90
Views
12
CrossRef citations to date
0
Altmetric
Review

Update on neuroimaging in epilepsy

Pages 961-973 | Published online: 09 Jan 2014

References

  • la Fougere C, Rominger A, Forster S et al. PET and SPECT in epilepsy: a critical review. Epilepsy Behav.15, 50–55 (2009).
  • Henry RH, Votaw JR. The role of positron emission tomography with 18F fluorodeoxyglucose in the evaluation of the epilepsies. Neuroimag. Clin. N. Am.14, 517–535 (2004).
  • Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage11, 805–821 (2000).
  • Bookstein FL. “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage14, 1454–1462 (2001).
  • Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A. Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage40(2), 515–528 (2008).
  • Laufs H, Duncan JS. Electroencephalography/functional MRI in human epilepsy: what it currently can and cannot do. Curr. Opin. Neurol.20, 417–423 (2007).
  • Gotman J. Epileptic networks studied with EEG–fMRI. Epilepsia49(Suppl. 3), 42–51 (2008).
  • Newton MR, Berkovic SF, Austin MC et al. Dystonia, clinical lateralization, and regional blood flow changes in temporal lobe seizures. Neurology42, 371–377 (1992).
  • Chassagnon S, Namer IJ, Armspach JP et al. SPM analysis of ictal–interictal SPECT in mesial temporal lobe epilepsy: relationships between ictal semiology and perfusion changes. Epilepsy Res.85(2–3), 252–260 (2009).
  • Kaiboriboon K, Bertrand ME, Osman MM, Hogan RE. Quantitative analysis of cerebral blood flow patterns in mesial temporal lobe epilepsy using composite SISCOM. J. Nucl. Med.46, 38–43 (2005).
  • Van Paesschen W, Dupont P, Van Driel G et al. SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain126, 1103–1111 (2003).
  • Blumenfeld H, McNally KA, Vanderhill SD et al. Positive and negative network correlations in temporal lobe epilepsy. Cereb. Cortex14, 892–902 (2004).
  • Dupont P, Zaknun JJ, Maes A et al. Dynamic perfusion patterns in temporal lobe epilepsy. Eur. J. Nucl. Med. Mol. Imaging36, 823–830 (2009).
  • Varghese GI, Purcaro MJ, Motelow JE et al. Clinical use of ictal SPECT in secondarily generalized tonic–clonic seizures. Brain132(Pt 8), 2102–2013 (2009).
  • Hogan RE, Kaiboriboon K, Bertrand ME et al. Composite SISCOM perfusion patterns in right and left temporal seizures. Arch. Neurol.63, 1419–1426 (2006).
  • Theodore WH, Newmark ME, Sato S et al.18F-fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann. Neurol.14, 429–437 (1983).
  • Bouilleret V, Valenti MP, Hirsch E et al. Correlation between PET and SISCOM in temporal lobe epilepsy. J. Nucl. Med.43, 991–998 (2002).
  • Nelissen N, Van Paesschen W, Baete K et al. Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. Neuroimage32, 684–695 (2006).
  • Lee EM, Im KC, Kim JH et al. Relationship between hypometabolic patterns and ictal scalp EEG patterns in patients with unilateral hippocampal sclerosis: an FDG-PET study. Epilepsy Res.84, 187–193 (2009).
  • Chassoux F, Semah F, Bouilleret V et al. Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain127, 164–174 (2004).
  • Benedek K, Juhasz C, Muzik O et al. Metabolic changes of subcortical structures in intractable focal epilepsy. Epilepsia45, 1100–1105 (2004).
  • Carne RP, O’Brien TJ, Kilpatrick CJ et al. ‘MRI-negative PET-positive’ temporal lobe epilepsy (TLE) and mesial TLE differ with quantitative MRI and PET: a case control study. BMC Neurol.7, 16 (2007).
  • Carne RP, Cook MJ, MacGregor LR et al. “Magnetic resonance imaging negative positron emission tomography positive” temporal lobe epilepsy: FDG-PET pattern differs from mesial temporal lobe epilepsy. Mol. Imaging Biol.9, 32–42 (2007).
  • Bouilleret V, Semah F, Chassoux F et al. Basal ganglia involvement in temporal lobe epilepsy: a functional and morphologic study. Neurology70, 177–118 (2008).
  • Werhahn KJ, Landvogt C, Klimpe S et al. Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an 18F fallypride PET study. Epilepsia47, 1392–1396 (2006).
  • Jackson GD, Berkovic SF, Tress BM et al. Hippocampal sclerosis can be reliably detected by magnetic resonance imaging. Neurology40, 1869–1875 (1990).
  • Bernasconi N, Bernasconi A, Caramanos Z et al. Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Brain126, 462–469 (2003).
  • Bonilha L, Kobayashi E, Rorden C et al. Medial temporal lobe atrophy in patients with refractory temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry74, 1627–1630 (2003).
  • Meade CE, Bowden SC, Whelan G, Cook MJ. Rhinal cortex asymmetries in patients with mesial temporal sclerosis. Seizure17, 234–246 (2008).
  • Goncalves Pereira PM, Insausti R, Artacho-Perula E et al. MR volumetric analysis of the piriform cortex and cortical amygdala in drug-refractory temporal lobe epilepsy. AJNR Am. J. Neuroradiol.26, 319–332 (2005).
  • Mueller SG, Laxer KD, Barakos J et al. Subfield atrophy pattern in temporal lobe epilepsy with and without mesial sclerosis detected by high-resolution MRI at 4 Tesla: preliminary results. Epilepsia50(6), 1474–1483 (2009).
  • Natsume J, Bernasconi N, Andermann F, Bernasconi A. MRI volumetry of the thalamus in temporal, extratemporal, and idiopathic generalized epilepsy. Neurology60, 1296–1300 (2003).
  • Gong G, Concha L, Beaulieu C, Gross DW. Thalamic diffusion and volumetry in temporal lobe epilepsy with and without mesial temporal sclerosis. Epilepsy Res.80, 184–193 (2008).
  • Seidenberg M, Hermann B, Pulsipher D et al. Thalamic atrophy and cognition in unilateral temporal lobe epilepsy. J. Int. Neuropsychol. Soc.14, 384–393 (2008).
  • Szabo CA, Lancaster JL, Lee S et al. MR imaging volumetry of subcortical structures and cerebellar hemispheres in temporal lobe epilepsy. AJNR Am. J. Neuroradiol.27, 2155–2160 (2006).
  • Pulsipher DT, Seidenberg M, Morton JJ et al. MRI volume loss of subcortical structures in unilateral temporal lobe epilepsy. Epilepsy Behav.11, 42–49 (2007).
  • Bernasconi N, Natsume J, Bernasconi A. Progression in temporal lobe epilepsy: differential atrophy in mesial temporal structures. Neurology65, 223–228 (2005).
  • Stewart CC, Griffith HR, Okonkwo OC et al. Contributions of volumetrics of the hippocampus and thalamus to verbal memory in temporal lobe epilepsy patients. Brain Cogn.69, 65–72 (2009).
  • Guimaraes CA, Bonilha L, Franzon RC et al. Distribution of regional gray matter abnormalities in a pediatric population with temporal lobe epilepsy and correlation with neuropsychological performance. Epilepsy Behav.11, 558–566 (2007).
  • Cormack F, Gadian DG, Vargha-Khadem F et al. Extra-hippocampal grey matter density abnormalities in paediatric mesial temporal sclerosis. Neuroimage27, 635–643 (2005).
  • Mueller SG, Laxer KD, Cashdollar N et al. Voxel-based optimized morphometry (VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia47, 900–907 (2006).
  • Bonilha L, Rorden C, Appenzeller S et al. Gray matter atrophy associated with duration of temporal lobe epilepsy. Neuroimage32, 1070–1079 (2006).
  • Keller SS, Baker G, Downes JJ, Roberts N. Quantitative MRI of the prefrontal cortex and executive function in patients with temporal lobe epilepsy. Epilepsy Behav.15, 186–195 (2009).
  • Bernasconi N, Duchesne S, Janke A et al. Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy. Neuroimage23, 717–723 (2004).
  • Duzel E, Schiltz K, Solbach T et al. Hippocampal atrophy in temporal lobe epilepsy is correlated with limbic systems atrophy. J. Neurol.253, 294–300 (2006).
  • Bonilha L, Rorden C, Castellano G et al. Voxel-based morphometry of the thalamus in patients with refractory medial temporal lobe epilepsy. Neuroimage25, 1016–1021 (2005).
  • Riederer F, Lanzenberger R, Kaya M et al. Network atrophy in temporal lobe epilepsy: a voxel-based morphometry study. Neurology71, 419–425 (2008).
  • Keller SS, Roberts N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia49, 741–757 (2008).
  • Pell GS, Briellmann RS, Pardoe H et al. Composite voxel-based analysis of volume and T2 relaxometry in temporal lobe epilepsy. Neuroimage39, 1151–1161 (2008).
  • Kuzniecky R, Hugg JW, Hetherington H et al. Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology51, 66–71 (1998).
  • Hammen T, Kerling F, Schwarz M et al. Identifying the affected hemisphere by 1H-MR spectroscopy in patients with temporal lobe epilepsy and no pathological findings in high resolution MRI. Eur. J. Neurol.13, 482–490 (2006).
  • Hetherington HP, Kuzniecky RI, Vives K et al. A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy. Neurology69, 2256–2265 (2007).
  • Lee SK, Kim DW, Kim KK et al. Effect of seizure on hippocampus in mesial temporal lobe epilepsy and neocortical epilepsy: an MRS study. Neuroradiology47, 916–923 (2005).
  • Hammen T, Schwarz M, Doelken M et al.1H-MR spectroscopy indicates severity markers in temporal lobe epilepsy: correlations between metabolic alterations, seizures, and epileptic discharges in EEG. Epilepsia48, 263–269 (2007).
  • Fojtikova D, Brazdil M, Skoch A et al. Magnetic resonance spectroscopy of the thalamus in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Epileptic Disord.9(Suppl. 1), S59–S67 (2007).
  • Eriksson SH, Free SL, Thom M et al. Correlation of quantitative MRI and neuropathology in epilepsy surgical resection specimens – T2 correlates with neuronal tissue in gray matter. Neuroimage37, 48–55 (2007).
  • Noulhiane M, Samson S, Clemenceau S et al. A volumetric MRI study of the hippocampus and the parahippocampal region after unilateral medial temporal lobe resection. J. Neurosci. Methods156, 293–230 (2006).
  • Schramm J. Temporal lobe epilepsy surgery and the quest for optimal extent of resection: a review. Epilepsia49, 1296–1307 (2008).
  • Kuzniecky R, Palmer C, Hugg J et al. Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss? Arch. Neurol.58, 2048–2053 (2001).
  • Cohen-Gadol AA, Pan JW, Kim JH et al. Mesial temporal lobe epilepsy: a proton magnetic resonance spectroscopy study and a histopathological analysis. J. Neurosurg.101, 613–620 (2004).
  • Weber B, Wellmer J, Reuber M et al. Left hippocampal pathology is associated with atypical language lateralization in patients with focal epilepsy. Brain129, 346–351 (2006).
  • Waites AB, Briellmann RS, Saling MM et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann. Neurol.59, 335–343 (2006).
  • Janszky J, Mertens M, Janszky I et al. Left-sided interictal epileptic activity induces shift of language lateralization in temporal lobe epilepsy: an fMRI study. Epilepsia47, 921–927 (2006).
  • Sveller C, Briellmann RS, Saling MM et al. Relationship between language lateralization and handedness in left-hemispheric partial epilepsy. Neurology67, 1813–1817 (2006).
  • Detre JA, Maccotta L, King D et al. Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology50, 926–932 (1998).
  • Richardson MP, Strange BA, Duncan JS, Dolan RJ. Preserved verbal memory function in left medial temporal pathology involves reorganisation of function to right medial temporal lobe. Neuroimage20(Suppl. 1), S112–S119 (2003).
  • Janszky J, Jokeit H, Kontopoulou K et al. Functional MRI predicts memory performance after right mesiotemporal epilepsy surgery. Epilepsia46, 244–250 (2005).
  • Vannest J, Szaflarski JP, Privitera MD et al. Medial temporal fMRI activation reflects memory lateralization and memory performance in patients with epilepsy. Epilepsy Behav.12, 410–418 (2008).
  • Richardson MP, Strange BA, Dolan RJ. Emotional memory encoding depends on amygdala and hippocampus and their interactions. Nat. Neurosci.7, 278–285 (2004).
  • Rabin ML, Narayan VM, Kimberg DY et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain127, 2286–2298 (2004).
  • Powell HW, Richardson MP, Symms MR et al. Reorganization of verbal and nonverbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia48, 1512–1525 (2007).
  • Powell HW, Richardson MP, Symms MR et al. Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J. Neurol. Neurosurg. Psychiatry79, 686–693 (2008).
  • Richardson MP, Strange BA, Thompson PJ et al. Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain127, 2419–2426 (2004).
  • Richardson MP, Strange BA, Duncan JS, Dolan RJ. Memory fMRI in left hippocampal sclerosis: optimizing the approach to predicting postsurgical memory. Neurology66, 699–705 (2006).
  • Frings L, Wagner K, Halsband U et al. Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement. Epilepsy Res.78, 161–170 (2008).
  • Wagner K, Frings L, Halsband U et al. Hippocampal functional connectivity reflects verbal episodic memory network integrity. Neuroreport18, 1719–1723 (2007).
  • Wagner K, Frings L, Spreer J et al. Differential effect of side of temporal lobe epilepsy on lateralization of hippocampal, temporolateral, and inferior frontal activation patterns during a verbal episodic memory task. Epilepsy Behav.12, 382–387 (2008).
  • Betting LE, Mory SB, Lopes-Cendes I et al. MRI volumetry shows increased anterior thalamic volumes in patients with absence seizures. Epilepsy Behav.8, 575–580 (2006).
  • Bernhardt BC, Rozen DA, Worsley KJ et al. Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage46(2), 373–381 (2009).
  • Seeck M, Dreifuss S, Lantz G et al. Subcortical nuclei volumetry in idiopathic generalized epilepsy. Epilepsia46, 1642–1645 (2005).
  • Woermann FG, Free SL, Koepp MJ et al. Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. Brain122(Pt 11), 2101–2108 (1999).
  • Betting LE, Mory SB, Li LM et al. Voxel-based morphometry in patients with idiopathic generalized epilepsies. Neuroimage32, 498–502 (2006).
  • Kim JH, Lee JK, Koh SB et al. Regional grey matter abnormalities in juvenile myoclonic epilepsy: a voxel-based morphometry study. Neuroimage37, 1132–1137 (2007).
  • Roebling R, Scheerer N, Uttner I et al. Evaluation of cognition, structural, and functional MRI in juvenile myoclonic epilepsy. Epilepsia50(11), 2456–2465 (2009).
  • Pardoe H, Pell GS, Abbott DF et al. Multi-site voxel-based morphometry: methods and a feasibility demonstration with childhood absence epilepsy. Neuroimage42, 611–616 (2008).
  • Savic I, Lekvall A, Greitz D, Helms G. MR spectroscopy shows reduced frontal lobe concentrations of N-acetyl aspartate in patients with juvenile myoclonic epilepsy. Epilepsia41, 290–296 (2000).
  • Mory SB, Li LM, Guerreiro CA, Cendes F. Thalamic dysfunction in juvenile myoclonic epilepsy: a proton MRS study. Epilepsia4, 1402–1405 (2003).
  • Haki C, Gumustas OG, Bora I et al. Proton magnetic resonance spectroscopy study of bilateral thalamus in juvenile myoclonic epilepsy. Seizure16, 287–295 (2007).
  • Fojtikova D, Brazdil M, Horky J et al. Magnetic resonance spectroscopy of the thalamus in patients with typical absence epilepsy. Seizure15, 533–540 (2006).
  • Savic I, Osterman Y, Helms G. MRS shows syndrome differentiated metabolite changes in human-generalized epilepsies. Neuroimage21, 163–172 (2004).
  • Simister RJ, McLean MA, Barker GJ, Duncan JS. Proton MRS reveals frontal lobe metabolite abnormalities in idiopathic generalized epilepsy. Neurology61, 897–902 (2003).
  • Helms G, Ciumas C, Kyaga S, Savic I. Increased thalamus levels of glutamate and glutamine (Glx) in patients with idiopathic generalised epilepsy. J. Neurol. Neurosurg. Psychiatry77, 489–494 (2006).
  • O’Brien TJ, O’Connor MK, Mullan BP et al. Subtraction ictal SPET co-registered to MRI in partial epilepsy: description and technical validation of the method with phantom and patient studies. Nucl. Med. Commun.19, 31–45 (1998).
  • O’Brien TJ, So EL, Mullan BP et al. Subtraction SPECT co-registered to MRI improves postictal SPECT localization of seizure foci. Neurology52, 137–146 (1999).
  • O’Brien TJ, So EL, Mullan BP et al. Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology55, 1668–1677 (2000).
  • O’Brien TJ, So EL, Cascino GD et al. Subtraction SPECT coregistered to MRI in focal malformations of cortical development: localization of the epileptogenic zone in epilepsy surgery candidates. Epilepsia45, 367–376 (2004).
  • Lee SK, Lee SY, Yun CH et al. Ictal SPECT in neocortical epilepsies: clinical usefulness and factors affecting the pattern of hyperperfusion. Neuroradiology48, 678–684 (2006).
  • Matsuda H, Matsuda K, Nakamura F et al. Contribution of subtraction ictal SPECT coregistered to MRI to epilepsy surgery: a multicenter study. Ann. Nucl. Med.23, 283–291 (2009).
  • Fukuda M, Masuda H, Honma J et al. Ictal SPECT analyzed by three-dimensional stereotactic surface projection in frontal lobe epilepsy patients. Epilepsy Res.68, 95–102 (2006).
  • Huberfeld G, Habert MO, Clemenceau S et al. Ictal brain hyperperfusion contralateral to seizure onset: the SPECT mirror image. Epilepsia47, 123–133 (2006).
  • Bell ML, Rao S, So EL et al. Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia50, 2053–2060 (2009).
  • Kim DW, Lee SK, Chu K et al. Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology72, 211–216 (2009).
  • Vinton AB, Carne R, Hicks RJ et al. The extent of resection of FDG-PET hypometabolism relates to outcome of temporal lobectomy. Brain130, 548–560 (2007).
  • Chugani DC, Chugani HT, Muzik O et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using α-[11C]methyl-L-tryptophan positron emission tomography. Ann. Neurol.44, 858–866 (1998).
  • Kagawa K, Chugani DC, Asano E et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with α-[11C]methyl-L-tryptophan positron emission tomography (PET). J. Child. Neurol.20, 429–438 (2005).
  • Fedi M, Reutens D, Okazawa H et al. Localizing value of α-methyl-L-tryptophan PET in intractable epilepsy of neocortical origin. Neurology57, 1629–1636 (2001).
  • Wakamoto H, Chugani DC, Juhasz C et al. α-methyl-L-tryptophan positron emission tomography in epilepsy with cortical developmental malformations. Pediatr. Neurol.39, 181–188 (2008).
  • Merlet I, Ostrowsky K, Costes N et al. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an 18F MPPF-PET study. Brain127, 900–913 (2004).
  • Ito S, Suhara T, Ito H et al. Changes in central 5-HT1A receptor binding in mesial temporal epilepsy measured by positron emission tomography with [11C]WAY100635. Epilepsy Res.73, 111–118 (2007).
  • Giovacchini G, Toczek MT, Bonwetsch R et al. 5-HT1A receptors are reduced in temporal lobe epilepsy after partial-volume correction. J. Nucl. Med.46, 1128–1135 (2005).
  • Liew CJ, Lim YM, Bonwetsch R et al.18F-FCWAY and 18F-FDG PET in MRI-negative temporal lobe epilepsy. Epilepsia50, 234–239 (2009).
  • Hammers A, Koepp MJ, Labbe C et al. Neocortical abnormalities of [11C]-flumazenil PET in mesial temporal lobe epilepsy. Neurology56, 897–906 (2001).
  • Juhasz C, Asano E, Shah A et al. Focal decreases of cortical GABAA receptor binding remote from the primary seizure focus: what do they indicate? Epilepsia50, 240–250 (2009).
  • Salmenpera TM, Simister RJ, Bartlett P et al. High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res.71, 102–106 (2006).
  • Kimiwada T, Juhasz C, Makki M et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia47, 167–175 (2006).
  • Goncalves Pereira PM, Oliveira E, Rosado P. Apparent diffusion coefficient mapping of the hippocampus and the amygdala in pharmaco-resistant temporal lobe epilepsy. AJNR Am. J. Neuroradiol.27, 671–683 (2006).
  • Guye M, Ranjeva JP, Bartolomei F et al. What is the significance of interictal water diffusion changes in frontal lobe epilepsies? Neuroimage35, 28–37 (2007).
  • Thivard L, Adam C, Hasboun D et al. Interictal diffusion MRI in partial epilepsies explored with intracerebral electrodes. Brain129, 375–385 (2006).
  • Rugg-Gunn FJ, Boulby PA, Symms MR et al. Whole-brain T2 mapping demonstrates occult abnormalities in focal epilepsy. Neurology64, 318–325 (2005).
  • Kosior RK, Lauzon ML, Frayne R, Federico P. Single-subject voxel-based relaxometry for clinical assessment of temporal lobe epilepsy. Epilepsy Res.86(1), 23–31 (2009).
  • Focke NK, Symms MR, Burdett JL, Duncan JS. Voxel-based analysis of whole brain FLAIR at 3T detects focal cortical dysplasia. Epilepsia49, 786–793 (2008).
  • Focke NK, Bonelli SB, Yogarajah M et al. Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy. Epilepsia50(6), 1484–1490 (2009).
  • Rugg-Gunn FJ, Boulby PA, Symms MR et al. Imaging the neocortex in epilepsy with double inversion recovery imaging. Neuroimage31, 39–50 (2006).
  • Eriksson SH, Thom M, Symms MR et al. Cortical neuronal loss and hippocampal sclerosis are not detected by voxel-based morphometry in individual epilepsy surgery patients. Hum. Brain Mapp.30(10), 3351–3360 (2009).
  • Bruggemann JM, Wilke M, Som SS et al. Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: limitations of grey matter analysis. J. Clin. Neurosci.16, 780–785 (2009).
  • Salmenpera TM, Symms MR, Rugg-Gunn FJ et al. Evaluation of quantitative magnetic resonance imaging contrasts in MRI-negative refractory focal epilepsy. Epilepsia48, 229–237 (2007).
  • Guye M, Ranjeva JP, Le Fur Y et al.1H-MRS imaging in intractable frontal lobe epilepsies characterized by depth electrode recording. Neuroimage26, 1174–1183 (2005).
  • Mueller SG, Laxer KD, Barakos JA et al. Metabolic characteristics of cortical malformations causing epilepsy. J. Neurol.252, 1082–1092 (2005).
  • Simister RJ, McLean MA, Barker GJ, Duncan JS. Proton magnetic resonance spectroscopy of malformations of cortical development causing epilepsy. Epilepsy Res.74, 107–115 (2007).
  • Taki MM, Harada M, Mori K et al. High γ-aminobutyric acid level in cortical tubers in epileptic infants with tuberous sclerosis complex measured with the MEGA-editing J-difference method and a three-Tesla clinical MRI instrument. Neuroimage47(4), 1207–1214 (2009).
  • Willmann O, Wennberg R, May T et al. The role of 1H magnetic resonance spectroscopy in pre-operative evaluation for epilepsy surgery. A meta-analysis. Epilepsy Res.71, 149–158 (2006).
  • Hajek M, Krsek P, Dezortova M et al.1H MR spectroscopy in histopathological subgroups of mesial temporal lobe epilepsy. Eur. Radiol.19, 400–408 (2009).
  • Yogarajah M, Powell HW, Parker GJ et al. Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy. Neuroimage40, 1755–1176 (2008).
  • Powell HW, Parker GJ, Alexander DC et al. Imaging language pathways predicts postoperative naming deficits. J. Neurol. Neurosurg. Psychiatry79, 327–330 (2008).
  • Powell HW, Parker GJ, Alexander DC et al. MR tractography predicts visual field defects following temporal lobe resection. Neurology65, 596–599 (2005).
  • Stokes T, Shaw EJ, Juarez-Garcia A et al. Clinical Guidelines and Evidence Review for the Epilepsies: Diagnosis and Management in Adults and Children in Primary and Secondary Care. Royal College of General Practitioners, London, UK (2004).
  • Whiting P, Gupta R, Burch J et al. A systematic review of the effectiveness and cost-effectiveness of neuroimaging assessments used to visualise the seizure focus in people with refractory epilepsy being considered for surgery. Health Technol. Assess.10, 1–250, iii–iv (2006).
  • Knowlton RC, Elgavish RA, Limdi N et al. Functional imaging: I. Relative predictive value of intracranial electroencephalography. Ann. Neurol.64, 25–34 (2008).
  • Knowlton RC, Elgavish RA, Bartolucci A et al. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann. Neurol.64, 35–41 (2008).
  • Willmann O, Wennberg R, May T et al. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: a meta-analysis. Seizure16, 509–520 (2007).
  • O’Brien TJ, Miles K, Ware R et al. The cost-effective use of 18F-FDG PET in the presurgical evaluation of medically refractory focal epilepsy. J. Nucl. Med.49, 931–937 (2008).
  • Wieshmann UC, Woermann FG, Lemieux L et al. Development of hippocampal atrophy: a serial magnetic resonance imaging study in a patient who developed epilepsy after generalized status epilepticus. Epilepsia38, 1238–1241 (1997).
  • Jackson GD, Chambers BR, Berkovic SF. Hippocampal sclerosis: development in adult life. Dev. Neurosci.21, 207–221 (1999).
  • Kim JA, Chung JI, Yoon PH et al. Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging. AJNR Am. J. Neuroradiol.22, 1149–1160 (2001).
  • Katramados AM, Burdette D, Patel SC et al. Periictal diffusion abnormalities of the thalamus in partial status epilepticus. Epilepsia50, 265–275 (2009).
  • Szabo K, Poepel A, Pohlmann-Eden B et al. Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain128, 1369–1376 (2005).
  • Bauer G, Gotwald T, Dobesberger J et al. Transient and permanent magnetic resonance imaging abnormalities after complex partial status epilepticus. Epilepsy Behav.8, 666–671 (2006).
  • Milligan TA, Zamani A, Bromfield E. Frequency and patterns of MRI abnormalities due to status epilepticus. Seizure18, 104–108 (2009).
  • Scott RC, Gadian DG, King MD et al. Magnetic resonance imaging findings within 5 days of status epilepticus in childhood. Brain125, 1951–1959 (2002).
  • Sokol DK, Demyer WE, Edwards-Brown M et al. From swelling to sclerosis: acute change in mesial hippocampus after prolonged febrile seizure. Seizure12, 237–240 (2003).
  • Provenzale JM, Barboriak DP, VanLandingham K et al. Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. AJR Am. J. Roentgenol.190, 976–983 (2008).
  • Diehl B, Najm I, Ruggieri P et al. Postictal diffusion-weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy. Epilepsia42, 21–28 (2001).
  • Hufnagel A, Weber J, Marks S et al. Brain diffusion after single seizures. Epilepsia4, 54–63 (2003).
  • Diehl B, Symms MR, Boulby PA et al. Postictal diffusion tensor imaging. Epilepsy Res.65, 137–146 (2005).
  • Salmenpera TM, Symms MR, Boulby PA et al. Postictal diffusion weighted imaging. Epilepsy Res.70, 133–143 (2006).
  • Salmenpera T, Kononen M, Roberts N et al. Hippocampal damage in newly diagnosed focal epilepsy: a prospective MRI study. Neurology64, 62–68 (2005).
  • Liu RS, Lemieux L, Bell GS et al. Cerebral damage in epilepsy: a population-based longitudinal quantitative MRI study. Epilepsia46, 1482–1494 (2005).
  • Salek-Haddadi A, Diehl B, Hamandi K et al. Hemodynamic correlates of epileptiform discharges: an EEG–fMRI study of 63 patients with focal epilepsy. Brain Res.1088, 148–166 (2006).
  • Jann K, Wiest R, Hauf M et al. BOLD correlates of continuously fluctuating epileptic activity isolated by independent component analysis. Neuroimage42, 635–648 (2008).
  • Kobayashi E, Bagshaw AP, Grova C et al. Negative BOLD responses to epileptic spikes. Hum. Brain Mapp.27, 488–497 (2006).
  • Aghakhani Y, Kobayashi E, Bagshaw AP et al. Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin. Neurophysiol.117, 177–191 (2006).
  • Richardson MP, Grosse P, Allen PJ et al. BOLD correlates of EMG spectral density in cortical myoclonus: description of method and case report. Neuroimage32, 558–565 (2006).
  • Grova C, Daunizeau J, Kobayashi E et al. Concordance between distributed EEG source localization and simultaneous EEG–fMRI studies of epileptic spikes. Neuroimage39, 755–777 (2008).
  • Waites AB, Shaw ME, Briellmann RS et al. How reliable are fMRI–EEG studies of epilepsy? A nonparametric approach to analysis validation and optimization. Neuroimage24, 192–199 (2005).
  • Liston AD, De Munck JC, Hamandi K et al. Analysis of EEG–fMRI data in focal epilepsy based on automated spike classification and Signal Space Projection. Neuroimage31, 1015–1102 (2006).
  • Morgan VL, Price RR, Arain A et al. Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. Neuroimage21, 473–481 (2004).
  • Morgan VL, Gore JC, Abou-Khalil B. Cluster analysis detection of functional MRI activity in temporal lobe epilepsy. Epilepsy Res.76, 22–33 (2007).
  • Salek-Haddadi A, Lemieux L, Merschhemke M et al. Functional magnetic resonance imaging of human absence seizures. Ann. Neurol.53, 663–667 (2003).
  • Archer JS, Abbott DF, Waites AB, Jackson GD. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. Neuroimage20, 1915–1922 (2003).
  • Laufs H, Hamandi K, Salek-Haddadi A et al. Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum. Brain Mapp.28, 1023–1032 (2007).
  • Gotman J, Grova C, Bagshaw A et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc. Natl Acad. Sci. USA102, 15236–15240 (2005).
  • Aghakhani Y, Bagshaw AP, Benar CG et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain127, 1127–1111 (2004).
  • Hamandi K, Salek-Haddadi A, Laufs H et al. EEG–fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage31, 1700–1710 (2006).
  • Tyvaert L, Levan P, Dubeau F, Gotman J. Noninvasive dynamic imaging of seizures in epileptic patients. Hum. Brain Mapp.30(12), 3993–4011 (2009).
  • Donaire A, Falcon C, Carreno M et al. Sequential analysis of fMRI images: a new approach to study human epileptic networks. Epilepsia50(12), 2526–2537 (2009).
  • Donaire A, Bargallo N, Falcon C et al. Identifying the structures involved in seizure generation using sequential analysis of ictal-fMRI data. Neuroimage47, 173–183 (2009).
  • Federico P, Abbott DF, Briellmann RS et al. Functional MRI of the pre-ictal state. Brain128, 1811–1817 (2005).
  • Abou-Khalil B. An update on determination of language dominance in screening for epilepsy surgery: the Wada test and newer noninvasive alternatives. Epilepsia48, 442–455 (2007).
  • Chlebus P, Mikl M, Brazdil M et al. fMRI evaluation of hemispheric language dominance using various methods of laterality index calculation. Exp. Brain Res.179, 365–374 (2007).
  • Wang Z, Mechanic-Hamilton D, Pluta J et al. Function lateralization via measuring coherence laterality. Neuroimage47, 281–288 (2009).
  • Medina LS, Bernal B, Ruiz J. Role of functional MR in determining language dominance in epilepsy and nonepilepsy populations: a Bayesian analysis. Radiology242, 94–100 (2007).
  • Gaillard WD, Balsamo L, Xu B et al. fMRI language task panel improves determination of language dominance. Neurology63, 1403–1408 (2004).
  • Rutten GJ, Ramsey NF, van Rijen PC et al. fMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage17, 447–460 (2002).
  • Woermann FG, Jokeit H, Luerding R et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology61, 699–701 (2003).
  • Benke T, Koylu B, Visani P et al. Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada Test. Epilepsia47, 1308–1319 (2006).
  • Szaflarski JP, Holland SK, Jacola LM et al. Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy. Epilepsy Behav.12, 74–83 (2008).
  • Gaillard WD, Berl MM, Moore EN et al. Atypical language in lesional and nonlesional complex partial epilepsy. Neurology69, 1761–1771 (2007).
  • Brazdil M, Chlebus P, Mikl M et al. Reorganization of language-related neuronal networks in patients with left temporal lobe epilepsy – an fMRI study. Eur. J. Neurol.12, 268–275 (2005).
  • Berl MM, Balsamo LM, Xu B et al. Seizure focus affects regional language networks assessed by fMRI. Neurology65, 1604–1611 (2005).
  • Sabsevitz DS, Swanson SJ, Hammeke TA et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology60, 1788–1792 (2003).
  • Binder JR, Sabsevitz DS, Swanson SJ et al. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia49, 1377–1394 (2008).
  • Gaillard WD, Balsamo L, Xu B et al. Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology59, 256–265 (2002).
  • Thivard L, Hombrouck J, du Montcel ST et al. Productive and perceptive language reorganization in temporal lobe epilepsy. Neuroimage24, 841–851 (2005).
  • Helmstaedter C, Fritz NE, Gonzalez Perez PA et al. Shift-back of right into left hemisphere language dominance after control of epileptic seizures: evidence for epilepsy driven functional cerebral organization. Epilepsy Res.70, 257–262 (2006).
  • Akhtari M, Bragin A, Cohen M et al. Functionalized magnetonanoparticles for MRI diagnosis and localization in epilepsy. Epilepsia49, 1419–1430 (2008).
  • Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage9, 179–194 (1999).
  • Fischl B, Salat DH, Busa E et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron33, 341–355 (2002).
  • Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage9, 195–207 (1999).
  • Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp.8, 272–284 (1999).
  • Hutton C, De Vita E, Ashburner J et al. Voxel-based cortical thickness measurements in MRI. Neuroimage40, 1701–1710 (2008).
  • Aljabar P, Rueckert D, Crum WR. Automated morphological analysis of magnetic resonance brain imaging using spectral analysis. Neuroimage43, 225–235 (2008).
  • van der Lijn F, den Heijer T, Breteler MMB, Niessen WJ. Hippocampus segmentation in MR images using atlas registration, voxel classifiation, and graph cuts. Neuroimage43, 708–720 (2008).
  • Morra JH, Tu Z, Apostolova LG et al. Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer’s disease mild cognitive impairment, and elderly controls. Neuroimage43, 59–68 (2008).
  • Barnes J, Foster J, Boyes RG et al. A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus. Neuroimage40, 1655–1671 (2008).
  • Chupin M, Hammers A, Bardinet E et al. Fully automatic segmentation of the hippocampus and the amygdala from MRI using hybrid prior knowledge. Med Image Comput. Comput. Assist. Interv.10, 875–882 (2007).
  • Hammers A, Heckemann R, Koepp MJ et al. Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: a proof-of-principle study. Neuroimage36, 38–47 (2007).
  • Chupin M, Hammers A, Liu RS et al. Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation. Neuroimage46, 749–761 (2009).
  • Hogan RE, Wang L, Bertrand ME et al. Predictive value of hippocampal MR imaging-based high-dimensional mapping in mesial temporal epilepsy: preliminary findings. AJNR Am. J. Neuroradiol.27, 2149–2154 (2006).
  • Hogan RE, Carne RP, Kilpatrick CJ et al. Hippocampal deformation mapping in MRI negative PET positive temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry79, 636–640 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.