125
Views
28
CrossRef citations to date
0
Altmetric
Review

Use of growth factors for the treatment of Parkinson’s disease

&
Pages 915-924 | Published online: 09 Jan 2014

References

  • Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet.7(4), 306–318 (2006).
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron39(6), 889–909 (2003).
  • Goedert M. α-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci.2(7), 492–501 (2001).
  • Deep-Brain Stimulation for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med.345(13), 956–963 (2001).
  • Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci.3(5), 383–394 (2002).
  • Kirik D, Georgievska B, Bjorklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat. Neurosci.7(2), 105–110 (2004).
  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science260(5111), 1130–1132 (1993).
  • Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience59(2), 401–415 (1994).
  • Rosenblad C, Martinez-Serrano A, Bjorklund A. Intrastriatal glial cell line-derived neurotrophic factor promotes sprouting of spared nigrostriatal dopaminergic afferents and induces recovery of function in a rat model of Parkinson’s disease. Neuroscience82(1), 129–137 (1998).
  • Rosenblad C, Kirik D, Bjorklund A. Sequential administration of GDNF into the substantia nigra and striatum promotes dopamine neuron survival and axonal sprouting but not striatal reinnervation or functional recovery in the partial 6-OHDA lesion model. Exp. Neurol.161(2), 503–516 (2000).
  • Rosenblad C, Kirik D, Devaux B, Moffat B, Phillips HS, Bjorklund A. Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle. Eur. J. Neurosci.11(5), 1554–1566 (1999).
  • Horger BA, Nishimura MC, Armanini MP et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J. Neurosci.18(13), 4929–4937 (1998).
  • Hebert MA, Van Horne CG, Hoffer BJ, Gerhardt GA. Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J. Pharmacol. Exp. Ther.279(3), 1181–1190 (1996).
  • Martin D, Miller G, Cullen T, Fischer N, Dix D, Russell D. Intranigral or intrastriatal injections of GDNF: effects on monoamine levels and behavior in rats. Eur. J. Pharmacol.317(2–3), 247–256 (1996).
  • Hebert MA, Gerhardt GA. Behavioral and neurochemical effects of intranigral administration of glial cell line-derived neurotrophic factor on aged Fischer 344 rats. J. Pharmacol. Exp. Ther.282(2), 760–768 (1997).
  • Akerud P, Canals JM, Snyder EY, Arenas E. Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J. Neurosci.21(20), 8108–8118 (2001).
  • Shingo T, Date I, Yoshida H, Ohmoto T. Neuroprotective and restorative effects of intrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson’s disease. J. Neurosci. Res.69(6), 946–954 (2002).
  • McBride JL, Kordower JH. Neuroprotection for Parkinson’s disease using viral vector-mediated delivery of GDNF. Prog. Brain Res.138, 421–432 (2002).
  • Kirik D, Rosenblad C, Bjorklund A, Mandel RJ. Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J. Neurosci.20(12), 4686–4700 (2000).
  • Bjorklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ. Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res.886(1–2), 82–98 (2000).
  • Gasmi M, Brandon EP, Herzog CD et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol. Dis.27(1), 67–76 (2007).
  • Kowsky S, Poppelmeyer C, Kramer ER et al. RET signaling does not modulate MPTP toxicity but is required for regeneration of dopaminergic axon terminals. Proc. Natl Acad. Sci. USA104(50), 20049–20054 (2007).
  • Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat. Neurosci.11(7), 755–761 (2008).
  • Grondin R, Cass WA, Zhang Z, Stanford JA, Gash DM, Gerhardt GA. Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J. Neurosci.23(5), 1974–1980 (2003).
  • Gash DM, Zhang Z, Ovadia A et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature380(6571), 252–255 (1996).
  • Grondin R, Zhang Z, Yi A et al. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain125(Pt 10), 2191–2201 (2002).
  • Iravani MM, Costa S, Jackson MJ et al. GDNF reverses priming for dyskinesia in MPTP-treated, l-DOPA-primed common marmosets. Eur. J. Neurosci.13(3), 597–608 (2001).
  • Blanchet PJ, Konitsiotis S, Mochizuki H et al. Complications of a trophic xenotransplant approach in parkinsonian monkeys. Prog. Neuropsychopharmacol. Biol. Psychiatry27(4), 607–612 (2003).
  • Kordower JH, Emborg ME, Bloch J et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science290(5492), 767–773 (2000).
  • Eslamboli A, Georgievska B, Ridley RM et al. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J. Neurosci.25(4), 769–777 (2005).
  • Herzog CD, Dass B, Holden JE et al. Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov. Disord.22(8), 1124–1132 (2007).
  • Kordower JH, Herzog CD, Dass B et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann. Neurol.60(6), 706–715 (2006).
  • Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science273(5271), 59–63 (1996).
  • Wanagat J, Allison DB, Weindruch R. Caloric intake and aging: mechanisms in rodents and a study in nonhuman primates. Toxicol. Sci.52(2 Suppl.), 35–40 (1999).
  • Grandison RC, Piper MD, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature462(7276), 1061–1064 (2009).
  • Anderson RM, Shanmuganayagam D, Weindruch R. Caloric restriction and aging: studies in mice and monkeys. Toxicol. Pathol.37(1), 47–51 (2009).
  • Maswood N, Young J, Tilmont E et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc. Natl Acad. Sci. USA101(52), 18171–18176 (2004).
  • Kordower JH, Palfi S, Chen EY et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann. Neurol.46(3), 419–424 (1999).
  • Nutt JG, Burchiel KJ, Comella CL et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology60(1), 69–73 (2003).
  • Gill SS, Patel NK, Hotton GR et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med.9(5), 589–595 (2003).
  • Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann. Neurol.57(2), 298–302 (2005).
  • Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat. Med.11(7), 703–704 (2005).
  • Lang AE, Gill S, Patel NK et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol.59(3), 459–466 (2006).
  • Marks WJ Jr, Ostrem JL, Verhagen L et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, Phase I trial. Lancet Neurol.7(5), 400–408 (2008).
  • Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci.24, 677–736 (2001).
  • Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat. Rev. Neurosci.6(8), 603–614 (2005).
  • Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM. Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J. Comp. Neurol.342(3), 321–334 (1994).
  • Mogi M, Togari A, Kondo T et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci. Lett.270(1), 45–48 (1999).
  • Parain K, Murer MG, Yan Q et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport10(3), 557–561 (1999).
  • Howells DW, Porritt MJ, Wong JY et al. Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp. Neurol.166(1), 127–135 (2000).
  • Shults CW, Kimber T, Altar CA. BDNF attenuates the effects of intrastriatal injection of 6-hydroxydopamine. Neuroreport6(8), 1109–1112 (1995).
  • Levivier M, Przedborski S, Bencsics C, Kang UJ. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J. Neurosci.15(12), 7810–7820 (1995).
  • Klein RL, Lewis MH, Muzyczka N, Meyer EM. Prevention of 6-hydroxydopamine-induced rotational behavior by BDNF somatic gene transfer. Brain Res.847(2), 314–320 (1999).
  • Tsukahara T, Takeda M, Shimohama S, Ohara O, Hashimoto N. Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Neurosurgery37(4), 733–741 (1995).
  • Porritt MJ, Batchelor PE, Howells DW. Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp. Neurol.192(1), 226–234 (2005).
  • Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J. Neurosci.25(26), 6251–6259 (2005).
  • von Bohlen und Halbach O, Minichiello L, Unsicker K. Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of α-synuclein in the substantia nigra. FASEB J.19(12), 1740–1742 (2005).
  • Croll SD, Suri C, Compton DL et al. Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex. Neuroscience93(4), 1491–1506 (1999).
  • Lahteinen S, Pitkanen A, Saarelainen T, Nissinen J, Koponen E, Castren E. Decreased BDNF signalling in transgenic mice reduces epileptogenesis. Eur. J. Neurosci.15(4), 721–734 (2002).
  • Lahteinen S, Pitkanen A, Koponen E, Saarelainen T, Castren E. Exacerbated status epilepticus and acute cell loss, but no changes in epileptogenesis, in mice with increased brain-derived neurotrophic factor signaling. Neuroscience122(4), 1081–1092 (2003).
  • Ochs G, Penn RD, York M et al. A Phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord.1(3), 201–206 (2000).
  • Jang SW, Liu X, Yepes M et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl Acad. Sci. USA107(6), 2687–2692 (2010).
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat. Med.9(6), 669–676 (2003).
  • Faucheux BA, Bonnet AM, Agid Y, Hirsch EC. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet353(9157), 981–982 (1999).
  • Rosenstein JM, Krum JM. New roles for VEGF in nervous tissue – beyond blood vessels. Exp. Neurol.187(2), 246–253 (2004).
  • Wada K, Arai H, Takanashi M et al. Expression levels of vascular endothelial growth factor and its receptors in Parkinson’s disease. Neuroreport17(7), 705–709 (2006).
  • Silverman WF, Krum JM, Mani N, Rosenstein JM. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience90(4), 1529–1541 (1999).
  • Pitzer MR, Sortwell CE, Daley BF et al. Angiogenic and neurotrophic effects of vascular endothelial growth factor (VEGF165): studies of grafted and cultured embryonic ventral mesencephalic cells. Exp. Neurol.182(2), 435–445 (2003).
  • Yasuhara T, Shingo T, Kobayashi K et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson’s disease. Eur. J. Neurosci.19(6), 1494–1504 (2004).
  • Yasuhara T, Shingo T, Muraoka K et al. The differences between high and low-dose administration of VEGF to dopaminergic neurons of in vitro and in vivo Parkinson’s disease model. Brain Res.1038(1), 1–10 (2005).
  • Yasuhara T, Shingo T, Muraoka K et al. Neurorescue effects of VEGF on a rat model of Parkinson’s disease. Brain Res.1053(1–2), 10–18 (2005).
  • Tian YY, Tang CJ, Wang JN et al. Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors. Neurosci. Lett.421(3), 239–244 (2007).
  • Tombran-Tink J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp. Eye Res.53(3), 411–414 (1991).
  • Steele FR, Chader GJ, Johnson LV, Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc. Natl Acad. Sci. USA90(4), 1526–1530 (1993).
  • Tombran-Tink J, Barnstable CJ. PEDF: a multifaceted neurotrophic factor. Nat. Rev. Neurosci.4(8), 628–636 (2003).
  • Dawson DW, Volpert OV, Gillis P et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science285(5425), 245–248 (1999).
  • Spranger J, Osterhoff M, Reimann M et al. Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes50(12), 2641–2645 (2001).
  • Ogata N, Tombran-Tink J, Nishikawa M et al. Pigment epithelium-derived factor in the vitreous is low in diabetic retinopathy and high in rhegmatogenous retinal detachment. Am. J. Ophthalmol.132(3), 378–382 (2001).
  • Holekamp NM, Bouck N, Volpert O. Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am. J. Ophthalmol.134(2), 220–227 (2002).
  • Ohno-Matsui K, Morita I, Tombran-Tink J et al. Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J. Cell Physiol.189(3), 323–333 (2001).
  • Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M. Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am. J. Ophthalmol.134(3), 348–353 (2002).
  • Raisler BJ, Berns KI, Grant MB, Beliaev D, Hauswirth WW. Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1–3 of angiostatin reduce retinal neovascularization. Proc. Natl Acad. Sci. USA99(13), 8909–8914 (2002).
  • McKay BS, Goodman B, Falk T, Sherman SJ. Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson’s disease: results from an in vitro model system. Exp. Neurol.201(1), 234–243 (2006).
  • Falk T, Zhang S, Sherman SJ. Pigment epithelium derived factor (PEDF) is neuroprotective in two in vitro models of Parkinson’s disease. Neurosci. Lett.458(2), 49–52 (2009).
  • Watts RL, Raiser CD, Stover NP et al. Stereotaxic intrastriatal implantation of human retinal pigment epithelial (hRPE) cells attached to gelatin microcarriers: a potential new cell therapy for Parkinson’s disease. J. Neural Transm. Suppl.65, 215–227 (2003).
  • Stover NP, Watts RL. Spheramine for treatment of Parkinson’s disease. Neurotherapeutics5(2), 252–259 (2008).
  • Ming M, Li X, Fan X et al. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson’s disease. J. Transl. Med.7, 53 (2009).
  • Yasuda T, Fukuda-Tani M, Nihira T et al. Correlation between levels of pigment epithelium-derived factor and vascular endothelial growth factor in the striatum of patients with Parkinson’s disease. Exp. Neurol.206(2), 308–317 (2007).
  • Panchision DM, Martin-DeLeon PA, Takeshima T et al. An immortalized, type-1 astrocyte of mesencephalic origin source of a dopaminergic neurotrophic factor. J. Mol. Neurosci.11(3), 209–221 (1998).
  • Petrova P, Raibekas A, Pevsner J et al. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J. Mol. Neurosci.20(2), 173–188 (2003).
  • Voutilainen MH, Back S, Porsti E et al. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J. Neurosci.29(30), 9651–9659 (2009).
  • Lindholm P, Voutilainen MH, Lauren J et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature448(7149), 73–77 (2007).
  • Hartung T. Anti-inflammatory effects of granulocyte colony-stimulating factor. Curr. Opin. Hematol.5(3), 221–225 (1998).
  • Armitage JO. Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood92(12), 4491–4508 (1998).
  • Crawford J. Safety and efficacy of pegfilgrastim in patients receiving myelosuppressive chemotherapy. Pharmacotherapy23(8 Pt 2), S15–S19 (2003).
  • Yoon SH, Shim YS, Park YH et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells25(8), 2066–2073 (2007).
  • Zavala F, Abad S, Ezine S, Taupin V, Masson A, Bach JF. G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. J. Immunol.168(4), 2011–2019 (2002).
  • Schabitz WR, Kollmar R, Schwaninger M et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke34(3), 745–751 (2003).
  • Schneider A, Kruger C, Steigleder T et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J. Clin. Invest.115(8), 2083–2098 (2005).
  • Bouhy D, Malgrange B, Multon S et al. Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J.20(8), 1239–1241 (2006).
  • Huang X, Choi JK, Park SR et al. GM-CSF inhibits apoptosis of neural cells via regulating the expression of apoptosis-related proteins. Neurosci. Res.58(1), 50–57 (2007).
  • Schabitz WR, Kruger C, Pitzer C et al. A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). J. Cereb. Blood Flow Metab.28(1), 29–43 (2008).
  • Pitzer C, Kruger C, Plaas C et al. Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis. Brain131(Pt 12), 3335–3347 (2008).
  • Cao XQ, Arai H, Ren YR et al. Recombinant human granulocyte colony-stimulating factor protects against MPTP-induced dopaminergic cell death in mice by altering Bcl-2/Bax expression levels. J. Neurochem.99(3), 861–867 (2006).
  • Meuer K, Pitzer C, Teismann P et al. Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson’s disease. J. Neurochem.97(3), 675–686 (2006).
  • Kim NK, Choi BH, Huang X et al. Granulocyte-macrophage colony-stimulating factor promotes survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced murine Parkinson’s disease model. Eur. J. Neurosci.29(5), 891–900 (2009).
  • Ebert AD, Beres AJ, Barber AE, Svendsen CN. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp. Neurol.209(1), 213–223 (2008).
  • Date I, Yoshimoto Y, Imaoka T et al. Enhanced recovery of the nigrostriatal dopaminergic system in MPTP-treated mice following intrastriatal injection of basic fibroblast growth factor in relation to aging. Brain Res.621(1), 150–154 (1993).
  • Grothe C, Timmer M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res. Rev.54(1), 80–91 (2007).
  • Takayama H, Ray J, Raymon HK et al. Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson’s disease. Nat. Med.1(1), 53–58 (1995).
  • Timmer M, Muller-Ostermeyer F, Kloth V, Winkler C, Grothe C, Nikkhah G. Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Exp. Neurol.187(1), 118–136 (2004).
  • Timmer M, Cesnulevicius K, Winkler C et al. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J. Neurosci.27(3), 459–471 (2007).
  • Koike H, Ishida A, Shimamura M et al. Prevention of onset of Parkinson’s disease by in vivo gene transfer of human hepatocyte growth factor in rodent model: a model of gene therapy for Parkinson’s disease. Gene Ther.13(23), 1639–1644 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.