309
Views
59
CrossRef citations to date
0
Altmetric
Review

Using ‘omics’ to define pathogenesis and biomarkers of Parkinson’s disease

, , , &
Pages 925-942 | Published online: 09 Jan 2014

References

  • Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann. NY Acad. Sci.991, 1–14 (2003).
  • DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol.64(1), 20–24 (2007).
  • Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin. Wochenschr.38, 1236–1239 (1960).
  • Jellinger K. New developments in the pathology of Parkinson’s disease. Adv. Neurol.53, 1–16 (1990).
  • Braak H, Braak E, Yilmazer D et al. Nigral and extranigral pathology in Parkinson’s disease. J. Neural Transm. Suppl.46, 15–31 (1995).
  • Forno LS. Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol.55(3), 259–272 (1996).
  • Schlossmacher MG, Frosch MP, Gai WP et al. Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am. J. Pathol.160(5), 1655–1667 (2002).
  • Jenner P, Olanow CW. Understanding cell death in Parkinson’s disease. Ann. Neurol.44(3 Suppl. 1), S72–S84 (1998).
  • Jenner P. Oxidative stress in Parkinson’s disease. Ann. Neurol.53(Suppl. 3), S26–S36; discussion S36–S28 (2003).
  • Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu. Rev. Neurosci.22, 123–144 (1999).
  • Blandini F, Porter RH, Greenamyre JT. Glutamate and Parkinson’s disease. Mol. Neurobiol.12(1), 73–94 (1996).
  • Beal MF. Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol.44(3 Suppl. 1), S110–S114 (1998).
  • Wersinger C, Sidhu A. An inflammatory pathomechanism for Parkinson’s disease? Curr. Med. Chem.13(5), 591–602 (2006).
  • Schapira AH. Mitochondrial dysfunction in neurodegenerative disorders. Biochim. Biophys. Acta1366(1–2), 225–233 (1998).
  • Schapira AH, Mann VM, Cooper JM et al. Mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann. Neurol.32(Suppl.), S116–S124 (1992).
  • Olanow CW, McNaught KS. Ubiquitin-proteasome system and Parkinson’s disease. Mov. Disord.21(11), 1806–1823 (2006).
  • McNaught KS, Jackson T, JnoBaptiste R, Kapustin A, Olanow CW. Proteasomal dysfunction in sporadic Parkinson’s disease. Neurology66(10 Suppl. 4), S37–S49 (2006).
  • Petrucelli L, Dawson TM. Mechanism of neurodegenerative disease: role of the ubiquitin proteasome system. Ann. Med.36(4), 315–320 (2004).
  • Hirsch EC. Mechanism and consequences of nerve cell death in Parkinson’s disease. J. Neural Transm. Suppl.56, 127–137 (1999).
  • Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW. A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann. Neurol.44(3 Suppl. 1), S142–S148 (1998).
  • Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp. Neurol.166(1), 29–43 (2000).
  • Jellinger KA. Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med.5(1), 1–17 (2001).
  • Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet.7(4), 306–318 (2006).
  • Schapira AH. Etiology of Parkinson’s disease. Neurology66(10 Suppl. 4), S10–S23 (2006).
  • Allen W. Inheritance of the shaking palsy. Arch. Int. Med.60, 424–436 (1937).
  • Leroux P-D. Contributions to the reasons and causes of shaking palsy. PhD Thesis. Imprimeur de la Faculte de Medecine, Paris, France (1880).
  • Mjones H. Paralysis agitans: a clinical and genetic study. Acta. Psychiatr. Neurol. Scand.Suppl.54, 1–195 (1949).
  • Tanner CM, Goldman SM. Epidemiology of Parkinson’s disease. Neurol. Clin.14(2), 317–335 (1996).
  • Tanner CM, Langston JW. Do environmental toxins cause Parkinson’s disease? A critical review. Neurology40(10 Suppl. 3), 17–30; discussion 30–11 (1990).
  • Ascherio A, Chen H, Weisskopf MG et al. Pesticide exposure and risk for Parkinson’s disease. Ann. Neurol.60(2), 197–203 (2006).
  • Corrigan FM, Wienburg CL, Shore RF, Daniel SE, Mann D. Organochlorine insecticides in substantia nigra in Parkinson’s disease. J. Toxicol. Environ. Health A59(4), 229–234 (2000).
  • Hubble JP, Cao T, Hassanein RE, Neuberger JS, Koller WC. Risk factors for Parkinson’s disease. Neurology43(9), 1693–1697 (1993).
  • Priyadarshi A, Khuder SA, Schaub EA, Shrivastava S. A meta-analysis of Parkinson’s disease and exposure to pesticides. Neurotoxicology21(4), 435–440 (2000).
  • Semchuk KM, Love EJ, Lee RG. Parkinson’s disease and exposure to rural environmental factors: a population based case–control study. Can. J. Neurol. Sci.18(3), 279–286 (1991).
  • Semchuk KM, Love EJ, Lee RG. Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology42(7), 1328–1335 (1992).
  • Steenland K, Hein MJ, Cassinelli RT 2nd et al. Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. Epidemiology17(1), 8–13 (2006).
  • Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR. Parkinson’s disease and brain levels of organochlorine pesticides. Ann. Neurol.36(1), 100–103 (1994).
  • Ho SC, Woo J, Lee CM. Epidemiologic study of Parkinson’s disease in Hong Kong. Neurology39(10), 1314–1318 (1989).
  • Le Couteur DG, McLean AJ, Taylor MC, Woodham BL, Board PG. Pesticides and Parkinson’s disease. Biomed. Pharmacother.53(3), 122–130 (1999).
  • Norris EH, Uryu K, Leight S et al. Pesticide exposure exacerbates α-synucleinopathy in an A53T transgenic mouse model. Am. J. Pathol.170(2), 658–666 (2007).
  • Yang YH, Speed T. Design issues for cDNA microarray experiments. Nat. Rev.3(8), 579–588 (2002).
  • Wu Z, Irizarry RA. Preprocessing of oligonucleotide array data. Nat. Biotech.22(6), 656–658; author reply 658 (2004).
  • Sutherland GT, Matigian NA, Chalk AM et al. A cross-study transcriptional analysis of Parkinson’s disease. PLoS One,4(3), e4955 (2009).
  • Miller RM, Federoff HJ. Altered gene expression profiles reveal similarities and differences between Parkinson disease and model systems. Neuroscientist11(6), 539–549 (2005).
  • Miller RM, Kiser GL, Kaysser-Kranich TM et al. Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson’s disease. Neurobiol. Dis.21(2), 305–313 (2006).
  • Duke DC, Moran LB, Kalaitzakis ME et al. Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson’s disease. Neurogenetics7(3), 139–148 (2006).
  • Duke DC, Moran LB, Pearce RK, Graeber MB. The medial and lateral substantia nigra in Parkinson’s disease: mRNA profiles associated with higher brain tissue vulnerability. Neurogenetics8(2), 83–94 (2007).
  • Mandel S, Grunblatt E, Riederer P et al. Gene expression profiling of sporadic Parkinson’s disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann. NY Acad. Sci.1053, 356–375 (2005).
  • Grunblatt E, Mandel S, Jacob-Hirsch J et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J. Neural Transm.111(12), 1543–1573 (2004).
  • Hauser MA, Li YJ, Xu H et al. Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Arch. Neurol.62(6), 917–921 (2005).
  • Simunovic F, Yi M, Wang Y et al. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain132(Pt 7), 1795–1809 (2009).
  • Przedborski S, Jackson-Lewis V, Djaldetti R et al. The parkinsonian toxin MPTP: action and mechanism. Restor. Neurol. Neurosci.16(2), 135–142 (2000).
  • Betarbet R, Sherer TB, MacKenzie G et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci.3(12), 1301–1306 (2000).
  • Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration4(3), 257–269 (1995).
  • Schapira AH. Human complex I defects in neurodegenerative diseases. Biochim. Biophys. Acta1364(2), 261–270 (1998).
  • Olanow CW, McNaught KS. Ubiquitin-proteasome system and Parkinson’s disease. Mov. Disord.21(11), 1806–1823 (2006).
  • Kitada T, Asakawa S, Hattori N et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature392(6676), 605–608 (1998).
  • Mata IF, Lockhart PJ, Farrer MJ. Parkin genetics: one model for Parkinson’s disease. Hum. Mol. Gen.13(Spec. No 1), R127–R133 (2004).
  • McNaught KS, Bjorklund LM, Belizaire R et al. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport13(11), 1437–1441 (2002).
  • Galvin JE, Ginsberg SD. Expression profiling in the aging brain: a perspective. Ageing Res. Rev.4(4), 529–547 (2005).
  • Nair-Roberts RG, Chatelain-Badie SD, Benson E et al. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience152(4), 1024–1031 (2008).
  • Olanow CW. The pathogenesis of cell death in Parkinson’s disease – 2007. Mov. Disord.22(Suppl. 17), S335–S342 (2007).
  • Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics (Oxford, England)22(13), 1600–1607 (2006).
  • Bossers K, Meerhoff G, Balesar R et al. Analysis of gene expression in Parkinson’s disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol. (Zurich, Switzerland)19(1), 91–107 (2009).
  • Lesnick TG, Papapetropoulos S, Mash DC et al. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Gen.3(6), e98 (2007).
  • Lin L, Lesnick TG, Maraganore DM, Isacson O. Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics. Trends Neurosci.32(3), 142–149 (2009).
  • Zhang J, Goodlett DR, Montine TJ. Proteomic biomarker discovery in cerebrospinal fluid for neurodegenerative diseases. J. Alzheimers Dis.8(4), 377–386 (2005).
  • Scherzer CR, Eklund AC, Morse LJ et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Natl Acad. Sci. USA104(3), 955–960 (2007).
  • Scherzer CR, Grass JA, Liao Z et al. GATA transcription factors directly regulate the Parkinson’s disease-linked gene α-synuclein. Proc. Natl Acad. Sci. USA105(31), 10907–10912 (2008).
  • Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ. Hsp70 reduces α-synuclein aggregation and toxicity. J. Biol. Chem.279(24), 25497–25502 (2004).
  • Castensson A, Emilsson L, Preece P, Jazin EE. High-resolution quantification of specific mRNA levels in human brain autopsies and biopsies. Genome Res.10(8), 1219–1229 (2000).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Pan S, Rush J, Peskind ER et al. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. J. Proteome Res.7(2), 720–730 (2008).
  • Pan S, Shi M, Jin J et al. Proteomics identification of proteins in human cortex using multidimensional separations and MALDI tandem mass spectrometer. Mol. Cell. Proteomics6(10), 1818–1823 (2007).
  • Kitsou E, Pan S, Zhang J et al. Identification of proteins in human substantia nigra. Proteomics Clin. Appl.2, 776–782 (2008).
  • Tribl F, Gerlach M, Marcus K et al. “Subcellular proteomics” of neuromelanin granules isolated from the human brain. Mol. Cell. Proteomics4(7), 945–957 (2005).
  • Tribl F, Marcus K, Bringmann G et al. Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J. Neural Transm.113(8), 1041–1054 (2006).
  • Tribl F, Marcus K, Meyer HE et al. Subcellular proteomics reveals neuromelanin granules to be a lysosome-related organelle. J. Neural Transm.113(6), 741–749 (2006).
  • Fedorow H, Tribl F, Halliday G et al. Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s disease. Prog. Neurobiol.75(2), 109–124 (2005).
  • Double KL, Rowe DB, Carew-Jones FM et al. Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp. Neurol.217(2), 297–301 (2009).
  • Xia Q, Liao L, Cheng D et al. Proteomic identification of novel proteins associated with Lewy bodies. Front. Biosci.13, 3850–3856 (2008).
  • Braak H, Del Tredici K, Rub U et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging24(2), 197–211 (2003).
  • Leverenz JB, Umar I, Wang Q et al. Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol. (Zurich, Switzerland)17(2), 139–145 (2007).
  • Basso M, Giraudo S, Corpillo D et al. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics4(12), 3943–3952 (2004).
  • Jin J, Hulette C, Wang Y et al. Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol. Cell. Proteomics5(7), 1193–1204 (2006).
  • Shi M, Jin J, Wang Y et al. Mortalin: a protein associated with progression of Parkinson disease? J. Neuropathol. Exp. Neurol.67(2), 117–124 (2008).
  • Jin J, Li GJ, Davis J et al. Identification of novel proteins associated with both α-synuclein and DJ-1. Mol. Cell. Proteomics6(5), 845–859 (2007).
  • Shi M, Bradner J, Bammler TK et al. Identification of glutathione S-transferase pi as a protein involved in Parkinson disease progression. Am. J. Pathol.175(1), 54–65 (2009).
  • Kelada SN, Stapleton PL, Farin FM et al. Glutathione S-transferase M1, T1, and P1 polymorphisms and Parkinson’s disease. Neurosci. Lett.337(1), 5–8 (2003).
  • Smeyne M, Boyd J, Raviie Shepherd K et al. GSTpi expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc. Natl Acad. Sci. USA104(6), 1977–1982 (2007).
  • Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain122(Pt 8), 1437–1448 (1999).
  • Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain114(Pt 5), 2283–2301 (1991).
  • Pakkenberg B, Moller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H. The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J. Neurol. Neurosurg. Psychiatry54(1), 30–33 (1991).
  • McGeer PL, Itagaki S, Akiyama H, McGeer EG. Rate of cell death in parkinsonism indicates active neuropathological process. Ann. Neurol.24(4), 574–576 (1988).
  • McRitchie DA, Cartwright HR, Halliday GM. Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp. Neurol.144(1), 202–213 (1997).
  • German DC, Dubach M, Askari S, Speciale SG, Bowden DM. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian syndrome in Macaca fascicularis: which midbrain dopaminergic neurons are lost? Neuroscience24(1), 161–174 (1988).
  • Varastet M, Riche D, Maziere M, Hantraye P. Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson’s disease. Neuroscience63(1), 47–56 (1994).
  • Waters CM, Hunt SP, Jenner P, Marsden CD. An immunohistochemical study of the acute and long-term effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the marmoset. Neuroscience23(3), 1025–1039 (1987).
  • German DC, Nelson EL, Liang CL et al. The neurotoxin MPTP causes degeneration of specific nucleus A8, A9 and A10 dopaminergic neurons in the mouse. Neurodegeneration5(4), 299–312 (1996).
  • Rodriguez M, Barroso-Chinea P, Abdala P, Obeso J, Gonzalez-Hernandez T. Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in Parkinson’s disease. Exp. Neurol.169(1), 163–181 (2001).
  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res.526(2), 303–307 (1990).
  • Schein JC, Hunter DD, Roffler-Tarlov S. Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev. Biol.204(2), 432–450 (1998).
  • Karschin C, Dissmann E, Stuhmer W, Karschin A. IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci.16(11), 3559–3570 (1996).
  • Beyer K. α-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol.112(3), 237–251 (2006).
  • Choi J, Levey AI, Weintraub ST et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J. Biol. Chem.279(13), 13256–13264 (2004).
  • Choi J, Rees HD, Weintraub ST et al. Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J. Biol. Chem.280(12), 11648–11655 (2005).
  • Choi J, Sullards MC, Olzmann JA et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J. Biol. Chem.281(16), 10816–10824 (2006).
  • Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res.3(3), 556–566 (2004).
  • Shimura H, Schlossmacher MG, Hattori N et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease. Science (NY)293(5528), 263–269 (2001).
  • Farrer M, Maraganore DM, Lockhart P et al. α-synuclein gene haplotypes are associated with Parkinson’s disease. Hum. Mol. Gen.10(17), 1847–1851 (2001).
  • Hwang H, Zhang J, Chung KA et al. Glycoproteomics in neurodegenerative diseases. Mass Spect. Rev.29(1), 79–125 (2010).
  • Zecca L, Stroppolo A, Gatti A et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc. Natl Acad. Sci. USA101(26), 9843–9848 (2004).
  • Vigh B, Manzano e Silva MJ, Frank CL et al. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol. Histopathol.19(2), 607–628 (2004).
  • Nilsson C, Lindvall-Axelsson M, Owman C. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res. Brain Res. Rev.17(2), 109–138 (1992).
  • Harrington MG, Fonteh AN, Oborina E et al. The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res.6, 10 (2009).
  • Abdi F, Quinn JF, Jankovic J et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers Dis.9(3), 293–348 (2006).
  • Pan S, Zhu D, Quinn JF et al. A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics7(3), 469–473 (2007).
  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem.262(19), 9412–9420 (1987).
  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol.2(8), 569–579 (2002).
  • Ecroyd H, Sarradin P, Dacheux JL, Gatti JL. Compartmentalization of prion isoforms within the reproductive tract of the ram. Biol. Reprod.71(3), 993–1001 (2004).
  • Vingtdeux V, Hamdane M, Loyens A et al. Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies. J. Biol. Chem.282(25), 18197–18205 (2007).
  • Liu J, Zhang JP, Shi M et al. Rab11a and HSP90 regulate recycling of extracellular α-synuclein. J. Neurosci.29(5), 1480–1485 (2009).
  • El-Agnaf OM, Salem SA, Paleologou KE et al. α-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J.17(13), 1945–1947 (2003).
  • Lee SJ. Origins and effects of extracellular α-synuclein: implications in Parkinson’s disease. J. Mol. Neurosci.34(1), 17–22 (2008).
  • Zhang J, Sokal I, Peskind ER et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol.129(4), 526–529 (2008).
  • Shi M, Caudle WM, Zhang J. Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol. Dis.35(2), 157–164 (2009).
  • Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics6(17), 4716–4723 (2006).
  • Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD. Analytical and statistical approaches to metabolomics research. J. Sep. Sci.32(13), 2183–2199 (2009).
  • Ascherio A, LeWitt PA, Xu K et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol.66(12), 1460–1468 (2009).
  • Schwarzschild MA, Schwid SR, Marek K et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch. Neurol.65(6), 716–723 (2008).
  • Schlesinger I, Schlesinger N. Uric acid in Parkinson’s disease. Mov. Disord.23(12), 1653–1657 (2008).
  • Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A. Plasma urate and risk of Parkinson’s disease. Am. J. Epidemiol.166(5), 561–567 (2007).
  • Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl Acad. Sci. USA78(11), 6858–6862 (1981).
  • Bogdanov M, Matson WR, Wang L et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain131(Pt 2), 389–396 (2008).
  • Johansen KK, Wang L, Aasly JO et al. Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One4(10), e7551 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.