359
Views
106
CrossRef citations to date
0
Altmetric
Review

NF-κB and STAT3 signaling in glioma: targets for future therapies

, &
Pages 575-586 | Published online: 09 Jan 2014

References

  • Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet359(9311), 1011–1018 (2002).
  • Barnholtz-Sloan JS, Maldonado JL, Williams VL et al. Racial/ethnic differences in survival among elderly patients with a primary glioblastoma. J. Neurooncol.85(2), 171–180 (2007).
  • Brandes AA, Tosoni A, Franceschi E, Reni M, Gatta G, Vecht C. Glioblastoma in adults. Crit. Rev. Oncol. Hematol.67(2), 139–152 (2008).
  • Wen PY, Kesari S. Malignant gliomas in adults. N. Engl. J. Med.359(5), 492–507 (2008).
  • Kleihues P, Louis DN, Scheithauer BW et al. The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol.61(3), 215–225; discussion 226–219 (2002).
  • Frosch MP, Anthony DC, De Girolami U. The Central Nervous System. In: Robbins and Cotran Pathologic Basis of Disease. Kumar V, Abbas AK, Fausto N (Eds). Elsevier Saunders, PA, USA 1347–1419 (2005).
  • Miller CR, Perry A. Glioblastoma. Arch. Pathol. Lab. Med131(3), 397–406 (2007).
  • Ohgaki H, Dessen P, Jourde B et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res.64(19), 6892–6899 (2004).
  • Kanu OO, Hughes B, Di C et al. Glioblastoma multiforme oncogenomics and signaling pathways. Clin. Med. Oncol.3, 39–52 (2009).
  • Perry J, Laperriere N, Zuraw L, Chambers A, Spithoff K, Cairncross JG. Adjuvant chemotherapy for adults with malignant glioma: a systematic review. Can. J. Neurol. Sci.34(4), 402–410 (2007).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Scott JN, Rewcastle NB, Brasher PM et al. Long-term glioblastoma multiforme survivors: a population-based study. Can. J. Neurol. Sci.25(3), 197–201 (1998).
  • Yamamoto T, Nakai K, Kageji T et al. Boron neutron capture therapy for newly diagnosed glioblastoma. Radiother. Oncol.91(1), 80–84 (2009).
  • Grandi P, Peruzzi P, Reinhart B, Cohen JB, Chiocca EA, Glorioso JC. Design and application of oncolytic HSV vectors for glioblastoma therapy. Expert Rev. Neurother.9(4), 505–517 (2009).
  • Colman H, Aldape K. Molecular predictors in glioblastoma: toward personalized therapy. Arch. Neurol.65(7), 877–883 (2008).
  • Network TTR. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455(7216), 1061–1068 (2008).
  • Purow B, Schiff D. Advances in the genetics of glioblastoma: are we reaching critical mass? Nat. Rev. Neurol.5(8), 419–426 (2009).
  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science321(5897), 1807–1812 (2008).
  • Yan H, Parsons DW, Jin G et al.IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med.360(8), 765–773 (2009).
  • Furnari FB, Fenton T, Bachoo RM et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev.21(21), 2683–2710 (2007).
  • Rao RD, Mladek AC, Lamont JD et al. Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells. Neoplasia7(10), 921–929 (2005).
  • Liu W, James CD, Frederick L, Alderete BE, Jenkins RB. PTEN/MMAC1 mutations and EGFR amplification in glioblastomas. Cancer Res.57(23), 5254–5257 (1997).
  • Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for high-grade glioma. Nat. Rev. Neurol.5(11), 610–620 (2009).
  • Prasad S, Ravindran J, Aggarwal BB. NF-κB and cancer: how intimate is this relationship. Mol. Cell. Biochem.1336(1–2), 25–37 (2010).
  • Aggarwal BB, Kunnumakkara AB, Harikumar KB et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann. NY Acad. Sci.1171, 59–76 (2009).
  • Wu JL, Abe T, Inoue R, Fujiki M, Kobayashi H. IκBαM suppresses angiogenesis and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma cells. Neurol. Res.26(7), 785–791 (2004).
  • Loeffler S, Fayard B, Weis J, Weissenberger J. Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int. J. Cancer115(2), 202–213 (2005).
  • Chen LF, Greene WC. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol.5(5), 392–401 (2004).
  • Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene25(51), 6680–6684 (2006).
  • Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-κB signaling module. Oncogene25(51), 6706–6716 (2006).
  • Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene18(49), 6853–6866 (1999).
  • Senftleben U, Cao Y, Xiao G et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science293(5534), 1495–1499 (2001).
  • Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell132(3), 344–362 (2008).
  • Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor kB pathway. Oncogene25(51), 6717–6730 (2006).
  • Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell1(5), 661–671 (1998).
  • Janknecht R, Hunter T. Transcription. A growing coactivator network. Nature383(6595), 22–23 (1996).
  • Sakurai H, Suzuki S, Kawasaki N et al. Tumor necrosis factor-α-induced IKK phosphorylation of NF-κB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J. Biol. Chem.278(38), 36916–36923 (2003).
  • Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN. Analysis of the activation status of Akt, NF-κB, and Stat3 in human diffuse gliomas. Lab. Invest.84(8), 941–951 (2004).
  • Nozell S, Laver T, Moseley D et al. The ING4 tumor suppressor attenuates NF-κB activity at the promoter of target genes. Mol. Cell. Biol.28(21), 6632–6645 (2008).
  • Korkolopoulou P, Levidou G, Saetta AA et al. Expression of nuclear factor-κB in human astrocytomas: relation to pI κ Ba, vascular endothelial growth factor, Cox-2, microvascular characteristics, and survival. Hum. Pathol.39(8), 1143–1152 (2008).
  • Angileri FF, Aguennouz M, Conti A et al. Nuclear factor-κB activation and differential expression of survivin and Bcl-2 in human grade 2–4 astrocytomas. Cancer112(10), 2258–2266 (2008).
  • McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J. Neuroinflammation5, 45 (2008).
  • Otsuka G, Nagaya T, Saito K, Mizuno M, Yoshida J, Seo H. Inhibition of nuclear factor-κB activation confers sensitivity to tumor necrosis factor-α by impairment of cell cycle progression in human glioma cells. Cancer Res.59(17), 4446–4452 (1999).
  • Koul D, Takada Y, Shen R, Aggarwal BB, Yung WK. PTEN enhances TNF-induced apoptosis through modulation of nuclear factor-κB signaling pathway in human glioma cells. Biochem. Biophys. Res. Commun.350(2), 463–471 (2006).
  • Hayashi S, Yamamoto M, Ueno Y et al. Expression of nuclear factor-κB, tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas. Neurol. Med. Chir. (Tokyo)41(4), 187–195 (2001).
  • Brown RE, Law A. Morphoproteomic demonstration of constitutive nuclear factor-κB activation in glioblastoma multiforme with genomic correlates and therapeutic implications. Ann. Clin. Lab. Sci.36(4), 421–426 (2006).
  • Smith D, Shimamura T, Barbera S, Bejcek BE. NF-κB controls growth of glioblastomas/astrocytomas. Mol. Cell. Biochem.307(1–2), 141 (2007).
  • Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell. Biol.10(2), 262 (1998).
  • Romashkova JA, Makarov SS. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature401(6748), 86–90 (1999).
  • Sizemore N, Leung S, Stark GR. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-κB p65/RelA subunit. Mol. Cell. Biol.19(7), 4798–4805 (1999).
  • Maher EA, Furnari FB, Bachoo RM et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev.15(11), 1311–1333 (2001).
  • Bredel M, Bredel C, Juric D et al. Tumor necrosis factor-α-induced protein 3 as a putative regulator of nuclear factor-κB-mediated resistance to O6-alkylating agents in human glioblastomas. J. Clin. Oncol.24(2), 274–287 (2006).
  • Atkinson GP, Nozell SE, Harrison DK, Stonecypher MS, Chen D, Benveniste EN. The prolyl isomerase Pin1 regulates the NF-κB signaling pathway and interleukin-8 expression in glioblastoma. Oncogene28(42), 3735–3745 (2009).
  • Xie TX, Aldape KD, Gong W et al. Aberrant NF-κB activity is critical in focal necrosis formation of human glioblastoma by regulation of the expression of tissue factor. Int. J. Oncol.33(1), 5–15 (2008).
  • Robe PA, Bentires-Alj M, Bonif M et al.In vitro and in vivo activity of the nuclear factor-κB inhibitor sulfasalazine in human glioblastomas. Clin. Cancer Res.10(16), 5595–5603 (2004).
  • Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H. Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res.67(19), 9463–9471 (2007).
  • Chung WJ, Sontheimer H. Sulfasalazine inhibits the growth of primary brain tumors independent of nuclear factor-κB. J. Neurochem.110(1), 182–193 (2009).
  • Robe PA, Martin DH, Nguyen-Khac MT et al. Early termination of ISRCTN45828668, a Phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer9, 372 (2009).
  • Aaronson DS, Horvath CM. A road map for those who don’t know JAK–STAT. Science296(5573), 1653–1655 (2002).
  • Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol.3(9), 651–662 (2002).
  • Chen SH, Benveniste EN. Oncostatin M: a pleiotropic cytokine in the central nervous system. Cytokine Growth Factor Rev.15(5), 379–391 (2004).
  • Mertens C, Darnell JE Jr. SnapShot: JAK–STAT signaling. Cell131(3), 612 (2007).
  • Baker BJ, Akhtar LN, Benveniste EN. SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol.30(8), 392–400 (2009).
  • Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res.18(2), 254–267 (2008).
  • Gao SP, Bromberg JF. Touched and moved by STAT3. Sci. STKE2006(343), pe30 (2006).
  • Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer9(11), 798–809 (2009).
  • Kim DJ, Chan KS, Sano S, Digiovanni J. Signal transducer and activator of transcription 3 (STAT3) in epithelial carcinogenesis. Mol. Carcinog.46(8), 725–731 (2007).
  • Bromberg J. Stat proteins and oncogenesis. J. Clin. Invest.109(9), 1139–1142 (2002).
  • Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA, Haque SJ. Inhibition of constitutively active STAT3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene21(55), 8404–8413 (2002).
  • Lo HW, Cao X, Zhu H, Ali-Osman F. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin. Cancer Res.14(19), 6042–6054 (2008).
  • Schaefer LK, Ren Z, Fuller GN, Schaefer TS. Constitutive activation of STAT3α in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene21(13), 2058–2065 (2002).
  • Abou-Ghazal M, Yang DS, Qiao W et al. The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin. Cancer Res.14(24), 8228–8235 (2008).
  • Brantley EC, Nabors LB, Gillespie GY et al. Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin. Cancer Res.14(15), 4694–4704 (2008).
  • Carro MS, Lim WK, Alvarez MJ et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature463(7279), 318–325 (2010).
  • Weissenberger J, Loeffler S, Kappeler A et al. IL-6 is required for glioma development in a mouse model. Oncogene23(19), 3308–3316 (2004).
  • Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer110(9), 1911–1928 (2007).
  • Repovic P, Fears CY, Gladson CL, Benveniste EN. Oncostatin-M induction of vascular endothelial growth factor expression in astroglioma cells. Oncogene22(50), 8117–8124 (2003).
  • Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN. Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J. Neurosci.19(13), 5236–5244 (1999).
  • Tchirkov A, Khalil T, Chautard E et al. Interleukin-6 gene amplification and shortened survival in glioblastoma patients. Br. J. Cancer96(3), 474–476 (2007).
  • Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro. Oncol.8(3), 261–279 (2006).
  • Hussain SF, Kong LY, Jordan J et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res.67(20), 9630–9636 (2007).
  • Matsukawa A, Kudo S, Maeda T et al. STAT3 in resident macrophages as a repressor protein of inflammatory response. J. Immunol.175(5), 3354–3359 (2005).
  • Langowski JL, Zhang X, Wu L et al. IL-23 promotes tumour incidence and growth. Nature442(7101), 461–465 (2006).
  • Numasaki M, Fukushi J, Ono M et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood101(7), 2620–2627 (2003).
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol.6(4), 295–307 (2006).
  • Kortylewski M, Kujawski M, Wang T et al. Inhibiting STAT3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med.11(12), 1314–1321 (2005).
  • de la Iglesia N, Konopka G, Puram SV et al. Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev.22(4), 449–462 (2008).
  • de la Iglesia N, Konopka G, Lim KL et al. Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J. Neurosci.28(23), 5870–5878 (2008).
  • Fuh B, Sobo M, Cen L et al. LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br. J. Cancer100(1), 106–112 (2009).
  • Dasgupta A, Raychaudhuri B, Haqqi T et al. STAT3 activation is required for the growth of U87 cell-derived tumours in mice. Eur. J. Cancer45(4), 677–684 (2009).
  • Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J. Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study. Ann. Rheum. Dis.68(10), 1580–1584 (2009).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63(18), 5821–5828 (2003).
  • Li Z, Wang H, Eyler CE, Hjelmeland AB, Rich JN. Turning cancer stem cells inside out: an exploration of glioma stem cell signaling pathways. J. Biol. Chem.284(25), 16705–16709 (2009).
  • Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev.18(8), 1127–1134 (2009).
  • Kappadakunnel M, Eskin A, Dong J et al. Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone. J. Neurooncol.96(3), 359–367 (2010).
  • Altaner C. Glioblastoma and stem cells. Neoplasma55(5), 369–374 (2008).
  • Yuan X, Curtin J, Xiong Y et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene23(58), 9392–9400 (2004).
  • Thon N, Damianoff K, Hegermann J et al. Presence of pluripotent CD133+ cells correlates with malignancy of gliomas. Mol. Cell. Neurosci.43(1), 51–59 (2010).
  • Pallini R, Ricci-Vitiani L, Banna GL et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin. Cancer Res.14(24), 8205–8212 (2008).
  • Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells27(10), 2383–2392 (2009).
  • Wang H, Lathia JD, Wu Q et al. Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells27(10), 2393–2404 (2009).
  • Lee J, Son MJ, Woolard K et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell13(1), 69–80 (2008).
  • Annabi B, Laflamme C, Sina A, Lachambre MP, Beliveau R. A MT1–MMP/NF-κB signaling axis as a checkpoint controller of COX-2 expression in CD133+ U87 glioblastoma cells. J. Neuroinflammation6, 8 (2009).
  • Bachoo RM, Maher EA, Ligon KL et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1(3), 269–277 (2002).
  • Eyler CE, Foo WC, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN. Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells26(12), 3027–3036 (2008).
  • Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol. Cancer Res.6(5), 675–684 (2008).
  • Lee H, Herrmann A, Deng JH et al. Persistently activated STAT3 maintains constitutive NF-κB activity in tumors. Cancer Cell15(4), 283–293 (2009).
  • Grivennikov S, Karin E, Terzic J et al. IL-6 and STAT3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell15(2), 103–113 (2009).
  • Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC. STAT3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation. Proc. Natl Acad. Sci. USA103(19), 7264–7269 (2006).
  • Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkB. Genes Dev.21(11), 1396–1408 (2007).
  • Lam LT, Wright G, Davis RE et al. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-κB pathways in subtypes of diffuse large B-cell lymphoma. Blood111(7), 3701–3713 (2008).
  • Druker BJ, Guilhot F, O’Brien SG et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med.355(23), 2408–2417 (2006).
  • Cheng CK, Fan QW, Weiss WA. PI3K signaling in glioma – animal models and therapeutic challenges. Brain Pathol.19(1), 112–120 (2009).
  • Brandes AA, Franceschi E, Tosoni A, Hegi ME, Stupp R. Epidermal growth factor receptor inhibitors in neuro-oncology: hopes and disappointments. Clin. Cancer Res.14(4), 957–960 (2008).
  • Freire P, Vilela M, Deus H et al. Exploratory analysis of the copy number alterations in glioblastoma multiforme. PLoS One3(12), E4076 (2008).
  • Yip S, Miao J, Cahill DP et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin. Cancer Res.15(14), 4622–4629 (2009).
  • Wrensch M, Jenkins RB, Chang JS et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat. Genet.41(8), 905–908 (2009).
  • Bredel M, Scholtens DM, Harsh GR et al. A network model of a cooperative genetic landscape in brain tumors. JAMA302(3), 261–275 (2009).
  • Hegi ME, Diserens AC, Gorlia T et al.MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med.352(10), 997–1003 (2005).
  • Brandes AA, Franceschi E, Tosoni A et al. Temozolomide concomitant and adjuvant to radiotherapy in elderly patients with glioblastoma: correlation with MGMT promoter methylation status. Cancer115(15), 3512–3518 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.