783
Views
93
CrossRef citations to date
0
Altmetric
Review

Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses

, , &
Pages 587-601 | Published online: 09 Jan 2014

References

  • Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am. J. Psychiatry164(6), 942–948 (2007).
  • Diagnostic and Statistical Manual of Mental Disorders DSM-IV 4th Edition. American Psychiatry Association. American Psychiatric Publishing Inc., DC, USA (1994).
  • Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol. Med.36(2), 159–165 (2006).
  • Barkley RA. Major life activity and health outcomes associated with attention-deficit/hyperactivity disorder.J. Clin. Psychiatry63(Suppl. 12), 10–15 (2002).
  • Faraone SV, Perlis RH, Doyle AE et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry57(11), 1313–1323 (2005).
  • Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull.121(1), 65–94 (1997).
  • Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol. Psychiatry57(11), 1336–1346 (2005).
  • Wender PH, Epstein RS, Kopin IJ, Gordon EK. Urinary monoamine metabolites in children with minimal brain dysfunction. Am. J. Psychiatry127(10), 1411–1415 (1971).
  • Satterfield JH, Dawson ME. Electrodermal correlates of hyperactivity in children. Psychophysiology8(2), 191–197 (1971).
  • Levy F. The dopamine theory of attention deficit hyperactivity disorder (ADHD). Aust. NZ J. Psychiatry25(2), 277–283 (1991).
  • Tripp G, Wickens JR. Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD.J. Child Psychol. Psychiatry49(7), 691–704 (2008).
  • Williams J. Working toward a neurobiological account of ADHD: commentary on Gail Tripp and Jeff Wickens, dopamine transfer deficit.J. Child Psychol. Psychiatry49(7), 705–711; discussion 711 (2008).
  • Van der Kooij MA, Glennon JC. Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci. Biobehav. Rev.31(4), 597–618 (2007).
  • Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ. Limbic corticostriatal systems and delayed reinforcement. Ann. NY Acad. Sci.1021, 33–50 (2004).
  • Davids E, Zhang K, Tarazi FI, Baldessarini RJ. Animal models of attention-deficit hyperactivity disorder. Brain Res. Brain Res. Rev.42(1), 1–21 (2003).
  • Kadesjo B, Gillberg C. Developmental coordination disorder in Swedish 7-year-old children.J. Am. Acad. Child Adolesc. Psychiatry38(7), 820–828 (1999).
  • Swanson JM, Kinsbourne M, Nigg J et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol. Rev.17(1), 39–59 (2007).
  • De La Garza R 2nd, Madras BK. (3H) PNU-101958, a D4 dopamine receptor probe, accumulates in prefrontal cortex and hippocampus of non-human primate brain. Synapse37(3), 232–244 (2000).
  • Archer T, Danysz W, Fredriksson A et al. Neonatal 6-hydroxydopamine-induced dopamine depletions: motor activity and performance in maze learning. Pharmacol. Biochem. Behav.31(2), 357–364 (1988).
  • Zhang K, Davids E, Tarazi FI, Baldessarini RJ. Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions. Psychopharmacology (Berl.)161(1), 100–106 (2002).
  • Masuo Y, Ishido M, Morita M, Oka S. Effects of neonatal treatment with 6-hydroxydopamine and endocrine disruptors on motor activity and gene expression in rats. Neural. Plast.11(1–2), 59–76 (2004).
  • Zhang K, Tarazi FI, Baldessarini RJ. Role of dopamine D4 receptors in motor hyperactivity induced by neonatal 6-hydroxydopamine lesions in rats. Neuropsychopharmacology25(5), 624–632 (2001).
  • Pappas BA, Gallivan JV, Dugas T, Saari M, Ings R. Intraventricular 6-hydroxydopamine in the newborn rat and locomotor responses to drugs in infancy: no support for the dopamine depletion model of minimal brain dysfunction. Psychopharmacology (Berl.)70(1), 41–46 (1980).
  • Davids E, Zhang K, Kula NS, Tarazi FI, Baldessarini RJ. Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats.J. Pharmacol. Exp. Ther.301(3), 1097–1102 (2002).
  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science283, 397–401 (1999)
  • Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG. Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res. Brain Res. Rev.26(2–3), 148–153 (1998).
  • Brunner D, Buhot MC, Hen R, Hofer M. Anxiety, motor activation, and maternal–infant interactions in 5HT1B knockout mice. Behav. Neurosci.113(3), 587–601 (1999).
  • Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology21(2 Suppl.), S52–S60 (1999).
  • Bouwknecht JA, Hijzen TH, van der Gugten J, Maes RA, Hen R, Olivier B. Absence of 5-HT1B receptors is associated with impaired impulse control in male 5-HT1B knockout mice. Biol. Psychiatry49(7), 557–568 (2001).
  • Russell VA, Sagvolden T, Johansen EB. Animal models of attention-deficit hyperactivity disorder. Behav. Brain Funct.1, 9 (2005).
  • Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M. Rodent models of attention-deficit/hyperactivity disorder. Biol. Psychiatry57(11), 1239–1247 (2005).
  • Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci. Biobehav. Rev.24(1), 31–39 (2000).
  • Sagvolden T, Metzger MA, Schiorbeck HK, Rugland AL, Spinnangr I, Sagvolden G. The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav. Neural Biol.58(2), 103–112 (1992).
  • Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J. Differences between electrically-, ritalin- and D-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of attention-deficit hyperactivity disorder. Behav. Brain Res.94(1), 163–171 (1998).
  • Russell VA. Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder – the spontaneously hypertensive rat. Neurosci. Biobehav. Rev.27(7), 671–682 (2003).
  • Mill J, Sagvolden T, Asherson P. Sequence analysis of DRD2, DRD4, and DAT1 in SHR and WKY rat strains. Behav. Brain Funct.1, 24 (2005).
  • Helms CM, Gubner NR, Wilhelm CJ, Mitchell SH, Grandy DK. D4 receptor deficiency in mice has limited effects on impulsivity and novelty seeking. Pharmacol. Biochem. Behav.90(3), 387–393 (2008).
  • Thanos P, Bermeo C, Rubinstein M et al. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors.J. Psychopharmacol. DOI: 10.1177/0269881109102613 (2009) (Epub ahead of print).
  • Sonuga-Barke EJ. Psychological heterogeneity in AD/HD – a dual pathway model of behaviour and cognition. Behav. Brain Res.130(1–2), 29–36 (2002).
  • Oades RD, Sadile AG, Sagvolden T et al. The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles. Dev. Sci.8(2), 122–131 (2005).
  • Gainetdinov RR. Dopamine transporter mutant mice in experimental neuropharmacology. Naunyn Schmiedebergs Arch. Pharmacol.377(4–6), 301–313 (2008).
  • Spencer TJ. ADHD treatment across the life cycle.J. Clin. Psychiatry65(Suppl. 3), 22–26 (2004).
  • Arnsten AF. Stimulants: therapeutic actions in ADHD. Neuropsychopharmacology31(11), 2376–2383 (2006).
  • Kuczenski R, Segal DS. Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine.J. Neurosci.22(16), 7264–7271 (2002).
  • Engert V, Pruessner JC. Dopaminergic and noradrenergic contributions to functionality in ADHD: the role of methylphenidate. Curr. Neuropharmacol.6(4), 322–328 (2008).
  • Volkow ND, Wang GJ, Fowler JS et al. The slow and long-lasting blockade of dopamine transporters in human brain induced by the new antidepressant drug radafaxine predict poor reinforcing effects. Biol. Psychiatry57(6), 640–646 (2005).
  • Volkow ND, Fowler JS, Ding YS, Wang GJ, Gatley SJ. Positron emission tomography radioligands for dopamine transporters and studies in human and nonhuman primates. Adv. Pharmacol.42, 211–214 (1998).
  • Volkow ND, Wang GJ, Fowler JS et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse43(3), 181–187 (2002).
  • Volkow ND, Fowler JS, Wang GJ. Positron emission tomography and single-photon emission computed tomography in substance abuse research. Semin. Nucl. Med.33(2), 114–128 (2003).
  • Rosa Neto P, Lou H, Cumming P, Pryds O, Gjedde A. Methylphenidate-evoked potentiation of extracellular dopamine in the brain of adolescents with premature birth: correlation with attentional deficit. Ann. NY Acad. Sci.965, 434–439 (2002).
  • Seeman P, Madras B. Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis. Behav. Brain Res.130(1–2), 79–83 (2002).
  • Arnsten AF, Dudley AG. Methylphenidate improves prefrontal cortical cognitive function through α2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav. Brain. Funct.1(1), 2 (2005).
  • Castellanos FX, Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat. Rev. Neurosci.3(8), 617–628 (2002).
  • Kieling C, Goncalves RR, Tannock R, Castellanos FX. Neurobiology of attention deficit hyperactivity disorder. Child Adolesc. Psychiatr. Clin. N. Am.17(2), 285–307, viii (2008).
  • Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol. Psychiatry61(12), 1361–1369 (2007).
  • Castellanos FX, Lee PP, Sharp W et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA288(14), 1740–1748 (2002).
  • Shaw P, Lerch J, Greenstein D et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry63(5), 540–549 (2006).
  • Durston S. A review of the biological bases of ADHD: what have we learned from imaging studies? Ment. Retard. Dev. Disabil. Res. Rev.9(3), 184–195 (2003).
  • Durston S, Mulder M, Casey BJ, Ziermans T, van Engeland H. Activation in ventral prefrontal cortex is sensitive to genetic vulnerability for attention-deficit hyperactivity disorder. Biol. Psychiatry60(10), 1062–1070 (2006).
  • Casey BJ, Durston S. From behavior to cognition to the brain and back: what have we learned from functional imaging studies of attention deficit hyperactivity disorder? Am. J. Psychiatry163(6), 957–960 (2006).
  • Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci. Lett.285(2), 107–110 (2000).
  • Dresel S, Krause J, Krause KH et al. Attention deficit hyperactivity disorder: binding of (99mTc)TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur. J. Nucl. Med.27(10), 1518–1524 (2000).
  • Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD. Dopamine transporter density in the basal ganglia assessed with (123I)IPT SPET in children with attention deficit hyperactivity disorder. Eur. J. Nucl. Med. Mol. Imaging30(2), 306–311 (2003).
  • Spencer TJ, Biederman J, Madras BK et al.In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: a focus on the dopamine transporter. Biol. Psychiatry57(11), 1293–1300 (2005).
  • Hesse S, Ballaschke O, Barthel H, Sabri O. Dopamine transporter imaging in adult patients with attention-deficit/hyperactivity disorder. Psychiatry Res.171(2), 120–128 (2009).
  • Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L. Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol. Psychiatry57(3), 229–238 (2005).
  • Van Dyck CH, Quinlan DM, Cretella LM et al. Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. Am. J. Psychiatry159(2), 309–312 (2002).
  • Volkow ND, Wang GJ, Newcorn J et al. Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage34(3), 1182–1190 (2007).
  • Volkow ND, Wang GJ, Kollins SH et al. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA302(10), 1084–1091 (2009).
  • Sprich S, Biederman J, Crawford MH, Mundy E, Faraone SV. Adoptive and biological families of children and adolescents with ADHD.J. Am. Acad. Child Adolesc. Psychiatry39(11), 1432–1437 (2000).
  • Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet.11(3), 241–247 (1995).
  • Albayrak O, Friedel S, Schimmelmann BG, Hinney A, Hebebrand J. Genetic aspects in attention-deficit/hyperactivity disorder.J. Neural Transm.115(2), 305–315 (2008).
  • Vandenbergh DJ, Persico AM, Hawkins AL et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics14(4), 1104–1106 (1992).
  • Doucette-Stamm LA, Blakely DJ, Tian J, Mockus S, Mao JI. Population genetic study of the human dopamine transporter gene (DAT1). Genet. Epidemiol.12(3), 303–308 (1995).
  • Cook EH Jr, Stein MA, Krasowski MD et al. Association of attention-deficit disorder and the dopamine transporter gene. Am. J. Hum. Genet.56(4), 993–998 (1995).
  • Chen CK, Chen SL, Mill J et al. The dopamine transporter gene is associated with attention deficit hyperactivity disorder in a Taiwanese sample. Mol. Psychiatry8(4), 393–396 (2003).
  • Daly G, Hawi Z, Fitzgerald M, Gill M. Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Mol. Psychiatry4(2), 192–196 (1999).
  • Galili-Weisstub E, Levy S, Frisch A et al. Dopamine transporter haplotype and attention-deficit hyperactivity disorder. Mol. Psychiatry10(7), 617–618 (2005).
  • Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M. Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol. Psychiatry2(4), 311–313 (1997).
  • Hawi Z, Lowe N, Kirley A et al. Linkage disequilibrium mapping at DAT1, DRD5 and DBH narrows the search for ADHD susceptibility alleles at these loci. Mol. Psychiatry8(3), 299–308 (2003).
  • Lim MH, Kim HW, Paik KC, Cho SC, Yoon DY, Lee HJ. Association of the DAT1 polymorphism with attention deficit hyperactivity disorder (ADHD): a family-based approach. Am. J. Med. Genet. B Neuropsychiatr. Genet.141B(3), 309–311 (2006).
  • Rowe DC, Stever C, Chase D, Sherman S, Abramowitz A, Waldman ID. Two dopamine genes related to reports of childhood retrospective inattention and conduct disorder symptoms. Mol. Psychiatry6(4), 429–433 (2001).
  • Waldman ID, Rowe DC, Abramowitz A et al. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity. Am. J. Hum. Genet.63(6), 1767–1776 (1998).
  • Bakker SC, van der Meulen EM, Oteman N et al.DAT1, DRD4, and DRD5 polymorphisms are not associated with ADHD in Dutch families. Am. J. Med. Genet. B Neuropsychiatr. Genet.132B(1), 50–52 (2005).
  • Banoei MM, Majidizadeh T, Shirazi E et al. No association between the DAT1 10-repeat allele and ADHD in the Iranian population. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(1), 110–111 (2008).
  • Barr CL, Xu C, Kroft J et al. Haplotype study of three polymorphisms at the dopamine transporter locus confirm linkage to attention-deficit/hyperactivity disorder. Biol. Psychiatry49(4), 333–339 (2001).
  • Brookes K, Xu X, Chen W et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol. Psychiatry11(10), 934–953 (2006).
  • Feng Y, Wigg KG, Makkar R et al. Sequence variation in the 3´-untranslated region of the dopamine transporter gene and attention-deficit hyperactivity disorder (ADHD). Am. J. Med. Genet. B Neuropsychiatr. Genet.139B(1), 1–6 (2005).
  • Holmes J, Payton A, Barrett JH et al. A family-based and case–control association study of the dopamine D4 receptor gene and dopamine transporter gene in attention deficit hyperactivity disorder. Mol. Psychiatry5(5), 523–530 (2000).
  • Langley K, Turic D, Peirce TR et al. No support for association between the dopamine transporter (DAT1) gene and ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet.139B(1), 7–10 (2005).
  • Palmer CG, Bailey JN, Ramsey C et al. No evidence of linkage or linkage disequilibrium between DAT1 and attention deficit hyperactivity disorder in a large sample. Psychiatr. Genet.9(3), 157–160 (1999).
  • Simsek M, Al-Sharbati M, Al-Adawi S, Ganguly SS, Lawatia K. Association of the risk allele of dopamine transporter gene (DAT1*10) in Omani male children with attention-deficit hyperactivity disorder. Clin. Biochem.38(8), 739–742 (2005).
  • Smith KM, Daly M, Fischer M et al. Association of the dopamine β hydroxylase gene with attention deficit hyperactivity disorder: genetic analysis of the Milwaukee longitudinal study. Am. J. Med. Genet. B Neuropsychiatr. Genet.119B(1), 77–85 (2003).
  • Swanson JM, Flodman P, Kennedy J et al. Dopamine genes and ADHD. Neurosci. Biobehav. Rev.24(1), 21–25 (2000).
  • Todd RD, Jong YJ, Lobos EA, Reich W, Heath AC, Neuman RJ. No association of the dopamine transporter gene 3´ VNTR polymorphism with ADHD subtypes in a population sample of twins. Am. J. Med. Genet.105(8), 745–748 (2001).
  • Wohl M, Boni C, Asch M et al. Lack of association of the dopamine transporter gene in a French ADHD sample. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1509–1510 (2008).
  • Yang B, Chan RC, Jing J, Li T, Sham P, Chen RY. A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3´-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.144B(4), 541–550 (2007).
  • Li D, Sham PC, Owen MJ, He L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum. Mol. Genet.15(14), 2276–2284 (2006).
  • Purper-Ouakil D, Wohl M, Mouren MC, Verpillat P, Ades J, Gorwood P. Meta-analysis of family-based association studies between the dopamine transporter gene and attention deficit hyperactivity disorder. Psychiatr. Genet.15(1), 53–59 (2005).
  • Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum. Genet.126(1), 51–90 (2009).
  • Asherson P, Brookes K, Franke B et al. Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. Am. J. Psychiatry164(4), 674–677 (2007).
  • Brookes KJ, Mill J, Guindalini C et al. A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Arch. Gen. Psychiatry63(1), 74–81 (2006).
  • Genro JP, Polanczyk GV, Zeni C et al. A common haplotype at the dopamine transporter gene 5´ region is associated with attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1568–1575 (2008).
  • Castner SA, Williams GV, Goldman-Rakic PS. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science287(5460), 2020–2022 (2000).
  • Sunahara RK, Guan HC, O’Dowd BF et al. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature350(6319), 614–619 (1991).
  • Misener VL, Luca P, Azeke O et al. Linkage of the dopamine receptor D1 gene to attention-deficit/hyperactivity disorder. Mol. Psychiatry9(5), 500–509 (2004).
  • Bobb AJ, Addington AM, Sidransky E et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am. J. Med. Genet. B Neuropsychiatr. Genet134B(1), 67–72 (2005).
  • Usiello A, Baik JH, Rouge-Pont F et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature408(6809), 199–203 (2000).
  • Eubanks JH, Djabali M, Selleri L et al. Structure and linkage of the D2 dopamine receptor and neural cell adhesion molecule genes on human chromosome 11q23. Genomics14(4), 1010–1018 (1992).
  • Kirley A, Hawi Z, Daly G et al. Dopaminergic system genes in ADHD: toward a biological hypothesis. Neuropsychopharmacology27(4), 607–619 (2002).
  • Kustanovich V, Ishii J, Crawford L et al. Transmission disequilibrium testing of dopamine-related candidate gene polymorphisms in ADHD: confirmation of association of ADHD with DRD4 and DRD5. Mol. Psychiatry9(7), 711–717 (2004).
  • Rowe DC, Van den Oord EJ, Stever C et al. The DRD2 TaqI polymorphism and symptoms of attention deficit hyperactivity disorder. Mol. Psychiatry4(6), 580–586 (1999).
  • Huang YS, Lin SK, Wu YY, Chao CC, Chen CK. A family-based association study of attention-deficit hyperactivity disorder and dopamine D2 receptor TaqI A alleles. Chang Gung Med. J.26(12), 897–903 (2003).
  • Kopeckova M, Paclt I, Petrasek J, Pacltova D, Malikova M, Zagatova V. Some ADHD polymorphisms (in genes DAT1, DRD2, DRD3, DBH, 5-HTT) in case–control study of 100 subjects 6–10 age. Neuro. Endocrinol. Lett.29(2), 246–251 (2008).
  • Sery O, Drtilkova I, Theiner P et al. Polymorphism of DRD2 gene and ADHD. Neuro Endocrinol. Lett.27(1–2), 236–240 (2006).
  • Beninger RJ, Banasikowski TJ. Dopaminergic mechanism of reward-related incentive learning: focus on the dopamine D (3) receptor. Neurotox. Res.14(1), 57–70 (2008).
  • Barr CL, Wigg KG, Wu J et al. Linkage study of two polymorphisms at the dopamine D3 receptor gene and attention-deficit hyperactivity disorder. Am. J. Med. Genet.96(1), 114–117 (2000).
  • Guan L, Wang B, Chen Y et al. A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol. Psychiatry14(5), 546–554 (2009).
  • Payton A, Holmes J, Barrett JH et al. Susceptibility genes for a trait measure of attention deficit hyperactivity disorder: a pilot study in a non-clinical sample of twins. Psychiatry Res.105(3), 273–278 (2001).
  • Benjamin J, Li L, Patterson C, Greenberg BD, Murphy DL, Hamer DH. Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat. Genet.12(1), 81–84 (1996).
  • Ebstein RP, Novick O, Umansky R et al. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nat. Genet.12(1), 78–80 (1996).
  • Chang FM, Kidd JR, Livak KJ, Pakstis AJ, Kidd KK. The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus. Hum. Genet.98(1), 91–101 (1996).
  • LaHoste GJ, Swanson JM, Wigal SB et al. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol. Psychiatry1(2), 121–124 (1996).
  • McCracken JT, Smalley SL, McGough JJ et al. Evidence for linkage of a tandem duplication polymorphism upstream of the dopamine D4 receptor gene (DRD4) with attention deficit hyperactivity disorder (ADHD). Mol. Psychiatry5(5), 531–536 (2000).
  • Bhaduri N, Das M, Sinha S et al. Association of dopamine D4 receptor (DRD4) polymorphisms with attention deficit hyperactivity disorder in Indian population. Am. J. Med. Genet. B Neuropsychiatr. Genet.141B(1), 61–66 (2006).
  • Brookes KJ, Xu X, Chen CK, Huang YS, Wu YY, Asherson P. No evidence for the association of DRD4 with ADHD in a Taiwanese population within-family study. BMC Med. Genet.6, 31 (2005).
  • Arcos-Burgos M, Castellanos FX, Konecki D et al. Pedigree disequilibrium test (PDT) replicates association and linkage between DRD4 and ADHD in multigenerational and extended pedigrees from a genetic isolate. Mol. Psychiatry9(3), 252–259 (2004).
  • Kereszturi E, Kiraly O, Csapo Z et al. Analysis of the dopamine D4 receptor gene variants in attention deficit hyperactivity disorder]. Neuropsychopharmacol. Hung.9(1), 11–18 (2007).
  • Lowe N, Kirley A, Hawi Z et al. Joint analysis of the DRD5 marker concludes association with attention-deficit/hyperactivity disorder confined to the predominantly inattentive and combined subtypes. Am. J. Hum. Genet.74(2), 348–356 (2004).
  • Yang JW, Jang WS, Hong SD et al. A case–control association study of the polymorphism at the promoter region of the DRD4 gene in Korean boys with attention deficit-hyperactivity disorder: evidence of association with the -521 C/T SNP. Prog. Neuropsychopharmacol. Biol. Psychiatry32(1), 243–248 (2008).
  • Li S, Cullen WK, Anwyl R, Rowan MJ. Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat. Neurosci.6(5), 526–531 (2003).
  • Sherrington R, Mankoo B, Attwood J et al. Cloning of the human dopamine D5 receptor gene and identification of a highly polymorphic microsatellite for the DRD5 locus that shows tight linkage to the chromosome 4p reference marker RAF1P1. Genomics18(2), 423–425 (1993).
  • Mill J, Curran S, Richards S, Taylor E, Asherson P. Polymorphisms in the dopamine D5 receptor (DRD5) gene and ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet.125B(1), 38–42 (2004).
  • Ogdie MN, Macphie IL, Minassian SL et al. A genomewide scan for attention-deficit/hyperactivity disorder in an extended sample: suggestive linkage on 17p11. Am. J. Hum. Genet.72(5), 1268–1279 (2003).
  • Bakker SC, van der Meulen EM, Buitelaar JK et al. A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder: suggestive evidence for linkage on chromosomes 7p and 15q. Am. J. Hum. Genet.72(5), 1251–1260 (2003).
  • Hebebrand J, Dempfle A, Saar K et al. A genome-wide scan for attention-deficit/hyperactivity disorder in 155 German sib-pairs. Mol. Psychiatry11(2), 196–205 (2006).
  • Faraone SV, Doyle AE, Lasky-Su J et al. Linkage analysis of attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1387–1391 (2008).
  • Asherson P, Zhou K, Anney RJ et al. A high-density SNP linkage scan with 142 combined subtype ADHD sib pairs identifies linkage regions on chromosomes 9 and 16. Mol. Psychiatry13(5), 514–521 (2008).
  • Arcos-Burgos M, Castellanos FX, Pineda D et al. Attention-deficit/hyperactivity disorder in a population isolate: linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am. J. Hum. Genet.75(6), 998–1014 (2004).
  • Romanos M, Freitag C, Jacob C et al. Genome-wide linkage analysis of ADHD using high-density SNP arrays: novel loci at 5q13.1 and 14q12. Mol. Psychiatry13(5), 522–530 (2008).
  • Friedel S, Saar K, Sauer S et al. Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Mol. Psychiatry12(10), 923–933 (2007).
  • Ogdie MN, Bakker SC, Fisher SE et al. Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13. Mol. Psychiatry11(1), 5–8 (2006).
  • Zhou K, Dempfle A, Arcos-Burgos M et al. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1392–1398 (2008).
  • Javoy-Agid F, Scatton B, Ruberg M et al. Distribution of monoaminergic, cholinergic, and GABAergic markers in the human cerebral cortex. Neuroscience29(2), 251–259 (1989).
  • Bymaster FP, Katner JS, Nelson DL et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology27(5), 699–711 (2002).
  • Neale BM, Faraone SV. Perspective on the genetics of attention deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(8), 1334–1336 (2008).
  • Franke B, Neale BM, Faraone SV. Genome-wide association studies in ADHD. Hum. Genet.126(1), 13–50 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.