cognitive phenotypes, brain morphometry and the detection of cognitive decline in preclinical AD. Behav. Neurol.21(1), 29–37 (2009).
  • Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol.6(3), 131–144 (2010).
  • Rabinovici GD, Jagust WJ. Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo. Behav. Neurol.21(1), 117–128 (2009).
  • Fennema-Notestine C, McEvoy LK, Hagler DJ Jr, Jacobson MW, Dale AM. The Alzheimer’s Disease Neuroimaging I. Structural neuroimaging in the detection and prognosis of pre-clinical and early AD. Behav. Neurol.21(1), 3–12 (2009).
  • Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol.6(2), 67–77 (2010).
  • Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur. J. Nucl. Med. Mol. Imaging32(4), 486–510 (2005).
  • Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br. J. Radiol.80(Spec. No. 2), S160–S167 (2007).
  • Petersen RC. Mild cognitive impairment as a diagnostic entity. J. Intern. Med.256(3), 183–194 (2004).
  • Petersen RC, Thomas RG, Grundman M et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med.352(23), 2379–2388 (2005).
  • Petersen RC, Aisen PS, Beckett LA et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology74(3), 201–209 (2010).
  • Carrillo MC, Blackwell A, Hampel H et al. Early risk assessment for Alzheimer’s disease. Alzheimers Dement.5(2), 182–196 (2009).
  • Larrieu S, Letenneur L, Orgogozo JM et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology59(10), 1594–1599 (2002).
  • Jicha GA, Parisi JE, Dickson DW et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch. Neurol.63(5), 674–681 (2006).
  • Mattsson N, Zetterberg H, Hansson O et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA302(4), 385–393 (2009).
  • Nordlund A, Rolstad S, Klang O, Edman A, Hansen S, Wallin A. Two-year outcome of MCI subtypes and aetiologies in the Goteborg MCI study. J. Neurol. Neurosurg. Psychiatry81(5), 541–546 (2010).
  • McEvoy LK, Edland SD, Holland D et al. Neuroimaging enrichment strategy for secondary prevention trials in Alzheimer disease. Alzheimer Dis. Assoc. Disord.24(3), 269–277 (2010).
  • Fennema-Notestine C, Hagler DJ Jr, McEvoy LK et al. Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum. Brain Mapp.30(10), 3238–3253 (2009).
  • Morra JH, Tu Z, Apostolova LG et al. Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer’s disease, mild cognitive impairment, and elderly controls. Hum. Brain Mapp.30(9), 2766–2788 (2009).
  • Walhovd KB, Fjell AM, Dale AM et al. Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol. Aging31(7), 1107–1121 (2010).
  • Kovacevic S, Rafii MS, Brewer JB. High-throughput, fully automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment. Alzheimer Dis. Assoc. Disord.23(2), 139–145 (2009).
  • Ashburner J, Csernansky JG, Davatzikos C, Fox NC, Frisoni GB, Thompson PM. Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol.2(2), 79–88 (2003).
  • Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl Acad. Sci. USA97(20), 11050–11055 (2000).
  • Fischl B, Salat DH, Busa E et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron33(3), 341–355 (2002).
  • Fischl B, Salat DH, van der Kouwe AJ et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage23(Suppl. 1), S69–S84 (2004).
  • Fischl B, Van Der Kouwe A, Destrieux C et al. Automatically parcellating the human cerebral cortex. Cereb. Cortex14(1), 11–22 (2004).
  • Vemuri P, Gunter JL, Senjem ML et al. Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage39(3), 1186–1197 (2008).
  • Dickerson BC, Bakkour A, Salat DH et al. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex19(3), 497–510 (2009).
  • McDonald CR, McEvoy LK, Gharapetian L et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology73(6), 457–465 (2009).
  • Fan Y, Batmanghelich N, Clark CM, Davatzikos C. Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage39(4), 1731–1743 (2008).
  • McEvoy LK, Fennema-Notestine C, Roddey JC et al. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology251(1), 195–205 (2009).
  • Vemuri P, Wiste HJ, Weigand SD et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology73(4), 287–293 (2009).
  • Vemuri P, Whitwell JL, Kantarci K et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage42(2), 559–567 (2008).
  • Whitwell JL, Josephs KA, Murray ME et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology71(10), 743–749 (2008).
  • Du AT, Schuff N, Kramer JH et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain130(Pt 4), 1159–1166 (2007).
  • Rabinovici GD, Seeley WW, Kim EJ et al. Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am. J. Alzheimers Dis. Other Demen.22(6), 474–488 (2007).
  • Whitwell JL, Weigand SD, Shiung MM et al. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer’s disease. Brain130(Pt 3), 708–719 (2007).
  • Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron62(1), 42–52 (2009).
  • Bell-McGinty S, Lopez OL, Meltzer CC et al. Differential cortical atrophy in subgroups of mild cognitive impairment. Arch. Neurol.62(9), 1393–1397 (2005).
  • Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ. Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain129(Pt 11), 2885–2893 (2006).
  • Whitwell JL, Shiung MM, Przybelski SA et al. MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology70(7), 512–520 (2008).
  • Reisberg B, Gauthier S. Current evidence for subjective cognitive impairment (SCI) as the pre-mild cognitive impairment (MCI) stage of subsequently manifest Alzheimer’s disease. Int. Psychogeriatr.20(1), 1–16 (2008).
  • Jessen F, Wiese B, Bachmann C et al. Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Arch. Gen. Psychiatry67(4), 414–422 (2010).
  • Saykin AJ, Wishart HA, Rabin LA et al. Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology67(5), 834–842 (2006).
  • Apostolova LG, Dutton RA, Dinov ID et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch. Neurol.63(5), 693–699 (2006).
  • Apostolova LG, Mosconi L, Thompson PM et al. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol Aging31(7), 1077–1088 (2010).
  • Devanand DP, Pradhaban G, Liu X et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology68(11), 828–836 (2007).
  • Bakkour A, Morris JC, Dickerson BC. The cortical signature of prodromal AD: regional thinning predicts mild AD dementia. Neurology72(12), 1048–1055 (2009).
  • Desikan RS, Cabral HJ, Fischl B et al. Temporoparietal MR imaging measures of atrophy in subjects with mild cognitive impairment that predict subsequent diagnosis of Alzheimer disease. AJNR Am. J. Neuroradiol.30(3), 532–538 (2009).
  • Vemuri P, Wiste HJ, Weigand SD et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology73(4), 294–301 (2009).
  • Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM. Detection of prodromal Alzheimer’s disease via pattern classification of MRI. Neurobiol Aging29(4), 514–523 (2008).
  • McEvoy LK, Holland D, Hagler DJ Jr, Fennema-Notestine C, Dale AM. Structural neuroimaging for individual patient risk assessment in mild cognitive impairment. Alzheimers Dement.6(4 Suppl.), S300–S301 (2010).
  • Jack CR Jr, Shiung MM, Weigand SD et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology65(8), 1227–1231 (2005).
  • Henneman WJ, Sluimer JD, Barnes J et al. Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology72(11), 999–1007 (2009).
  • Schott JM, Price SL, Frost C, Whitwell JL, Rossor MN, Fox NC. Measuring atrophy in Alzheimer disease: a serial MRI study over 6 and 12 months. Neurology65(1), 119–124 (2005).
  • Ridha BH, Anderson VM, Barnes J et al. Volumetric MRI and cognitive measures in Alzheimer disease: comparison of markers of progression. J. Neurol.255(4), 567–574 (2008).
  • Barnes J, Bartlett JW, van de Pol LA et al. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol. Aging30(11), 1711–1723 (2009).
  • Holland D, Brewer JB, Hagler DJ, Fenema-Notestine C, Dale AM. Subregional neuroanatomical change as a biomarker for Alzheimer’s disease. Proc. Natl Acad. Sci. USA106(49), 20954–20959 (2009).
  • McDonald CR, Gharapetian L, McEvoy LK et al. Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment. Neurobiol. Aging DOI: 10.1016/j.neurobiolaging.2010.03.015 (2010) (Epub ahead of print).
  • Ridha BH, Barnes J, Bartlett JW et al. Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol.5(10), 828–834 (2006).
  • Jack CR Jr, Weigand SD, Shiung MM et al. Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology70(19 Pt 2), 1740–1752 (2008).
  • Jack CR Jr, Knopman DS, Jagust WJ et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol.9(1), 119–128 (2010).
  • Scahill RI, Fox NC. Longitudinal imaging in dementia. Br. J. Radiol.80(Spec. No. 2), S92–S98 (2007).
  • Barnes J, Godbolt AK, Frost C et al. Atrophy rates of the cingulate gyrus and hippocampus in AD and FTLD. Neurobiol. Aging28(1), 20–28 (2007).
  • Krueger CE, Dean DL, Rosen HJ et al. Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer’s disease. Alzheimer Dis. Assoc. Disord.24(1), 43–48 (2010).
  • Fjell AM, Walhovd KB, Fennema-Notestine C et al. One-year brain atrophy evident in healthy aging. J. Neurosci.29(48), 15223–15231 (2009).
  • Murphy EA, Holland D, Donohue M et al. Six-month atrophy in MTL structures is associated with subsequent memory decline in elderly controls. Neuroimage53(4), 1310–1317 (2010).
  • Landau SM, Harvey D, Madison CM et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology75(3), 230–238 (2010).
  • Langbaum JB, Chen K, Caselli RJ et al. Hypometabolism in Alzheimer-affected brain regions in cognitively healthy Latino individuals carrying the apolipoprotein E epsilon4 allele. Arch. Neurol.67(4), 462–468 (2010).
  • Karow DS, McEvoy LK, Fennema-Notestine C et al. Relative capability of MR Imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease . Radiology256(3), 932–942 (2010).
  • Villain N, Fouquet M, Baron JC et al. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer’s disease. Brain doi: 10.1093/brain/awq203 (2010) (Epub ahead of print).
  • Hampel H, Burger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement.4(1), 38–48 (2008).
  • Blennow K, Zetterberg H. Cerebrospinal fluid biomarkers for Alzheimer’s disease. J. Alzheimers Dis.18(2), 413–417 (2009).
  • Shaw LM, Vanderstichele H, Knapik-Czajka M et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann. Neurol.65(4), 403–413 (2009).
  • Buerger K, Ewers M, Pirttila T et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain129(Pt 11), 3035–3041 (2006).
  • Strozyk D, Blennow K, White LR, Launer LJ. CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology60(4), 652–656 (2003).
  • Fagan AM, Mintun MA, Mach RH et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Ab42 in humans. Ann. Neurol.59(3), 512–519 (2006).
  • Ikonomovic MD, Klunk WE, Abrahamson EE et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain131(Pt 6), 1630–1645 (2008).
  • Fagan AM, Mintun MA, Shah AR et al. Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol. Med.1(8–9), 371–380 (2009).
  • Morris JC, Roe CM, Grant EA et al. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch. Neurol.66(12), 1469–1475 (2009).
  • De Meyer G, Shapiro F, Vanderstichele H et al. Diagnosis-independent alzheimer disease biomarker signature in cognitively normal elderly people. Arch. Neurol.67(8), 949–956 (2010).
  • Rowe CC, Ellis KA, Rimajova M et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging31(8), 1275–1283 (2010).
  • Jack CR Jr, Lowe VJ, Weigand SD et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain132(Pt 5), 1355–1365 (2009).
  • Fjell AM, Walhovd KB, Fennema-Notestine C et al. Brain atrophy in healthy aging is related to CSF levels of Aβ1–42. Cereb. Cortex20(9), 2069–2079 (2010).
  • Fjell AM, Walhovd KB, Fennema-Notestine C et al. CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J. Neurosci.30(6), 2088–2101 (2010).
  • Desikan RS, Cabral HJ, Settecase F et al. Automated MRI measures predict progression to Alzheimer’s disease. Neurobiol. Aging31(8), 1364–1374 (2010).
  • Brewer JB. Fully-automated volumetric MRI with normative ranges: translation to clinical practice. Behav. Neurol.21(1), 21–28 (2009).
  • Han X, Jovicich J, Salat D et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage32, 180–194 (2006).
  • Jovicich J, Czanner S, Greve D et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage30(2), 436–443 (2006).
  • Jack CR Jr, Bernstein MA, Fox NC et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging27(4), 685–691 (2008).
  • Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging17(1), 87–97 (1998).
  • White NW, Roddey C, Shankaranaraynan A et al. PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn. Reson. Med.63(1), 91–105 (2010).
  • Brown TT, Kuperman JM, Erhart M et al. Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage53(1), 139–145 (2010).
  • Dale AM, Sereno MI. Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J. Cognitive Neurosci.5, 162–176 (1993).
  • Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage9(2), 179–194 (1999).
  • Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage9(2), 195–207 (1999).
  • Brewer JB, Magda S, Airriess C, Smith ME. Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR Am. J. Neuroradiol.30(3), 578–580 (2009).
  • Schott JM, Frost C, Whitwell JL et al. Combining short interval MRI in Alzheimer’s disease: Implications for therapeutic trials. J. Neurol.253(9), 1147–1153 (2006).
  • Saumier D, Aisen PS, Gauthier S et al. Lessons learned in the use of volumetric MRI in therapeutic trials in Alzheimer’s disease: the ALZHEMED (Tramiprosate) experience. J. Nutr. Health Aging13(4), 370–372 (2009).
  • Hua X, Lee S, Yanovsky I et al. Optimizing power to track brain degeneration in Alzheimer’s disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects. Neuroimage48(4), 668–681 (2009).
  • Gauthier S, Aisen PS, Ferris SH et al. Effect of tramiprosate in patients with mild-to-moderate Alzheimer’s disease: exploratory analyses of the MRI sub-group of the Alphase study. J. Nutr. Health Aging13(6), 550–557 (2009).
  • Salloway S, Sperling R, Gilman S et al. A Phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology73(24), 2061–2070 (2009).
  • Fox NC, Black RS, Gilman S et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology64(9), 1563–1572 (2005).
  • Black RS, Sperling RA, Safirstein B et al. A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Dis. Assoc. Disord.24(2), 198–203 (2010).
  • Panza F, Frisardi V, Imbimbo BP et al. γ-secretase inhibitors for the treatment of Alzheimer’s disease: the current state. CNS Neurosci. Ther. DOI: 10.1111/j.1755-5949.2010.00164.x (2010) (Epub ahead of print).
  • Li H, Wolfe MS, Selkoe DJ. Toward structural elucidation of the γ-secretase complex. Structure17(3), 326–334 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.