198
Views
17
CrossRef citations to date
0
Altmetric
Review

Treatment of posterior fossa tumors in children

&
Pages 525-546 | Published online: 09 Jan 2014

References

  • Bowers DC, Liu Y, Leisenring W et al. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: a report from the Childhood Cancer Survivor Study. J. Clin. Oncol.24, 5277–5282 (2006).
  • Mueller S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics6(3), 570–586 (2009).
  • Rath GP, Bithal PK, Chaturvedi A, Dash HH. Complications related to positioning in posterior fossa craniectomy. J. Clin. Neurosci.14, 520–525 (2007).
  • Porter JM, Pidgeon C, Cunningham AJ. The sitting position in neurosurgery: a critical appraisal. Br. J. Anaesth.82, 117–128 (1999).
  • Orliaguet GA, Hanafi M, Meyer PG et al. Is the sitting or the prone position best for surgery for posterior fossa tumours in children? Paediatr. Anaesth.11, 541–547 (2001).
  • Kikuta KI, Miyamoto S, Kataoka H, Satow T, Yamada K, Hashimoto N. Use of the prone oblique position in surgery for posterior fossa lesions. Acta Neurochir. (Wien)146, 1119–1124 (2004).
  • Engelhardt M, Folkers W, Brenke C et al. Neurosurgical operations with the patient in sitting position: analysis of risk factors using transcranial Doppler sonography. Br. J. Anaesth.96, 467–472 (2006).
  • Aleksic V, Radulovic D, Milakovic B et al. A retrospective analysis of anesthesiologic complications in pediatric neurosurgery. Paediatr. Anaesth.19, 879–886 (2009).
  • Harrison EA, Mackersie A, McEwan A, Facer E. The sitting position for neurosurgery in children: a review of 16 years’ experience. Br. J. Anaesth.88(1), 12–17 (2002).
  • Fathi AR, Eshtehardi P, Meier B. Patent foramen ovale and neurosurgery in sitting position: a systematic review. Br. J. Anaesth.102, 588–596 (2009).
  • Webb ST, Klein AA, Calvert PA, Lee EM, Shapiro LM. Preoperative percutaneous patent foramen ovale closure before neurosurgery in the sitting position. Br. J. Anaesth.103, 305 (2009).
  • Dörner L, Fritsch MJ, Stark AM, Mehdorn HM. Posterior fossa tumors in children: how long does it take to establish the diagnosis? Childs Nerv. Syst.23, 887–890 (2007).
  • Schoch B, Konczak J, Dimitrova A, Gizewski ER, Wieland R, Timmann D. Impact of surgery and adjuvant therapy on balance function in children and adolescents with cerebellar tumors. Neuropediatrics37, 350–358 (2006).
  • Grill J, Lellouch-Tubiana A, Elouahdani S et al. Preoperative chemotherapy in children with high-risk medulloblastomas: a feasibility study. J. Neurosurg.103(4 Suppl.), 312–318 (2005).
  • Gnanalingham KK, Lafuente J, Thompson D, Harkness W, Hayward R. Surgical procedures for posterior fossa tumors in children: does craniotomy lead to fewer complications than craniectomy? J. Neurosurg.97, 821–826 (2002).
  • Kurpad SN, Cohen AR. Posterior fossa craniotomy: an alternative to craniectomy. Pediatr. Neurosurg.31(1), 54–57 (1999).
  • Puget S, Boddaert N, Viguier D et al. Injuries to inferior vermis and dentate nuclei predict poor neurological and neuropsychological outcome in children with malignant posterior fossa tumors. Cancer115, 1338–1347 (2009).
  • Hermann EJ, Rittierodt M, Krauss JK. Combined transventricular and supracerebellar infratentorial approach preserving the vermis in giant pediatric posterior fossa midline tumors. Neurosurgery63(Suppl. 1), ONS30–ONS35 (2008).
  • El-Bahy K. Telovelar approach to the fourth ventricle: operative findings and results in 16 cases. Acta Neurochir. (Wien)147, 137–142 (2005).
  • Souweidane MM, Morgenstern PF, Christos PJ et al. Intraoperative arachnoid and cerebrospinal fluid sampling in children with posterior fossa brain tumors. Neurosurgery65, 72–78 (2009).
  • Goel A. Whither preoperative shunts for posterior fossa tumours? Br. J. Neurosurg.7(4), 395–399 (1993).
  • Epstein F, Murali R. Pediatric posterior fossa tumors: hazards of the ‘preoperative’ shunt. Neurosurgery3, 348–350 (1978).
  • Santhanam R, Balasubramaniam A, Chandramouli BA. Fatal intratumoral hemorrhage in posterior fossa tumors following ventriculoperitoneal shunt. J. Clin. Neurosci.16, 135–137 (2009).
  • Gaskill SJ, Marlin AE. Posterior fossa tumors in children: indications for ventricular drainage and for VP shunting. Childs Nerv. Syst.15, 147–148 (1999).
  • Tamburrini G, Massimi L, Caldarelli M, Di Rocco C. Antibiotic impregnated external ventricular drainage and third ventriculostomy in the management of hydrocephalus associated with posterior cranial fossa tumours. Acta Neurochir. (Wien)150, 1049–1055 (2008).
  • Udayakumaran S, Ben Sira L, Constantini S. Chronic uncal herniation secondary to posterior fossa shunting: case report and literature review. Childs Nerv. Syst.26(2), 267–271 (2010).
  • Bhatia R, Tahir M, Chandler CL. The management of hydrocephalus in children with posterior fossa tumours: the role of pre-resectional endoscopic third ventriculostomy. Pediatr. Neurosurg.45(3), 186–191 (2009).
  • Due-Tønnessen BJ, Helseth E. Management of hydrocephalus in children with posterior fossa tumors: role of tumor surgery. Pediatr. Neurosurg.43, 92–96 (2007).
  • Morelli D, Pirotte B, Lubansu A et al. Persistent hydrocephalus after early surgical management of posterior fossa tumors in children: is routine preoperative endoscopic third ventriculostomy justified? J. Neurosurg.103(3 Suppl.), 247–252 (2005).
  • Tamburrini G, Pettorini BL, Massimi L, Caldarelli M, Di Rocco C. Endoscopic third ventriculostomy: the best option in the treatment of persistent hydrocephalus after posterior cranial fossa tumour removal? Childs Nerv. Syst.24, 1405–1412 (2008).
  • Riva-Cambrin J, Detsky AS, Lamberti-Pasculli M et al. Predicting postresection hydrocephalus in pediatric patients with posterior fossa tumors. J. Neurosurg. Pediatr.3(5), 378–385 (2009).
  • McMillan HJ, Keene DL, Matzinger MA, Vassilyadi M, Nzau M, Ventureyra EC. Brainstem compression: a predictor of postoperative cerebellar mutism. Childs Nerv. Syst.25, 677–681 (2009).
  • Wells EM, Walsh KS, Khademian ZP, Keating RF, Packer RJ. The cerebellar mutism syndrome and its relation to cerebellar cognitive function and the cerebellar cognitive affective disorder. Dev. Disabil. Res. Rev.14, 221–228 (2008).
  • Frassanito P, Massimi L, Caldarelli M, Di Rocco C. Cerebellar mutism after spontaneous intratumoral bleeding involving the upper cerebellar vermis: a contribution to the physiopathogenic interpretation. Childs Nerv. Syst.25, 7–11 (2009).
  • Morgan AT, Sell D, Ryan M, Raynsford E, Hayward R. Pre and post surgical dysphagia outcome associated with posterior fossa tumour in children. J. Neurooncol.87, 347–354 (2008).
  • Newman LA, Boop FA, Sanford RA, Thompson JW, Temple CK, Duntsch CD. Postoperative swallowing function after posterior fossa tumor resection in pediatric patients. Childs Nerv. Syst.22, 296–300 (2006).
  • Prabhakar H, Ali Z, Rath GP, Bithal PK. Tension pneumocephalus following external ventricular drain insertion. J. Anesth.22, 326–327 (2008).
  • Chern JJ, Relyea K, Edmond JC et al. Transient selective downward gaze paralysis complicating posterior fossa tumor resection in children. Report of 2 cases. J. Neurosurg. Pediatr.3, 467–471 (2009).
  • Roncadin C, Dennis M, Greenberg ML, Spiegler BJ. Adverse medical events associated with childhood cerebellar astrocytomas and medulloblastomas: natural history and relation to very long-term neurobehavioral outcome. Childs Nerv. Syst.24, 995–1002 (2008).
  • Mabbott DJ, Snyder JJ, Penkman L, Witol A. The effects of treatment for posterior fossa brain tumors on selective attention. J. Int. Neuropsychol. Soc.15, 205–216 (2009).
  • Muzumdar D, Ventureyra EC. Tonsillar herniation and cervical syringomyelia in association with posterior fossa tumors in children: a case-based update. Childs Nerv. Syst.22, 454–459 (2006).
  • Central Brain Tumor Registry of the United States. Primary Brain Tumors in the United States, Statistical Report, 1997–2001, Years Data Collected. Central Brain Tumor Registry of the United States, Chicago, USA (2004–2005).
  • Crawford JR, MacDonald TJ, Packer RJ. Medulloblastoma in childhood: new biological advances. Lancet Neurol.6, 1073–1085 (2007).
  • Pearson AD, Craft AW, Ratcliffe JM, Birch JM, Morris-Jones P, Roberts DF. Two families with the Li-Fraumeni cancer family syndrome. J. Med. Genet.19(5), 362–365 (1982).
  • Shuster J, Hart Z, Stimson CW, Brough AJ, Poulik MD. Ataxia telangiectasia with cerebellar tumor. Pediatrics37(5), 776–786 (1966).
  • Rogers L, Pattisapu J, Smith RR, Parker P. Medulloblastoma in association with the Coffin–Siris syndrome. Childs Nerv. Syst.4(1), 41–44 (1988).
  • Fine HA. Polyomavirus and medulloblastoma: a smoking gun or guilt by association? J. Natl Cancer Inst.94(4), 240–241 (2002).
  • Gurney JG. Topical topics: brain cancer incidence in children: time to look beyond the trends. Med. Pediatr. Oncol.33(2), 110–112 (1999).
  • Dhall G, Grodman H, Ji L et al. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr. Blood Cancer50(6), 1169–1175 (2008).
  • Dhall G. Medulloblastoma. J. Child Neurol.24(11), 1418–1430 (2009).
  • Eberhart CG. In search of the medullobast: neural stem cells and embryonal brain tumors. Neurosurg. Clin. N. Am.18, 59–69 (2007).
  • Bailey P, Cushing H. Medulloblastoma cerebelli. A common type of mid cerebellar glioma of childhood. Arch. Neurol. Psychiatry14, 192 (1925).
  • Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol.114(2), 97–109 (2007).
  • Garrè ML, Cama A, Bagnasco F et al. Medulloblastoma variants: age-dependent occurrence and relation to Gorlin syndrome – a new clinical perspective. Clin. Cancer Res.15(7), 2463–2471 (2009).
  • Amlashi SF, Riffaud L, Brassier G, Morandi X. Nevoid basal cell carcinoma syndrome: relation with desmoplastic medulloblastoma in infancy. A population-based study and review of the literature. Cancer98(3), 618–624 (2003).
  • Chatty EM, Earle KM. Medulloblastoma. A report of 201 cases with emphasis on the relationship of histological variants to survival. Cancer28, 977–983 (1971).
  • Jenkin D, Shabanah MA, Shail EA et al. Prognostic factors for medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys.47, 573–584 (2000).
  • Giordana MT, Cavalla P, Chio A et al. Prognostic factors in adult medulloblastoma. A clinico–pathologic study. Tumori81, 338–346 (1995).
  • Carrie C, Lasset C, Alapetite C et al. Multivariate analysis of prognostic factors in adult patients with medulloblastoma. Retrospective study of 156 patients. Cancer74(8), 2352–2360 (1994).
  • Ray A, Ho M, Ma J et al. A clinicobiological model predicting survival in medulloblastoma. Clin. Cancer Res.10, 7613–7620 (2004).
  • Eberhart CG, Kepner JL, Goldthwaite PT et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer94, 552–560 (2002).
  • von Hoff K, Hartmann W, von Bueren AO et al. Large cell/anaplastic medulloblastoma: outcome according to myc status, histopathological, and clinical risk factors. Pediatr. Blood Cancer54(3), 369–376 (2010).
  • Brown HG, Kepner JL, Perlman EJ et al. “Large cell/anaplastic” medulloblastomas: a pediatric oncology group study. J. Neuropathol. Exp. Neurol.59, 857–865 (2000).
  • Tomlinson FH, Scheithauer BW, Meyer FB et al. Medulloblastoma: I. Clinical, diagnostic, and therapeutic overview. J. Child Neurol.7(2), 142–155 (1992).
  • Kochbati L, Ghorbel I, Chaari N, Besbes M, Maalej M. Frontal relapse of medulloblastoma. Causes and consequences (a case report). Cancer Radiother.12(8), 860–862 (2008).
  • Jereb B, Krishnaswami S, Reid A, Allen JC. Radiation for medulloblastoma adjusted to prevent recurrence to the cribriform plate region. Cancer54(3), 602–604 (1984).
  • Barai S, Bandopadhyaya GP, Julka PK, Haloi AK, Seith A, Malhotra A. Evaluation of single photon emission computerized tomography (SPECT) using Tc99m-tetrofosmin as a diagnostic modality for recurrent posterior fossa tumors. J. Postgrad. Med.49, 316–320 (2003).
  • Peet AC, Davies NP, Ridley L et al. Magnetic resonance spectroscopy suggests key differences in metastatic behavior of medulloblastoma. Eur. J. Cancer43, 1037–1044 (2007).
  • Moreno-Torres A, Martinez-Perez I, Baquero M et al. Taurine detection by proton magnetic resonance spectroscopy in medulloblastoma: contribution to non-invasive differential diagnosis with cerebellar astrocytoma. Neurosurgery55, 824–829 (2004).
  • Smits M, Vernooij MW, Wielopolski PA, Vincent AJ, Houston GC, van der Lugt A. Incorporating functional MR imaging into diffusion tensor tractography in the preoperative assessment of the corticospinal tract in patients with brain tumors. AJNR Am. J. Neuroradiol.28, 1354–1361 (2007).
  • Eberhart CG, Kratz J, Wang Y et al. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J. Neuropathol. Exp. Neurol.63, 441–449 (2004).
  • Sarkar C, Deb P, Sharma MC. Medulloblastomas: new directions in risk stratification. Neurol. India54, 16–23 (2006).
  • Giangaspero F, Wellek S, Masuoka J, Gessi M, Kleihues P, Ohgaki H. Stratification of medulloblastoma on the basis of histopathological grading. Acta Neuropathol.112, 5–12 (2006).
  • Gilbertson RJ, Pearson AD, Perry RH, Jaros E, Kelly PJ. Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma. Br. J. Cancer71, 473–477 (1995).
  • von Hoff K, Hinkes B, Gerber NU et al. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomized multicentre trial HIT’91. Eur. J. Cancer45(7), 1209–1217 (2009).
  • Ellison DW, Onilude OE, Lindsey JC et al.; United Kingdom Children’s Cancer Study Group Brain Tumour Committee. β-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J. Clin. Oncol.23(31), 7951–7957 (2005).
  • Haberler C, Slavc I, Czech T et al. Histopathological prognostic factors in medulloblastoma: high expression of survivin is related to unfavourable outcome. Eur. J. Cancer42, 2996–3003 (2006).
  • Lu KH, Chen YW, Tsai PH et al. Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells. Childs Nerv. Syst.25(5), 543–550 (2009).
  • Toledano H, Yahel A, Cohen IJ, Yaniv I, Stein J. Successful mobilization, harvest and transplant of peripheral blood stem cells using AMD3100 and G-CSF following high dose craniospinal irradiation for medulloblastoma in a young child. Pediatr. Blood Cancer54(4), 613–615 (2010).
  • Polkinghorn WR, Tarbell NJ. Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat. Clin. Pract. Oncol.4, 295–304 (2007).
  • Rutkowski S, von Bueren A, von Hoff K et al. Prognostic relevance of clinical and biological risk factors in childhood medulloblastoma: results of patients treated in the prospective multicenter trial HIT’91. Clin. Cancer Res.13, 2651–2657 (2007).
  • Kunschner LJ. Harvey Cushing and medulloblastoma. Arch. Neurol.59(4), 642–645 (2002).
  • Gajjar A, Fouladi M, Walter AW et al. Comparison of lumbar and shunt cerebrospinal fluid specimens for cytologic detection of leptomeningeal disease in pediatric patients with brain tumors. J. Clin. Oncol.17, 1825–1828 (1999).
  • Robertson PL, Muraszko KM, Holmes EJ et al. Incidence and severity of postoperative cerebellar mutism syndrome in children with medulloblastoma: a prospective study by the Children’s Oncology Group. J. Neurosurg.105, 444–451 (2006).
  • Deutsch M, Thomas PR, Krischer J et al. Results of a prospective randomized trial comparing standard dose neuraxis irradiation (3600 cGy/20) with reduced neuraxis radiation (2300 cGy/13) in patients with low stage medulloblastoma. A combined Children’s Cancer Group–Pediatric Oncology Group Study. Pediatr. Neurosurg.26, 167–176 (1996).
  • Packer RJ, Goldwein J, Nicholson HS et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J. Clin. Oncol.17, 2127–2136 (1999).
  • Oyharcabal-Bourden V, Kalfa C, Gentet JC et al. Standard-risk medulloblastoma treated by adjuvant chemotherapy followed by reduced-dose craniospinal radiation therapy: a French Society of Pediatric Oncology study. J. Clin. Oncol.25, 4726–4734 (2005).
  • Balter-Seri J, Mor C, Shuper A et al. Cure of recurrent medulloblastoma. The contribution of surgical resection at relapse. Cancer79(6), 1241–1247 (1997).
  • Carrie C, Muracciole X, Gomez F et al. Conformal radiotherapy, reduced boost volume, hyper fractionated radiotherapy, and online quality control in-standard risk medulloblastoma without chemotherapy results of the French M-SFOP 98 protocol. Int. J. Radiat. Oncol. Biol. Phys.63, 711–716 (2005).
  • Benhassel M, Mege M, Mahé M et al. Online quality control, hyperfractionated radiotherapy alone and reduced boost volume for standard risk medulloblastoma: long-term results of MSFOP 98. J. Clin. Oncol.27(11), 1879–1883 (2009).
  • Kirsch DG, Tarbell NJ. New technologies in radiation therapy for pediatric brain tumors: the rationale for proton radiation therapy. Pediatr. Blood Cancer42, 461–464 (2004).
  • Abe M, Tokumaru S, Tabuchi K, Kida Y, Takagi M, Imamura J. Stereotactic radiation therapy with chemotherapy in the management of recurrent medulloblastomas. Pediatr. Neurosurg.42(2), 81–88 (2006).
  • Grill J, Sainte-Rose C, Jouvet A et al. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol.6, 573–580 (2005).
  • Rutkowski S, Bode U, Deinlein F et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med.352, 978–986 (2005).
  • Perez-Martinez A, Lassaletta A, Gonzalez-Vicent M, Sevilla J, Diaz MA, Madero L. High-dose chemotherapy with autologous stem cell rescue for children with high risk and recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors. J. Neurooncol.71, 33–38 (2005).
  • Bailey CC, Gnekow A, Welleck S et al. Prospective randomized trial of chemotherapy given before radiotherapy in childhood medulloblastoma. International Society of Pediatric Oncology (SIOP) and the (German) Society of Pediatric Oncology (GPO); SIOP II. Med. Pediatr. Oncol.25, 166–178 (1995).
  • Grill J, Dufour C, Kalifa C. High-dose chemotherapy in children with newly-diagnosed medulloblastoma. Lancet Oncol.7, 787–789 (2006).
  • Roussos I, Balaña C, Cuadras P, Ballester R, Etxaniz O, Hostalot C. Medulloblastoma in young adults. Must we give adjuvant chemotherapy? Clin. Transl. Oncol.9, 121–123 (2007).
  • Kortmann RD, Kuhl J, Timmermann B et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT ’91. Int. J. Radiat. Oncol. Biol. Phys.46, 269–279 (2000).
  • Taylor RE, Bailey CC, Robinson K et al. Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: the International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J. Clin. Oncol.21, 1581–1591 (2003).
  • Rutkowski S, Gerber NU, von Hoff K et al.; German Pediatric Brain Tumor Study Group. Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro Oncol.11(2), 201–210 (2009).
  • von Hoff K, Hinkes B, Gerber NU et al. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomized multicentre trial HIT’91. Eur. J. Cancer45(7), 1209–1217 (2009).
  • Taylor RE, Bailey CC, Robinson KJ et al. Outcome for patients with metastatic (M2–3) medulloblastoma treated with SIOP/UKCCSG PNET-3 chemotherapy. Eur. J. Cancer41, 727–734 (2005).
  • Ridola V, Grill J, Doz F et al. High-dose chemotherapy with autologous stem cell rescue followed by posterior fossa irradiation for local medulloblastoma recurrence or progression after conventional chemotherapy. Cancer110, 156–163 (2007).
  • Sung KW, Yoo KH, Cho EJ et al. High-dose chemotherapy and autologous stem cell rescue in children with newly diagnosed high-risk or relapsed medulloblastoma or supratentorial primitive neuroectodermal tumor. Pediatr. Blood Cancer48, 408–415 (2007).
  • Duffner PK, Horowitz ME, Krischer JP et al. The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro Oncol.1(2), 152–161 (1999).
  • Fangusaro J, Finlay J, Sposto R et al. Intensive chemotherapy followed by consolidative myeloablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) in young children with newly diagnosed supratentorial primitive neuroectodermal tumors (sPNETs): report of the Head Start I and II experience. Pediatr. Blood Cancer50, 312–318 (2008).
  • Chintagumpala M, Hassall T, Palmer S et al. A pilot study of risk-adapted radiotherapy and chemotherapy in patients with supratentorial PNET. Neuro Oncol.11, 33–40 (2009).
  • Chi SN, Gardner SL, Levy AS et al. Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J. Clin. Oncol.22, 4881–4887 (2004).
  • Mason WP, Grovas A, Halpern S et al. Intensive chemotherapy and bone marrow rescue for young children with newly diagnosed malignant brain tumors. J. Clin. Oncol.16, 210–221 (1998).
  • Packer RJ. Chemotherapy for medulloblastoma/primitive neuroectodermal tumors of the posterior fossa. Ann. Neurol.28, 823–828 (1990).
  • Finlay JL, Goldman S, Wong MC et al. Pilot study of high-dose thiotepa and etoposide with autologous bone marrow rescue in children and young adults with recurrent CNS tumors. J. Clin. Oncol.14, 2495–2503 (1996).
  • Graham ML, Herndon JE 2nd, Casey JR et al. High-dose chemotherapy with autologous stem-cell rescue in patients with recurrent and high-risk pediatric brain tumors. J. Clin. Oncol.15, 1814–1823 (1997).
  • Packer RJ, Gurney JG, Punyko JA et al. Long-term neurologic and neurosensory sequelae in adult survivors of a childhood brain tumor: childhood cancer survivor study. J. Clin. Oncol.21, 3255–3261 (2003).
  • Keene DL, Johnston DL, Grimard L, Michaud J, Vassilyadi M, Ventureyra E. Vascular complications of cranial radiation. Childs Nerv. Syst.22, 547–555 (2006).
  • Liu AK, Marcus KJ, Fischl B et al. Changes in cerebral cortex of children treated for medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys.68, 992–998 (2007).
  • Gilbertson RJ, Gajjar A. Molecular biology of medulloblastoma: will it ever make a difference to clinical management? J. Neurooncol.75(3), 273–278 (2005).
  • Saran A. Medulloblastoma: role of developmental pathways, DNA repair signaling, and other players. Curr. Mol. Med.9(9), 1046–1057 (2009).
  • Fernandez LA, Northcott PA, Dalton J et al.YAP1 is amplified and upregulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev.23(23), 2729–2741 (2009).
  • Sutter R, Shakhova O, Bhagat H et al. Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene DOI: 10.1038/onc.2009.472 (2010) (Epub ahead of print).
  • Hanada R, Yaginuma A, Hayashi Y et al. Relapsed stage I neuroblastoma successfully treated by allogeneic bone marrow transplantation in second remission: case report of a 7-year-old girl Gan To Kagaku Ryoho17(9), 1937–1939 (1990).
  • Chang Q, Chen Z, You J et al. All-trans-retinoic acid induces cell growth arrest in a human medulloblastoma cell line. J. Neurooncol.84, 263–267 (2007).
  • Schoch B, Konczak J, Dimitrova A, Gizewski ER, Wieland R, Timmann D. Impact of surgery and adjuvant therapy on balance function in children and adolescents with cerebellar tumors. Neuropediatrics37, 350–358 (2006).
  • Gershon TR, Becher OJ. Medulloblastoma: therapy and biologic considerations. Curr. Neurol. Neurosci. Rep.6, 200–206 (2006).
  • Gajjar A, Chintagumpala M, Ashley D et al. Risk-adapted craniospinal radiotherapy followed by high dose chemotherapy and stem cell rescue in children with newly diagnosed meduloblastoma (St Jude Medulloblastoma-96): long-term results of a prospective, multicentric trial. Lancet Oncol.7, 813–820 (2006).
  • Gjerris F, Klinken L. Long-term prognosis in children with benign cerebellar astrocytoma. J. Neurosurg.49, 179 (1978).
  • Tibbetts KM, Emnett RJ, Gao F, Perry A, Gutmann DH, Leonard JR. Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol.6, 657–665 (2009).
  • Daszkiewicz P, Maryniak A, Roszkowski M, Barszcz S. Long-term functional outcome of surgical treatment of juvenile pilocytic astrocytoma of the cerebellum in children. Childs Nerv. Syst.25(7), 855–860 (2009).
  • Huber JF, Bradley K, Spiegler B, Dennis M. Long-term neuromotor speech deficits in survivors of childhood posterior fossa tumors: effects of tumor type, radiation, age at diagnosis, and survival years. J. Child Neurol.22(7), 848–854 (2007).
  • Rueckriegel SM, Blankenburg F, Henze G, Baqué H, Driever PH. Loss of fine motor function correlates with ataxia and decline of cognition in cerebellar tumor survivors. Pediatr. Blood Cancer53, 424–431 (2009).
  • Gilles FH, Winston K, Fulchiero A et al. Histologic features and observational variation in cerebellar gliomas in children. J. Natl Cancer Inst.58, 175–168 (1977).
  • Cushing H. Experiences with the cerebellar astrocytomas: a critical review of seventy six cases. Surg. Gynecol. Obstet.52, N129 (1931).
  • Zuzak TJ, Poretti A, Drexel B, Zehnder D, Boltshauser E, Grotzer MA. Outcome of children with low-grade cerebellar astrocytoma: long-term complications and quality of life. Childs Nerv. Syst.24(12), 1447–1455 (2008).
  • Villarejo F, de Diego JM, de la Riva A. Prognosis of cerebellar astrocytoma in children. Childs Nerv. Syst.24, 203–210 (2008).
  • Desai KI, Nadkarni TD, Muzumdar DP, Goel A. Prognostic factors for cerebellar astrocytomas in children: a study of 102 cases. Pediatr. Neurosurg.35(6), 3117 (2001).
  • Schneider JH Jr, Raffel C, McComb JG. Benign cerebellar astrocytomas of childhood. Neurosurgery30, 58–62 (1992).
  • Watson GA, Kadota RP, Wisoff JH. Multidisciplinary management of pediatric low-grade gliomas. Semin. Radiat. Oncol.11, 152–162 (2001).
  • Benesch M, Eder HG, Sovinz P et al. Residual or recurrent cerebellar low-grade glioma in children after tumor resection: is re-treatment needed? A single center experience from 1983 to 2003. Pediatr. Neurosurg.42, 159–164 (2006).
  • Pollack IF, Claassen D, al-Shboul Q, Janosky JE, Deutsch M. Low-grade gliomas of the cerebral hemispheres in children: an analysis of 71 cases. J. Neurosurg.82, 536–547 (1995).
  • Mishra KK, Puri DR, Missett BT et al. The role of up-front radiation therapy for incompletely resected pediatric WHO grade II low-grade gliomas. Neuro Oncol.8, 166–174 (2006).
  • Marcus KJ, Goumnerova L, Billett AL et al. Stereotactic radiotherapy for localized low-grade gliomas in children: final results of a prospective trial. Int. J. Radiat. Oncol. Biol. Phys.61, 374–379 (2005).
  • Watson GA, Kadota RP, Wisoff JH. Multidisciplinary management of pediatric low-grade gliomas. Semin. Radiat. Oncol.11, 152–162 (2001).
  • Fouladi M, Hunt DL, Pollack IF et al. Outcome of children with centrally reviewed low-grade gliomas treated with chemotherapy with or without radiotherapy on Children’s Cancer Group high-grade glioma study CCG-945. Cancer98, 1243–1252 (2003).
  • Packer RJ, Ater J, Allen J et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J. Neurosurg.86, 747–754 (1997).
  • Perilongo G. Considerations on the role of chemotherapy and modern radiotherapy in the treatment of childhood low-grade glioma. J. Neurooncol.75, 301–307 (2005).
  • Massimino M, Spreafico F, Cefalo G et al. High response rate to cisplatin/etoposide regimen in childhood low-grade glioma. J. Clin. Oncol.20, 4209–4216 (2002).
  • Gururangan S, Cavazos CM, Ashley D et al. Phase II study of carboplatin in children with progressive low-grade gliomas. J. Clin. Oncol.20, 2951–2958 (2002).
  • Kuo DJ, Weiner HL, Wisoff J et al. Temozolomide is active in childhood, progressive, unresectable, low-grade gliomas. J. Pediatr. Hematol. Oncol.25, 372–378 (2003).
  • Forshew T, Tatevossian RG, Lawson AR et al. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J. Pathol.218, 172–181 (2009).
  • Sanoudou D, Tingby O, Ferguson-Smith MA, Collins VP, Coleman N. Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br. J. Cancer82, 1218–1222 (2000).
  • Jones DT, Ichimura K, Liu L et al. Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. J. Neuropathol. Exp. Neurol.65, 1049–1058 (2006).
  • Pfister S, Janzarik WG, Remke M et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Invest.118, 1739–1749 (2008).
  • Qaddoumi I, Sultan I, Gajjar A. Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the Surveillance, Epidemiology, and End Results database. Cancer115(24), 5761–5770 (2009).
  • Lafay-Cousin L, Strother D. Current treatment approaches for infants with malignant central nervous system tumors. Oncologist14(4), 433–444 (2009).
  • Wisoff JH, Boyett JM, Berger MS et al. Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J. Neurosurg.89, 52–59 (1998).
  • Gnekow A, Kramm CM. Subpopulations of malignant gliomas in pediatric patients: analysis of the HIT-GBM database. J. Neurooncol.87(2), 155–164 (2008).
  • Fulton DS, Urtasun RC, Scott-Brown I et al. Increasing radiation dose intensity using hyperfractionation in patients with malignant glioma. Final report of a prospective Phase I–II dose–response study. J. Neurooncol.14, 63–72 (1992).
  • Sposto R, Ertel IJ, Jenkin RD et al. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group. J. Neurooncol.7, 165–177 (1989).
  • Wolff JE, Gnekow AK, Kortmann RD et al. Preradiation chemotherapy for pediatric patients with high-grade glioma. Cancer94, 264–271 (2002).
  • Lashford LS, Thiesse P, Jouvet A et al. Temozolomide in malignant gliomas of childhood: a United Kingdom Children’s Cancer Study Group and French Society for Pediatric Oncology Intergroup Study. J. Clin. Oncol.20, 4684–4691 (2002).
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res.13, 1253–1259 (2007).
  • Broniscer A, Baker SJ, Stewart CF et al. Phase I and pharmacokinetic studies of erlotinib administered concurrently with radiotherapy for children, adolescents, and young adults with high-grade glioma. Clin. Cancer Res.15, 701–707 (2009).
  • Dohrmann GJ, Farwell JR, Flannery JT. Ependymomas and ependymoblastomas in children. J. Neurosurg.45, 273 (1976).
  • Tihan T, Zhou T, Holmes E, Burger PC, Ozuysal S, Rushing EJ. The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod. Pathol.21(2), 165–177 (2008).
  • McGuire CS, Sainani KL, Fisher PG. Both location and age predict survival in ependymoma: a SEER study. Pediatr. Blood Cancer52, 65–69 (2009).
  • Robertson PL, Zeltzer PM, Boyett JM et al. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J. Neurosurg.88, 695–703 (1998).
  • Timmermann B, Kortmann RD, Kuhl J et al. Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the German prospective trials HIT 88/89 and HIT 91. Int. J. Radiat. Oncol. Biol. Phys.46, 287–295 (2000).
  • Foreman NK, Love S, Gill SS et al. Second-look surgery for incompletely resected fourth ventricle ependymomas: technical case report. Neurosurgery40, 856 (1997).
  • Merchant TE, Mulhern RK, Krasin MJ et al. Preliminary results from a Phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J. Clin. Oncol.22, 3156–3162 (2004).
  • Ridley L, Rahman R, Brundler MA et al. Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma. Neuro Oncol.10, 675–689 (2008).
  • Goldwein JW, Corn BW, Finlay JL et al. Is craniospinal irradiation required to cure children with malignant (anaplastic) intracranial ependymomas? Cancer67, 2766–2771 (1991).
  • Rousseau P, Habrand JL, Sarrazin D et al. Treatment of intracranial ependymomas of children: review of a 15-year experience. Int. J. Radiat. Oncol. Biol. Phys.28, 381–386 (1994).
  • Ross GW, Rubinstein LJ. Lack of histopathological correlation of malignant ependymomas with postoperative survival. J. Neurosurg.70, 31–36 (1989).
  • MacDonald SM, Safai S, Trofimov A et al. Proton radiotherapy for childhood ependymoma: initial clinical outcomes and dose comparisons. Int. J. Radiat. Oncol. Biol. Phys.71, 979–986 (2008).
  • Aggarwal R, Yeung D, Kumar P, Muhlbauer M, Kun LE. Efficacy and feasibility of stereotactic radiosurgery in the primary management of unfavorable pediatric ependymoma. Radiother. Oncol.43, 269–273 (1997).
  • Grill J, Le Deley MC, Gambarelli D et al. Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pediatric Oncology. J. Clin. Oncol.19, 1288–1296 (2001).
  • Geyer JR, Sposto R, Jennings M et al. Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children’s Cancer Group. J. Clin. Oncol.23, 7621–7631 (2005).
  • Grundy RG, Wilne SA, Weston CL et al. Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol.8, 696–705 (2007).
  • Hargrave DR, Zacharoulis S. Pediatric CNS tumors: current treatment and future directions. Expert Rev. Neurother.7, 1029–1042 (2007).
  • Duffner PK, Krischer JP, Sanford RA et al. Prognostic factors in infants and very young children with intracranial ependymomas. Pediatr. Neurosurg.28, 215–222 (1998).
  • Zacharoulis S, Levy A, Chi SN et al. Outcome for young children newly diagnosed with ependymoma, treated with intensive induction chemotherapy followed by myeloablative chemotherapy and autologous stem cell rescue. Pediatr. Blood Cancer49, 34–40 (2007).
  • Ebert C, von Haken M, Meyer-Puttlitz B et al. Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am. J. Pathol.155, 627–632 (1999).
  • Gutmann DH, Giordano MJ, Fishback AS, Guha A. Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology49, 267–270 (1997).
  • Rubio MP, Correa KM, Ramesh V et al. Analysis of the neuro-fibromatosis 2 gene in human ependymomas and astrocytomas. Cancer Res.54, 45–47 (1994).
  • de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R. Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol.10, 1040–1060 (2008).
  • Kilday JP, Rahman R, Dyer S et al. Pediatric ependymoma: biological perspectives. Mol. Cancer Res.7, 765–786 (2009).
  • Rajaram V, Gutmann DH, Prasad SK, Mansur DB, Perry A. Alterations of protein 4.1 family members in ependymomas: a study of 84 cases. Mod. Pathol.18, 991–997 (2005).
  • Taylor MD, Poppleton H, Fuller C et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell8, 323–335 (2005).
  • Mendrzyk F, Korshunov A, Benner A et al. Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin. Cancer Res.12, 2070–2079 (2006).
  • Modena P, Lualdi E, Facchinetti F et al. Identification of tumor specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J. Clin. Oncol.24, 5223–5233 (2006).
  • Poppleton H, Gilbertson RJ. Stem cells of ependymoma. Br. J. Cancer96, 6–10 (2007).
  • Rorke LB, Packer RJ, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J. Neurosurg.85, 56–65 (1996).
  • Chen ML, McComb JG, Krieger MD. Atypical teratoid/rhabdoid tumors of the central nervous system: management and outcomes. Neurosurg. Focus18(6A), E8 (2005).
  • de León-Bojorge B, Rueda-Franco F, Anaya-Jara M. Atypical teratoid/rhabdoid tumor of the central nervous system. Childs Nerv. Syst.25(11), 1387 (2009).
  • Athale UH, Duckworth J, Odame I, Barr R. Childhood atypical teratoid rhabdoid tumor of the central nervous system: a meta-analysis of observational studies. J. Pediatr. Hematol. Oncol.31(9), 651–663 (2009).
  • Bambakidis NC, Robinson S, Cohen M, Cohen AR. Atypical teratoid/rhabdoid tumors of the central nervous system: clinical, radiographic and pathologic features. Pediatr. Neurosurg.37(2), 64–70 (2002).
  • de León-Bojorge B, Rueda-Franco F, Anaya-Jara M. Central nervous system atypical teratoid rhabdoid tumor: experience at the National Institute of Pediatrics, Mexico City. Childs Nerv. Syst.24(3), 307–312 (2008).
  • Warmuth-Metz M, Bison B, Dannemann-Stern E, Kortmann R, Rutkowski S, Pietsch T. CT and MR imaging in atypical teratoid/rhabdoid tumors of the central nervous system. Neuroradiology50(5), 447–452 (2008).
  • Lee IH, Yoo SY, Kim JH et al. Atypical teratoid/rhabdoid tumors of the central nervous system: imaging and clinical findings in 16 children. Clin. Radiol.64(3), 256–264 (2008).
  • Oka H, Scheithauer BW. Clinicopathological characteristics of atypical teratoid/rhabdoid tumor. Neurol. Med. Chir. (Tokyo)39(7), 510–517 (1999).
  • Rahmat K, Kua CH, Ramli N. A child with atypical teratoid/rhabdoid tumour of the posterior cranial fossa. Singapore Med. J.49(12), E365–E368 (2008).
  • Ertan Y, Sezak M, Turhan T et al. Atypical teratoid/rhabdoid tumor of the central nervous system: clinicopathologic and immunohistochemical features of four cases. Childs Nerv. Syst.25(6), 707–711 (2009).
  • Biegel JA, Tan L, Zhang F, Wainwirght L, Russo P, Rorke LB. Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid tumors and renal and extratrenal rhabdoid tumors. Clin. Cancer Res.8, 3461–3467 (2002).
  • Betz BL, Strobeck MW, Reismann DN et al. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leading to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene21, 5193–5203 (2002).
  • Bruch LA, Hill DA, Cai DX et al. A role for fluorescence in situ hybridization detection of chromosome 22q dosage in atypical teratoid/rhabdoid tumors from medulloblastoma/central primitive neuroectodermal tumors. Hum. Pathol.32, 156–162 (2001).
  • Reddy AT. Atypical teratoid/rhabdoid tumors of the central nervous system. J. Neurooncol.75(3), 309–313 (2005).
  • Biswas A, Goyal S, Puri T et al. Atypical teratoid rhabdoid tumor of the brain: case series and review of literature. Childs Nerv. Syst.25(11), 1495–1500 (2009).
  • Hilden JM, Watterson J, Longee DC et al. Central nervous system atypical teratoid tumor/rhabdoid tumor: response to intensive therapy and review of the literature. J. Neurooncol.40(3), 265–275 (1998).
  • Weiss E, Behring B, Behnke J et al. Treatment of primary malignant rhabdoid tumor of the brain: report of three cases and review of the literature. Int. J. Radiat. Oncol. Biol. Phys.41, 1013–1019 (1998).
  • Tekautz TM, Fuller CE, Blaney S et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J. Clin. Oncol.23(7), 1491–1499 (2005).
  • Olson TA, Bayar E, Kosnik E et al. Successful treatment of disseminated central nervous system malignant rhabdoid tumor. J. Pediatr. Hematol. Oncol.17, 71–75 (1995).
  • Hilden JM, Meerbaum S, Burger P et al. Central nervous system atypical teratoid/rhabdoid tumor: results of therapy in children enrolled in a registry. J. Clin. Oncol.22, 2877–2884 (2004).
  • Gardner SL, Asgharzadeh S, Green A, Horn B, McCowage G, Finlay J. Intensive induction chemotherapy followed by high-dose chemotherapy with autologous hematopoietic progenitor cell rescue in young children newly diagnosed with central nervous system atypical teratoid rhabdoid tumors. Pediatr. Blood Cancer51(2), 235–240 (2008).
  • Gidwani P, Levy A, Goodrich J, Weidenheim K, Kolb EA. Successful outcome with tandem myeloablative chemotherapy and autologous peripheral blood stem cell transplants in a patient with atypical teratoid/rhabdoid tumor of the central nervous system. J. Neurooncol.88(2), 211–215 (2008).
  • Furchert SE, Lanvers-Kaminsky C, Juürgens H, Jung M, Loidl A, Frühwald MC. Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int. J. Cancer120(8), 1787–1794 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.