444
Views
100
CrossRef citations to date
0
Altmetric
Review

Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors

, &
Pages 703-710 | Published online: 09 Jan 2014

References

  • Alzheimer A. [On certain peculiar diseases of old age]. Arch. Psychiatr. Nervenkr. Z. Gesamte Neurol. Psychiatr.4, 356–386 (1911).
  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science215(4537), 1237–1239 (1982).
  • Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J.4(11), 2757–2763 (1985).
  • Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun.120(3), 885–890 (1984).
  • Price DL, Sisodia SS. Mutant genes in familial Alzheimer’s disease and transgenic models. Annu. Rev. Neurosci.21, 479–505 (1998).
  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA83(13), 4913–4917 (1986).
  • Morishima-Kawashima M, Hasegawa M, Takio K et al. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J. Biol. Chem.270(2), 823–829 (1995).
  • Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med.15(3), 112–119 (2009).
  • Nishiura C, Takeuchi K, Minoura K et al. Importance of Tyr310 residue in the third repeat of microtubule binding domain for filament formation of tau protein. J. Biochem.147(3), 405–414 (2009).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297(5580), 353–356 (2002).
  • Murayama O, Tomita T, Nihonmatsu N et al. Enhancement of amyloid β 42 secretion by 28 different presenilin 1 mutations of familial Alzheimer’s disease. Neurosci. Lett.265(1), 61–63 (1999).
  • Dermaut B, Kumar-Singh S, Engelborghs S et al. A novel presenilin 1 mutation associated with Pick’s disease but not β-amyloid plaques. Ann. Neurol.55(5), 617–626 (2004).
  • Santacruz K, Lewis J, Spires T et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science309(5733), 476–481 (2005).
  • Avila J. Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett.580(12), 2922–2927 (2006).
  • Gomez-Ramos A, Diaz-Hernandez M, Cuadros R, Hernandez F, Avila J. Extracellular tau is toxic to neuronal cells. FEBS Lett.580(20), 4842–4850 (2006).
  • Clavaguera F, Bolmont T, Crowther RA et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol.11(7), 909–913 (2009).
  • Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem.107(2), 519–527 (1980).
  • Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J.9(8), 2431–2438 (1990).
  • Hansen L, Arden KC, Rasmussen SB et al. Chromosomal mapping and mutational analysis of the coding region of the glycogen synthase kinase-3α and β isoforms in patients with NIDDM. Diabetologia40(8), 940–946 (1997).
  • Shaw PC, Davies AF, Lau KF et al. Isolation and chromosomal mapping of human glycogen synthase kinase-3α and -3β encoding genes. Genome41(5), 720–727 (1998).
  • Mukai F, Ishiguro K, Sano Y, Fujita SC. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β. J. Neurochem.81(5), 1073–1083 (2002).
  • Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci.29(2), 95–102 (2004).
  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378(6559), 785–789 (1995).
  • Nakashima H, Ishihara T, Suguimoto P et al. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol.110(6), 547–556 (2005).
  • Thornton TM, Pedraza-Alva G, Deng B et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation. Science320(5876), 667–670 (2008).
  • Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon V. A chaperone-dependent GSK3β transitional intermediate mediates activation-loop autophosphorylation. Mol. Cell24(4), 627–633 (2006).
  • Simon D, Benitez MJ, Gimenez-Cassina A et al. Pharmacological inhibition of GSK-3 is not strictly correlated with a decrease in tyrosine phosphorylation of residues 216/279. J. Neurosci. Res.86(3), 668–674 (2008).
  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J.16(13), 3797–3804 (1997).
  • Castano Z, Gordon-Weeks PR, Kypta RM. The neuron-specific isoform of glycogen synthase kinase-3β is required for axon growth. J. Neurochem. DOI: 10.1111/j.1471-4159.2010.06581.x (2010) (Epub ahead of print).
  • Wu D, Pan W. GSK3, a multifaceted kinase in Wnt signaling. Trends Biochem. Sci.35(3), 161–168 (2010).
  • Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog. Neurobiol.65(4), 391–426 (2001).
  • Uemura K, Kuzuya A, Shimozono Y et al. GSK3β activity modifies the localization and function of presenilin 1. J. Biol. Chem.282(21), 15823–15832 (2007).
  • Takashima A, Honda T, Yasutake K et al. Activation of tau protein kinase I/glycogen synthase kinase-3β by amyloid β peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci. Res.31(4), 317–323 (1998).
  • Zhang Z, Hartmann H, Do VM et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature395(6703), 698–702 (1998).
  • Baki L, Shioi J, Wen P et al. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J.23(13), 2586–2596 (2004).
  • Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J. Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons. FEBS Lett.411(2–3), 183–188 (1997).
  • Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J. Lithium protects cultured neurons against β-amyloid-induced neurodegeneration. FEBS Lett.453(3), 260–264 (1999).
  • Wang ZF, Li HL, Li XC et al. Effects of endogenous β-amyloid overproduction on tau phosphorylation in cell culture. J. Neurochem.98(4), 1167–1175 (2006).
  • Farias GG, Godoy JA, Hernandez F, Avila J, Fisher A, Inestrosa NC. M1 muscarinic receptor activation protects neurons from β-amyloid toxicity. A role for Wnt signaling pathway. Neurobiol. Dis.17(2), 337–348 (2004).
  • Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol. Rev.84(2), 361–384 (2004).
  • Meshorer E, Soreq H. Pre-mRNA splicing modulations in senescence. Aging Cell1(1), 10–16 (2002).
  • ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J. Structure of GSK3β reveals a primed phosphorylation mechanism. Nat. Struct. Biol.8(7), 593–596 (2001).
  • Dajani R, Fraser E, Roe SM et al. Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell105(6), 721–732 (2001).
  • Alonso Adel C, Li B, Grundke-Iqbal I, Iqbal K. Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc. Natl Acad. Sci. USA103(23), 8864–8869 (2006).
  • Noble W, Olm V, Takata K et al. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron38(4), 555–565 (2003).
  • Sengupta A, Wu Q, Grundke-Iqbal I, Iqbal K, Singh TJ. Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Mol. Cell. Biochem.167(1–2), 99–105 (1997).
  • Nishimura I, Yang Y, Lu B. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell116(5), 671–682 (2004).
  • Amit S, Hatzubai A, Birman Y et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45, a molecular switch for the Wnt pathway. Genes Dev16(9), 1066–1076 (2002).
  • Liu SJ, Zhang AH, Li HL et al. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem.87(6), 1333–1344 (2003).
  • Goni-Oliver P, Lucas JJ, Avila J, Hernandez F. N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation. J. Biol. Chem.282(31), 22406–22413 (2007).
  • Kim WY, Wang X, Wu Y et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat. Neurosci.12(11), 1390–1397 (2009).
  • Eom TY, Jope RS. Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3α/β impairs in vivo neural precursor cell proliferation. Biol. Psychiatry66(5), 494–502 (2009).
  • Fuster-Matanzo A, de Barreda EG, Dawson HN, Vitek MP, Avila J, Hernandez F. Function of tau protein in adult newborn neurons. FEBS Lett.583(18), 3063–3068 (2009).
  • Hong XP, Peng CX, Wei W et al. Essential role of tau phosphorylation in adult hippocampal neurogenesis. Hippocampus DOI: 10.1002/hipo.20712 (2009) (Epub ahead of print).
  • Gomez de Barreda E, Pérez M, Gómez-Ramos P et al. Tau-knock-out mice mice show reduced GSK3 induced hippocampal degeneration and learning deficits. Neurobiol. Dis.37(3), 622–629 (2010).
  • Takashima A, Noguchi K, Sato K, Hoshino T, Imahori K. Tau protein kinase I is essential for amyloid β-protein-induced neurotoxicity. Proc. Natl Acad. Sci. USA90(16), 7789–7793 (1993).
  • Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature423(6938), 435–439 (2003).
  • Perez M, Hernandez F, Lim F, Diaz-Nido J, Avila J. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J. Alzheimers Dis.5(4), 301–308 (2003).
  • Noble W, Planel E, Zehr C et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA102(19), 6990–6995 (2005).
  • Ishiguro K, Omori A, Takamatsu M et al. Phosphorylation sites on tau by tau protein kinase I, a bovine derived kinase generating an epitope of paired helical filaments. Neurosci. Lett.148(1–2), 202–206 (1992).
  • Ishiguro K, Shiratsuchi A, Sato S et al. Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett.325(3), 167–172 (1993).
  • Hernandez F, Lucas JJ, Cuadros R, Avila J. GSK-3 dependent phosphoepitopes recognized by PHF-1 and AT-8 antibodies are present in different tau isoforms. Neurobiol. Aging24(8), 1087–1094 (2003).
  • Kimura T, Ono T, Takamatsu J et al. Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments. Dementia7(4), 177–181 (1996).
  • Ferrer I, Barrachina M, Puig B. Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. (Berl.)104(6), 583–591 (2002).
  • Pei JJ, Braak E, Braak H et al. Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol.58(9), 1010–1019 (1999).
  • Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol.56(1), 70–78 (1997).
  • Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol. (Berl.)92(3), 232–241 (1996).
  • Schaffer BA, Bertram L, Miller BL et al. Association of GSK3β with Alzheimer disease and frontotemporal dementia. Arch. Neurol.65(10), 1368–1374 (2008).
  • Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, Sawa A. Understanding the role of DISC1 in psychiatric disease and during normal development. J. Neurosci.29(41), 12768–12775 (2009).
  • Mao Y, Ge X, Frank CL et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell136(6), 1017–1031 (2009).
  • Jackson GR, Wiedau-Pazos M, Sang TK et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron34(4), 509–519 (2002).
  • Brownlees J, Irving NG, Brion JP et al. Tau phosphorylation in transgenic mice expressing glycogen synthase kinase-3β transgenes. Neuroreport8(15), 3251–3255 (1997).
  • Spittaels K, Van den Haute C, Van Dorpe J et al. Neonatal neuronal overexpression of glycogen synthase kinase-3 β reduces brain size in transgenic mice. Neuroscience113(4), 797–808 (2002).
  • Li B, Ryder J, Su Y et al. Overexpression of GSK3βS9A resulted in tau hyperphosphorylation and morphology reminiscent of pretangle-like neurons in the brain of PDGSK3β transgenic mice. Transgenic Res.13(4), 385–396 (2004).
  • Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J.20(1–2), 27–39 (2001).
  • Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J. Neurochem.83(6), 1529–1533 (2002).
  • Engel T, Hernandez F, Avila J, Lucas JJ. Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J. Neurosci.26(19), 5083–5090 (2006).
  • Engel T, Goni-Oliver P, Lucas JJ, Avila J, Hernandez F. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem.99(6), 1445–1455 (2006).
  • Engel T, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J, Hernandez F. Cooexpression of FTDP-17 tau and GSK-3β in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol. Aging27(9), 1258–1268 (2006).
  • Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature406(6791), 86–90 (2000).
  • Gomez-Sintes R, Hernandez F, Bortolozzi A et al. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J.26(11), 2743–2754 (2007).
  • Meares GP, Jope RS. Resolution of the nuclear localization mechanism of glycogen synthase kinase-3, functional effects in apoptosis. J. Biol. Chem.282(23), 16989–17001 (2007).
  • Dominguez I, Itoh K, Sokol SY. Role of glycogen synthase kinase 3β as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl Acad. Sci. USA92(18), 8498–8502 (1995).
  • Zhang YW, Liu S, Zhang X et al. A Functional mouse retroposed gene Rps23r1 reduces Alzheimer’s β-amyloid levels and tau phosphorylation. Neuron64(3), 328–340 (2009).
  • Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA93(16), 8455–8459 (1996).
  • Ryves WJ, Dajani R, Pearl L, Harwood AJ. Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem. Biophys. Res. Commun.290(3), 967–972 (2002).
  • Caccamo A, Oddo S, Tran LX, LaFerla FM. Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles. Am. J. Pathol.170(5), 1669–1675 (2007).
  • Hampel H, Ewers M, Burger K et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry70(6), 922–931 (2009).
  • Bhat R, Xue Y, Berg S et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem.278(46), 45937–45945 (2003).
  • Leclerc S, Garnier M, Hoessel R et al. Indirubins inhibit glycogen synthase kinase-3 β and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem.276(1), 251–260 (2001).
  • Coghlan MP, Culbert AA, Cross DA et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol.7(10), 793–803 (2000).
  • Martinez A, Alonso M, Castro A, Perez C, Moreno FJ. First non-ATP competitive glycogen synthase kinase 3 β (GSK-3β) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem.45(6), 1292–1299 (2002).
  • Sereno L, Coma M, Rodriguez M et al. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol. Dis.35(3), 359–367 (2009).
  • Rao KV, Donia MS, Peng J et al. Manzamine B, E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J. Nat. Prod.69(7), 1034–1040 (2006).
  • Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov.6(6), 464–479 (2007).
  • Medina M, Castro A. Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic. Curr. Opin. Drug Discov. Devel.11(4), 533–543 (2008).
  • Zhong H, Zou H, Semenov MV et al. Characterization and development of novel small-molecules inhibiting GSK3 and activating Wnt signaling. Mol. Biosyst.5(11), 1356–1360 (2009).
  • Kimura T, Yamashita S, Nakao S et al. GSK-3β is required for memory reconsolidation in adult brain. PLoS One3(10), e3540 (2008).
  • Hooper C, Markevich V, Plattner F et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur. J. Neurosci.25(1), 81–86 (2007).
  • Peineau S, Taghibiglou C, Bradley C et al. LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron53(5), 703–717 (2007).
  • Son H, Yu IT, Hwang SJ et al. Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J. Neurochem.85(4), 872–881 (2003).
  • Lau KF, Miller CC, Anderton BH, Shaw PC. Molecular cloning and characterization of the human glycogen synthase kinase-3β promoter. Genomics60(2), 121–128 (1999).
  • Russ C, Lovestone S, Powell JF. Identification of sequence variants and analysis of the role of the glycogen synthase kinase 3β gene and promoter in late onset Alzheimer’s disease. Mol. Psychiatry6(3), 320–324 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.