271
Views
29
CrossRef citations to date
0
Altmetric
Theme: Stroke - Review

Inflammatory and neuroendocrine biomarkers of prognosis after ischemic stroke

&
Pages 225-239 | Published online: 09 Jan 2014

References

  • Lloyd-Jones D, Adams RJ, Brown TM et al. Heart Disease and Stroke Statistics – 2010 Update: a report from the American Heart Association. Circulation121(7), e46–e215 (2010).
  • Maas MB, Furie KL. Molecular biomarkers in stroke diagnosis and prognosis. Biomark. Med.3(4), 363–383 (2009).
  • NIH-FDA Conference: Biomarkers and Surrogate Endpoints: Advancing Clinical Research and Applications. Abstracts. Dis. Markers14(4), 187–334 (1998).
  • Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci.22(9), 391–397 (1999).
  • Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke38(3), 1097–1103 (2007).
  • Shoja MM, Tubbs RS, Shokouhi G, Loukas M, Ghabili K, Ansarin K. The potential role of carbon dioxide in the neuroimmunoendocrine changes following cerebral ischemia. Life Sci.83(11–12), 381–387 (2008).
  • Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron67(2), 181–198 (2010).
  • DeVries AC, Joh HD, Bernard O et al. Social stress exacerbates stroke outcome by suppressing Bcl-2 expression. Proc. Natl Acad. Sci. USA98(20), 11824–11828 (2001).
  • El Husseini N, Laskowitz DT. Clinical application of blood biomarkers in cerebrovascular disease. Expert Rev. Neurother.10(2), 189–203 (2010).
  • Stamova B, Xu H, Jickling G et al. Gene expression profiling of blood for the prediction of ischemic stroke. Stroke41(10), 2171–2177 (2010).
  • Tang Y, Xu H, Du X et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J. Cereb. Blood Flow Metab.26(8), 1089–1102 (2006).
  • Laterza OF, Modur VR, Crimmins DL et al. Identification of novel brain biomarkers. Clin. Chem.52(9), 1713–1721 (2006).
  • Xu H, Tang Y, Liu DZ et al. Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke. J. Cereb. Blood Flow Metab.28(7), 1320–1328 (2008).
  • Dave JR, Williams AJ, Yao C, Lu XC, Tortella FC. Modeling cerebral ischemia in neuroproteomics. Methods Mol. Biol.566, 25–40 (2009).
  • Allard L, Burkhard PR, Lescuyer P et al. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin. Chem.51(11), 2043–2051 (2005).
  • Cuadrado E, Rosell A, Penalba A et al. Vascular MMP-9/TIMP-2 and neuronal MMP-10 up-regulation in human brain after stroke: a combined laser microdissection and protein array study. J. Proteome Res.8(6), 3191–3197 (2009).
  • Koizumi S, Yamamoto S, Hayasaka T et al. Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neuroscience168(1), 219–225 (2010).
  • Endres M, Engelhardt B, Koistinaho J et al. Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc. Dis.25(3), 268–278 (2008).
  • Priller J, Flugel A, Wehner T et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med.7(12), 1356–1361 (2001).
  • Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl Acad. Sci. USA94(8), 4080–4085 (1997).
  • Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc. Natl Acad. Sci. USA96(23), 13496–13500 (1999).
  • Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat. Rev. Immunol.5(8), 629–640 (2005).
  • Emsley HC, Smith CJ, Georgiou RF et al. A randomised Phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry76(10), 1366–1372 (2005).
  • Kerschensteiner M, Gallmeier E, Behrens L et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med.189(5), 865–870 (1999).
  • Emsley HC, Smith CJ, Tyrrell PJ, Hopkins SJ. Inflammation in acute ischemic stroke and its relevance to stroke critical care. Neurocrit. Care9(1), 125–138 (2008).
  • Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron67(2), 181–198 (2010).
  • Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J. Neuroimmunol.184(1–2), 53–68 (2007).
  • Shohami E, Ginis I, Hallenbeck JM. Dual role of tumor necrosis factor α in brain injury. Cytokine Growth Factor Rev.10(2), 119–130 (1999).
  • Protopsaltis J, Kokkoris S, Korantzopoulos P et al. Prediction of long-term functional outcome in patients with acute ischemic non-embolic stroke. Atherosclerosis203(1), 228–235 (2009).
  • Hopkins SJ. The pathophysiological role of cytokines. Leg. Med. (Tokyo)5(Suppl. 1), S45–S57 (2003).
  • Castellanos M, Sobrino T, Pedraza S et al. High plasma glutamate concentrations are associated with infarct growth in acute ischemic stroke. Neurology71(23), 1862–1868 (2008).
  • Smith CJ, Emsley HC, Gavin CM et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol.4, 2 (2004).
  • Vila N, Castillo J, Davalos A, Esteve A, Planas AM, Chamorro A. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke34(3), 671–675 (2003).
  • Waje-Andreassen U, Krakenes J, Ulvestad E et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol. Scand.111(6), 360–365 (2005).
  • Sotgiu S, Zanda B, Marchetti B et al. Inflammatory biomarkers in blood of patients with acute brain ischemia. Eur. J. Neurol.13(5), 505–513 (2006).
  • Basic Kes V, Simundic AM, Nikolac N, Topic E, Demarin V. Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin. Biochem.41(16–17), 1330–1334 (2008).
  • Blanco M, Castellanos M, Rodriguez-Yanez M et al. High blood pressure and inflammation are associated with poor prognosis in lacunar infarctions. Cerebrovasc. Dis.22(2–3), 123–129 (2006).
  • Rallidis LS, Vikelis M, Panagiotakos DB et al. Inflammatory markers and in-hospital mortality in acute ischaemic stroke. Atherosclerosis189(1), 193–197 (2006).
  • Whiteley W, Jackson C, Lewis S et al. Inflammatory markers and poor outcome after stroke: a prospective cohort study and systematic review of interleukin-6. PLoS Med.6(9), e1000145 (2009).
  • Emsley HC, Smith CJ, Tyrrell PJ, Hopkins SJ. Inflammation in acute ischemic stroke and its relevance to stroke critical care. Neurocrit. Care9(1), 125–138 (2008).
  • Castillo J, Alvarez-Sabin J, Martinez-Vila E, Montaner J, Sobrino T, Vivancos J. Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study. J. Neurol.256(2), 217–224 (2009).
  • Whiteley W, Jackson C, Lewis S et al. Association of circulating inflammatory markers with recurrent vascular events after stroke. A prospective cohort study. StrokeDOI: 10.1161/strokeaha.110.588954 (2010) (Epub ahead of print.)
  • Welsh P, Lowe G, Chalmers J et al. Associations of proinflammatory cytokines with the risk of recurrent stroke. Stroke39(8), 2226–2230 (2008).
  • Liu T, Clark RK, McDonnell PC et al. Tumor necrosis factor-α expression in ischemic neurons. Stroke25(7), 1481–1488 (1994).
  • Murakami Y, Saito K, Hara A et al. Increases in tumor necrosis factor-α following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus. J. Neurochem.93(6), 1616–1622 (2005).
  • Castellanos M, Leira R, Serena J et al. Plasma cellular-fibronectin concentration predicts hemorrhagic transformation after thrombolytic therapy in acute ischemic stroke. Stroke35(7), 1671–1676 (2004).
  • Rosell A, Alvarez-Sabin J, Arenillas JF et al. A matrix metalloproteinase protein array reveals a strong relation between MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke. Stroke36(7), 1415–1420 (2005).
  • Castellanos M, Castillo J, Garcia MM et al. Inflammation-mediated damage in progressing lacunar infarctions: a potential therapeutic target. Stroke33(4), 982–987 (2002).
  • Licata G, Tuttolomondo A, Di Raimondo D, Corrao S, Di Sciacca R, Pinto A. Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thromb. Haemost.101(5), 929–937 (2009).
  • Elkind MS, Cheng J, Boden-Albala B et al. Tumor necrosis factor receptor levels are associated with carotid atherosclerosis. Stroke33(1), 31–37 (2002).
  • Blann AD, McCollum CN. Increased levels of soluble tumor necrosis factor receptors in atherosclerosis: no clear relationship with levels of tumor necrosis factor. Inflammation22(5), 483–491 (1998).
  • Valgimigli M, Ceconi C, Malagutti P et al. Tumor necrosis factor-α receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in Myocardial Infarction (C-ALPHA) study. Circulation111(7), 863–870 (2005).
  • Blann AD, Ridker PM, Lip GY. Inflammation, cell adhesion molecules, and stroke: tools in pathophysiology and epidemiology? Stroke33(9), 2141–2143 (2002).
  • Boos CJ, Lip GY, Blann AD. Circulating endothelial cells in cardiovascular disease. J. Am. Coll. Cardiol.48(8), 1538–1547 (2006).
  • Nadar SK, Lip GY, Lee KW, Blann AD. Circulating endothelial cells in acute ischaemic stroke. Thromb. Haemost.94(4), 707–712 (2005).
  • Makin AJ, Blann AD, Chung NA, Silverman SH, Lip GY. Assessment of endothelial damage in atherosclerotic vascular disease by quantification of circulating endothelial cells. Relationship with von Willebrand factor and tissue factor. Eur. Heart J.25(5), 371–376 (2004).
  • Tuttolomondo A, Pinto A, Corrao S et al. Immuno-inflammatory and thrombotic/fibrinolytic variables associated with acute ischemic stroke diagnosis. Atherosclerosis203(2), 503–508 (2009).
  • Licata G, Tuttolomondo A, Corrao S et al. Immunoinflammatory activation during the acute phase of lacunar and non-lacunar ischemic stroke: association with time of onset and diabetic state. Int. J. Immunopathol. Pharmacol.19(3), 639–646 (2006).
  • Tan KT, Blann AD. To stroke or not to stroke: is ICAM-1 or CRP the answer? Neurology60(12), 1884–1885 (2003).
  • Mocco J, Choudhri TF, Mack WJ et al. Elevation of soluble intercellular adhesion molecule-1 levels in symptomatic and asymptomatic carotid atherosclerosis. Neurosurgery48(4), 718–721; discussion 721–712 (2001).
  • Uno M, Kitazato KT, Nishi K, Itabe H, Nagahiro S. Raised plasma oxidised LDL in acute cerebral infarction. J. Neurol. Neurosurg. Psychiatry74(3), 312–316 (2003).
  • El Husseini N, Laskowitz DT. Clinical application of blood biomarkers in cerebrovascular disease. Expert Rev. Neurother.10(2), 189–203 (2010).
  • Qizilbash N, Jones L, Warlow C, Mann J. Fibrinogen and lipid concentrations as risk factors for transient ischaemic attacks and minor ischaemic strokes. BMJ303(6803), 605–609 (1991).
  • Rothwell PM, Howard SC, Power DA et al. Fibrinogen concentration and risk of ischemic stroke and acute coronary events in 5113 patients with transient ischemic attack and minor ischemic stroke. Stroke35(10), 2300–2305 (2004).
  • Ballantyne CM, Nambi V. Markers of inflammation and their clinical significance. Atheroscler. Suppl.6(2), 21–29 (2005).
  • Tanne D, Macko RF, Lin Y, Tilley BC, Levine SR. Hemostatic activation and outcome after recombinant tissue plasminogen activator therapy for acute ischemic stroke. Stroke37(7), 1798–1804 (2006).
  • Di Napoli M, Singh P. Is plasma fibrinogen useful in evaluating ischemic stroke patients?: why, how, and when. Stroke40(5), 1549–1552 (2009).
  • Di Napoli M, Papa F, Bocola V. Prognostic influence of increased C-reactive protein and fibrinogen levels in ischemic stroke. Stroke32(1), 133–138 (2001).
  • del Zoppo GJ, Levy DE, Wasiewski WW et al. Hyperfibrinogenemia and functional outcome from acute ischemic stroke. Stroke40(5), 1687–1691 (2009).
  • Gonzalez-Conejero R, Fernandez-Cadenas I, Iniesta JA et al. Role of fibrinogen levels and factor XIII V34L polymorphism in thrombolytic therapy in stroke patients. Stroke37(9), 2288–2293 (2006).
  • Tuttolomondo A, Di Sciacca R, Di Raimondo D et al. Plasma levels of inflammatory and thrombotic/fibrinolytic markers in acute ischemic strokes: relationship with TOAST subtype, outcome and infarct site. J. Neuroimmunol.215(1-2), 84–89 (2009).
  • Marti-Fabregas J, Borrell M, Cocho D et al. Hemostatic markers of recanalization in patients with ischemic stroke treated with rt-PA. Neurology65(3), 366–370 (2005).
  • Haapaniemi E, Tatlisumak T. Is D-dimer helpful in evaluating stroke patients? A systematic review. Acta Neurol. Scand.119(3), 141–150 (2009).
  • Feinberg WM, Erickson LP, Bruck D, Kittelson J. Hemostatic markers in acute ischemic stroke. Association with stroke type, severity, and outcome. Stroke27(8), 1296–1300 (1996).
  • Welsh P, Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ. Associations of inflammatory and haemostatic biomarkers with poor outcome in acute ischaemic stroke. Cerebrovasc. Dis.27(3), 247–253 (2009).
  • Kang DW, Yoo SH, Chun S et al. Inflammatory and hemostatic biomarkers associated with early recurrent ischemic lesions in acute ischemic stroke. Stroke40(5), 1653–1658 (2009).
  • Di Napoli M, Papa F. Inflammation, hemostatic markers, and antithrombotic agents in relation to long-term risk of new cardiovascular events in first-ever ischemic stroke patients. Stroke33(7), 1763–1771 (2002).
  • Takano K, Yamaguchi T, Kato H, Omae T. Activation of coagulation in acute cardioembolic stroke. Stroke22(1), 12–16 (1991).
  • Audebert HJ, Pellkofer TS, Wimmer ML, Haberl RL. Progression in lacunar stroke is related to elevated acute phase parameters. Eur. Neurol.51(3), 125–131 (2004).
  • Woodward M, Lowe GD, Campbell DJ et al. Associations of inflammatory and hemostatic variables with the risk of recurrent stroke. Stroke36(10), 2143–2147 (2005).
  • Bruno A, McConnell JP, Cohen SN et al. Plasma thrombosis markers following cerebral infarction in African Americans. Thromb. Res.115(1–2), 73–77 (2005).
  • Carter AM, Catto AJ, Mansfield MW, Bamford JM, Grant PJ. Predictive variables for mortality after acute ischemic stroke. Stroke38(6), 1873–1880 (2007).
  • Catto AJ, Carter AM, Barrett JH, Bamford J, Rice PJ, Grant PJ. von Willebrand factor and factor VIII: C in acute cerebrovascular disease. Relationship to stroke subtype and mortality. Thromb. Haemost.77(6), 1104–1108 (1997).
  • Sato M, Suzuki A, Nagata K, Uchiyama S. Increased von Willebrand factor in acute stroke patients with atrial fibrillation. J. Stroke Cerebrovasc. Dis.15(1), 1–7 (2006).
  • Ribo M, Montaner J, Molina CA et al. Admission fibrinolytic profile is associated with symptomatic hemorrhagic transformation in stroke patients treated with tissue plasminogen activator. Stroke35(9), 2123–2127 (2004).
  • Ribo M, Montaner J, Molina CA, Arenillas JF, Santamarina E, Alvarez-Sabin J. Admission fibrinolytic profile predicts clot lysis resistance in stroke patients treated with tissue plasminogen activator. Thromb. Haemost.91(6), 1146–1151 (2004).
  • Fernandez-Cadenas I, Alvarez-Sabin J, Ribo M et al. Influence of thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 gene polymorphisms on tissue-type plasminogen activator-induced recanalization in ischemic stroke patients. J. Thromb. Haemost.5(9), 1862–1868 (2007).
  • Montaner J, Alvarez-Sabin J, Molina CA et al. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke32(12), 2762–2767 (2001).
  • Montaner J, Rovira A, Molina CA et al. Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke. J. Cereb. Blood Flow Metab.23(12), 1403–1407 (2003).
  • Kelly PJ, Morrow JD, Ning M et al. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke. The Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke39, 100–104 (2008).
  • Montaner J, Molina CA, Monasterio J et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation107(4), 598–603 (2003).
  • Ning M, Furie KL, Koroshetz WJ et al. Association between tPA therapy and raised early matrix metalloproteinase-9 in acute stroke. Neurology66(10), 1550–1555 (2006).
  • Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood–brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke39(4), 1121–1126 (2008).
  • Kuta AE, Baum LL. C-reactive protein is produced by a small number of normal human peripheral blood lymphocytes. J. Exp. Med.164(1), 321–326 (1986).
  • Yasojima K, Schwab C, McGeer EG, McGeer PL. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol.158(3), 1039–1051 (2001).
  • Devaraj S, O’Keefe G, Jialal I. Defining the proinflammatory phenotype using high sensitive C-reactive protein levels as the biomarker. J. Clin. Endocrinol. Metab.90(8), 4549–4554 (2005).
  • Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J. Clin. Invest.111(12), 1805–1812 (2003).
  • Casas JP, Shah T, Hingorani AD, Danesh J, Pepys MB. C-reactive protein and coronary heart disease: a critical review. J. Intern. Med.264(4), 295–314 (2008).
  • Torzewski J, Torzewski M, Bowyer DE et al. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler. Thromb. Vasc. Biol.18(9), 1386–1392 (1998).
  • Volanakis JE, Kaplan MH. Interaction of C-reactive protein complexes with the complement system. II. Consumption of guinea pig complement by CRP complexes: requirement for human C1q. J. Immunol.113(1), 9–17 (1974).
  • Bisoendial RJ, Kastelein JJ, Levels JH et al. Activation of inflammation and coagulation after infusion of C-reactive protein in humans. Circ. Res.96(7), 714–716 (2005).
  • Paffen E, DeMaat MP. C-reactive protein in atherosclerosis: a causal factor? Cardiovasc. Res.71(1), 30–39 (2006).
  • Di Napoli M, Schwaninger M, Cappelli R et al. Evaluation of C-reactive protein measurement for assessing the risk and prognosis in ischemic stroke: a statement for health care professionals from the CRP Pooling Project members. Stroke36(6), 1316–1329 (2005).
  • Kuhlmann CR, Librizzi L, Closhen D et al. Mechanisms of C-reactive protein-induced blood–brain barrier disruption. Stroke40(4), 1458–1466 (2009).
  • Emsley HC, Smith CJ, Gavin CM et al. An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis. J. Neuroimmunol.139(1–2), 93–101 (2003).
  • Elkind MS, Tai W, Coates K, Paik MC, Sacco RL. High-sensitivity C-reactive protein, lipoprotein-associated phospholipase A2, and outcome after ischemic stroke. Arch. Intern. Med.166(19), 2073–2080 (2006).
  • Shantikumar S, Grant PJ, Catto AJ, Bamford JM, Carter AM. Elevated C-reactive protein and long-term mortality after ischaemic stroke: relationship with markers of endothelial cell and platelet activation. Stroke40(3), 977–979 (2009).
  • den Hertog HM, van Rossum JA, van der Worp HB et al. C-reactive protein in the very early phase of acute ischemic stroke: association with poor outcome and death. J. Neurol. DOI: 10.1007/s00415-009-5228-x. (2009) (Epub ahead of print).
  • Muir KW, Weir CJ, Alwan W, Squire IB, Lees KR. C-reactive protein and outcome after ischemic stroke. Stroke30(5), 981–985 (1999).
  • Di Napoli M, Papa F, Bocola V. C-reactive protein in ischemic stroke: an independent prognostic factor. Stroke32(4), 917–924 (2001).
  • Winbeck K, Poppert H, Etgen T, Conrad B, Sander D. Prognostic relevance of early serial C-reactive protein measurements after first ischemic stroke. Stroke33(10), 2459–2464 (2002).
  • Montaner J, Fernandez-Cadenas I, Molina CA et al. Poststroke C-reactive protein is a powerful prognostic tool among candidates for thrombolysis. Stroke37(5), 1205–1210 (2006).
  • Pearson TA, Mensah GA, Alexander RW et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation107(3), 499–511 (2003).
  • Elkind MS, Luna JM, Coffey CS et al. The Levels of Inflammatory Markers in the Treatment of Stroke study (LIMITS): inflammatory biomarkers as risk predictors after lacunar stroke. Int. J. Stroke5(2), 117–125 (2010).
  • Packard CJ, O’Reilly DS, Caslake MJ et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med.343(16), 1148–1155 (2000).
  • MacPhee CH, Moores KE, Boyd HF et al. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem. J.338(Pt 2), 479–487 (1999).
  • White H. Editorial: why inhibition of lipoprotein-associated phospholipase A2 has the potential to improve patient outcomes. Curr. Opin. Cardiol.25(4), 299–301 (2010).
  • Ballantyne CM, Hoogeveen RC, Bang H et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Arch. Intern. Med.165(21), 2479–2484 (2005).
  • Oei HH, van der Meer IM, Hofman A et al. Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: the Rotterdam Study. Circulation111(5), 570–575 (2005).
  • Thompson A, Gao P, Orfei L et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet375(9725), 1536–1544 (2010).
  • Nambi V, Hoogeveen RC, Chambless L et al. Lipoprotein-associated phospholipase A2 and high-sensitivity C-reactive protein improve the stratification of ischemic stroke risk in the Atherosclerosis Risk in Communities (ARIC) study. Stroke40(2), 376–381 (2009).
  • Elkind MS, Tai W, Coates K, Paik MC, Sacco RL. Lipoprotein-associated phospholipase A2 activity and risk of recurrent stroke. Cerebrovasc Dis27(1), 42–50 (2009).
  • Cucchiara BL, Messe SR, Sansing L et al. Lipoprotein-associated phospholipase A2 and C-reactive protein for risk-stratification of patients with TIA. Stroke40(7), 2332–2336 (2009).
  • McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev.87(3), 873–904 (2007).
  • Pervanidou P, Chrousos GP. Neuroendocrinology of post-traumatic stress disorder. Prog. Brain Res.182, 149–160 (2010).
  • Ay H, Koroshetz WJ, Benner T et al. Neuroanatomic correlates of stroke-related myocardial injury. Neurology66(9), 1325–1329 (2006).
  • Chamorro A, Amaro S, Vargas M et al. Catecholamines, infection, and death in acute ischemic stroke. J. Neurol. Sci.252(1), 29–35 (2007).
  • Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport15(2), 357–361 (2004).
  • Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology57(5), 833–838 (2001).
  • Urra X, Cervera A, Obach V, Climent N, Planas AM, Chamorro A. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke40(4), 1262–1268 (2009).
  • Klehmet J, Harms H, Richter M et al. Stroke-induced immunodepression and post-stroke infections: lessons from the preventive antibacterial therapy in stroke trial. Neuroscience158(3), 1184–1193 (2009).
  • Hjemdahl P. Plasma catecholamines – analytical challenges and physiological limitations. Baillieres Clin. Endocrinol. Metab.7(2), 307–353 (1993).
  • Giuffrida R, Bellomo M, Polizzi G, Malatino LS. Ischemia-induced changes in the immunoreactivity for endothelin and other vasoactive peptides in the brain of the Mongolian gerbil. J. Cardiovasc. Pharmacol.20(12 Suppl.), S41–S44 (1992).
  • Nogami M, Shiga J, Takatsu A, Endo N, Ishiyama I. Immunohistochemistry of atrial natriuretic peptide in brain infarction. Histochem. J.33(2), 87–90 (2001).
  • Nakagawa K, Yamaguchi T, Seida M et al. Plasma concentrations of brain natriuretic peptide in patients with acute ischemic stroke. Cerebrovasc. Dis.19(3), 157–164 (2005).
  • Makikallio AM, Makikallio TH, Korpelainen JT et al. Natriuretic peptides and mortality after stroke. Stroke36(5), 1016–1020 (2005).
  • Etgen T, Baum H, Sander K, Sander D. Cardiac troponins and N-terminal pro-brain natriuretic peptide in acute ischemic stroke do not relate to clinical prognosis. Stroke36(2), 270–275 (2005).
  • Giannakoulas G, Hatzitolios A, Karvounis H et al. N-terminal pro-brain natriuretic peptide levels are elevated in patients with acute ischemic stroke. Angiology56(6), 723–730 (2005).
  • Rubattu S, Stanzione R, Di Angelantonio E et al. Atrial natriuretic peptide gene polymorphisms and risk of ischemic stroke in humans. Stroke35(4), 814–818 (2004).
  • Ala-Kopsala M, Magga J, Peuhkurinen K et al. Molecular heterogeneity has a major impact on the measurement of circulating N-terminal fragments of A- and B-type natriuretic peptides. Clin. Chem.50(9), 1576–1588 (2004).
  • Morgenthaler NG, Struck J, Thomas B, Bergmann A. Immunoluminometric assay for the midregion of pro-atrial natriuretic peptide in human plasma. Clin. Chem.50(1), 234–236 (2004).
  • Omland T, Persson A, Ng L et al. N-terminal pro-B-type natriuretic peptide and long-term mortality in acute coronary syndromes. Circulation106(23), 2913–2918 (2002).
  • Omland T, de Lemos JA, Morrow DA et al. Prognostic value of N-terminal pro-atrial and pro-brain natriuretic peptide in patients with acute coronary syndromes. Am. J. Cardiol.89(4), 463–465 (2002).
  • Gegenhuber A, Mueller T, Dieplinger B, Poelz W, Pacher R, Haltmayer M. B-type natriuretic peptide and amino terminal proBNP predict one-year mortality in short of breath patients independently of the baseline diagnosis of acute destabilized heart failure. Clin. Chim. Acta370(1–2), 174–179 (2006).
  • Gegenhuber A, Struck J, Poelz W et al. Midregional pro-A-type natriuretic peptide measurements for diagnosis of acute destabilized heart failure in short-of-breath patients: comparison with B-type natriuretic peptide (BNP) and amino-terminal proBNP. Clin. Chem.52(5), 827–831 (2006).
  • Christ M, Thuerlimann A, Laule K et al. Long-term prognostic value of B-type natriuretic peptide in cardiac and non-cardiac causes of acute dyspnoea. Eur. J. Clin. Invest.37(11), 834–841 (2007).
  • Katan M, Fluri F, Schuetz P et al. Midregional pro-atrial natriuretic peptide and outcome in patients with acute ischemic stroke J. Am. Coll. Cardiol.56(13), 1045–1053 (2010).
  • Whiteley W, Rumley A, Sattar N et al. POS11 blood markers and poor outcome after acute cerebrovascular disease: a prospective cohort study. J. Neurol. Neurosurg. Psychiatry81(11), e70 (2010).
  • Wang TJ, Gona P, Larson MG et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N. Engl. J. Med.355(25), 2631–2639 (2006).
  • Montaner J, Perea-Gainza M, Delgado P et al. Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke39(8), 2280–2287 (2008).
  • Yukiiri K, Hosomi N, Naya T et al. Plasma brain natriuretic peptide as a surrogate marker for cardioembolic stroke. BMC Neurol.8, 45 (2008).
  • Chrousos GP. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N. Engl. J. Med.332(20), 1351–1362 (1995).
  • Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu. Rev. Physiol.67, 259–284 (2005).
  • Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA267(9), 1244–1252 (1992).
  • Volpi S, Rabadan-Diehl C, Aguilera G. Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress7(2), 75–83 (2004).
  • Aguilera G, Subburaju S, Young S, Chen J. The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Prog. Brain Res.170, 29–39 (2008).
  • Tanoue A, Ito S, Honda K et al. The vasopressin V1b receptor critically regulates hypothalamic–pituitary–adrenal axis activity under both stress and resting conditions. J. Clin Invest113(2), 302–309 (2004).
  • Turnbull AV, Rivier CL. Regulation of the hypothalamic–pituitary–adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev.79(1), 1–71 (1999).
  • Johansson A, Olsson T, Carlberg B, Karlsson K, Fagerlund M. Hypercortisolism after stroke – partly cytokine-mediated? J. Neurol. Sci.147(1), 43–47 (1997).
  • Szczudlik A, Dziedzic T, Bartus S, Slowik A, Kieltyka A. Serum interleukin-6 predicts cortisol release in acute stroke patients. J. Endocrinol. Invest.27(1), 37–41 (2004).
  • Wilckens T, De Rijk R. Glucocorticoids and immune function: unknown dimensions and new frontiers. Immunol. Today18(9), 418–424 (1997).
  • Besedovsky H, del Rey A, Sorkin E, Dinarello CA. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science233(4764), 652–654 (1986).
  • Fassbender K, Schmidt R, Mossner R, Daffertshofer M, Hennerici M. Pattern of activation of the hypothalamic–pituitary–adrenal axis in acute stroke. Relation to acute confusional state, extent of brain damage, and clinical outcome. Stroke25(6), 1105–1108 (1994).
  • Olsson T, Marklund N, Gustafson Y, Nasman B. Abnormalities at different levels of the hypothalamic–pituitary–adrenocortical axis early after stroke. Stroke23(11), 1573–1576 (1992).
  • Olsson T. Urinary free cortisol excretion shortly after ischaemic stroke. J. Intern. Med.228(2), 177–181 (1990).
  • Christensen H, Boysen G, Johannesen HH. Serum-cortisol reflects severity and mortality in acute stroke. J. Neurol. Sci.217(2), 175–180 (2004).
  • O’Neill PA, Davies I, Fullerton KJ, Bennett D. Stress hormone and blood glucose response following acute stroke in the elderly. Stroke22(7), 842–847 (1991).
  • Murros K, Fogelholm R, Kettunen S, Vuorela AL, Valve J. Blood glucose, glycosylated haemoglobin, and outcome of ischemic brain infarction. J. Neurol. Sci.111(1), 59–64 (1992).
  • Slowik A, Turaj W, Pankiewicz J, Dziedzic T, Szermer P, Szczudlik A. Hypercortisolemia in acute stroke is related to the inflammatory response. J. Neurol. Sci.196(1–2), 27–32 (2002).
  • Anne M, Juha K, Timo M et al. Neurohormonal activation in ischemic stroke: effects of acute phase disturbances on long-term mortality. Curr. Neurovasc. Res.4(3), 170–175 (2007).
  • Neidert S, Katan M, Schuetz P et al. Anterior pituitary-axis hormones and outcome in acute ischemic stroke. J. Int. Med. DOI: 10.1111/j.1365-2796.2010.02327.x. (2010) (Epub ahead of print).
  • Sapolsky RM, Pulsinelli WA. Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science229(4720), 1397–1400 (1985).
  • Krugers HJ, Maslam S, Korf J, Joels M, Holsboer F. The corticosterone synthesis inhibitor metyrapone prevents hypoxia/ischemia-induced loss of synaptic function in the rat hippocampus. Stroke31(5), 1162–1172 (2000).
  • Seckl JR, Olsson T. Glucocorticoid hypersecretion and the age-impaired hippocampus: cause or effect? J. Endocrinol.145(2), 201–211 (1995).
  • Feibel JH, Hardy PM, Campbell RG, Goldstein MN, Joynt RJ. Prognostic value of the stress response following stroke. JAMA238(13), 1374–1376 (1977).
  • Samuels MA. The brain–heart connection. Circulation116(1), 77–84 (2007).
  • Petraglia F, Genazzani AD, Aguzzoli L et al. Pulsatile fluctuations of plasma-gonadotropin-releasing hormone and corticotropin-releasing factor levels in healthy pregnant women. Acta Obstet. Gynecol. Scand.73(4), 284–289 (1994).
  • Evans MJ, Livesey JH, Ellis MJ, Yandle TG. Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin. Biochem.34(2), 107–112 (2001).
  • Latendresse G, Ruiz RJ. Bioassay research methodology: measuring CRH in pregnancy. Biol. Res. Nurs.10(1), 54–62 (2008).
  • Struck J, Morgenthaler NG, Bergmann A. Copeptin, a stable peptide derived from the vasopressin precursor, is elevated in serum of sepsis patients. Peptides26(12), 2500–2504 (2005).
  • Struck J, Morgenthaler NG, Bergmann A. Copeptin, a stable peptide derived from the vasopressin precursor, is elevated in serum of sepsis patients. Peptides26(12), 2500–2504 (2005).
  • Katan M, Fluri F, Morgenthaler NG et al. Copeptin: a novel, independent prognostic marker in patients with ischemic stroke. Ann. Neurol.66(6), 799–808 (2009).
  • Urwyler SA, Schuetz P, Fluri F et al. Prognostic value of copeptin: one-year outcome in patients with acute stroke. Stroke41(7), 1564–1567 (2010).
  • Katan M, Nigro N, Fluri F et al. Stress hormones predict cerebrovascular re-events after transient ischemic attacks. Neurology DOI: 10.1212/WNL.0b013e31820b75e6 (2011) (Epub ahead of print).
  • Darzy KH, Dixit KC, Shalet SM, Morgenthaler NG, Brabant G. Circadian secretion pattern of copeptin, the C-terminal vasopressin precursor fragment. Clin. Chem.56(7), 1190–1191 (2010).
  • Katan M, Morgenthaler N, Widmer I et al. Copeptin, a stable peptide derived from the vasopressin precursor, correlates with the individual stress level. Neuro Endocrinol. Lett.29(3), 341–346 (2008).
  • De Marchis GM, Katan M, Weck A et al. Validation of copeptin as prognostic marker in ischemic stroke. Presented at: Twentieth Meeting of the European Neurological Society. Berlin, Germany, Symposia and Free Communications, 19–23 June, 2010.
  • Vogelbaum MA, Masaryk T, Mazzone P et al. S100β as a predictor of brain metastases: brain versus cerebrovascular damage. Cancer104(4), 817–824 (2005).
  • Staner L. Surrogate outcomes in neurology, psychiatry, and psychopharmacology. Dialogues Clin. Neurosci.8(3), 345–352 (2006).
  • Engelter ST, Provenzale JM, Petrella JR, DeLong DM, Alberts MJ. Infarct volume on apparent diffusion coefficient maps correlates with length of stay and outcome after middle cerebral artery stroke. Cerebrovasc. Dis.15(3), 188–191 (2003).
  • Ay H, Koroshetz WJ, Vangel M et al. Conversion of ischemic brain tissue into infarction increases with age. Stroke36(12), 2632–2636 (2005).
  • Ay H, Arsava EM, Rosand J et al. Severity of leukoaraiosis and susceptibility to infarct growth in acute stroke. Stroke39(5), 1409–1413 (2008).
  • Menezes NM, Ay H, Wang Zhu M et al. The real estate factor: quantifying the impact of infarct location on stroke severity. Stroke38(1), 194–197 (2007).
  • Wu O, Koroshetz WJ, Ostergaard L et al. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke32(4), 933–942 (2001).
  • Thijs VN, Somford DM, Bammer R, Robberecht W, Moseley ME, Albers GW. Influence of arterial input function on hypoperfusion volumes measured with perfusion-weighted imaging. Stroke35(1), 94–98 (2004).
  • Schiemanck SK, Kwakkel G, Post MW, Kappelle LJ, Prevo AJ. Predicting long-term independency in activities of daily living after middle cerebral artery stroke: does information from MRI have added predictive value compared with clinical information? Stroke37(4), 1050–1054 (2006).
  • Schiemanck SK, Kwakkel G, Post MW, Prevo AJ. Predictive value of ischemic lesion volume assessed with magnetic resonance imaging for neurological deficits and functional outcome poststroke: a critical review of the literature. Neurorehabil. Neural Repair20(4), 492–502 (2006).
  • Whiteley W, Chong WL, Sengupta A, Sandercock P. Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke40(5), e380–389 (2009).
  • Hlatky MA, Greenland P, Arnett DK et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation119(17), 2408–2416 (2009).
  • Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med.16(9), 965–980 (1997).
  • Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat. Med.27(2), 157–172; discussion 207–112 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.