263
Views
7
CrossRef citations to date
0
Altmetric
Theme: Parkinson’s disease - Review

Development of Parkinson’s disease biomarkers

&
Pages 1811-1825 | Published online: 09 Jan 2014

References

  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69(3), 89–95 (2001).
  • Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology17(5), 427–442 (1967).
  • Hughes AJ, Daniel SE, Lees AJ. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology57(8), 1497–1499 (2001).
  • Perlmutter JS. Assessment of Parkinson disease manifestations. Curr. Protoc. Neurosci. Chapter 10: Unit 10.1 (2009).
  • Marttila RJ, Rinne UK. Disability and progression in Parkinson’s disease. Acta Neurol. Scand.56(2), 159–169 (1977).
  • Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N. Engl. J. Med.328(3), 176–183 (1993).
  • Fahn S, Oakes D, Shoulson I et al. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med.351(24), 2498–2508 (2004).
  • Parkinson Study Group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch. Neurol.61(4), 561–566 (2004).
  • Hely MA, Morris JG, Reid WG, Trafficante R. Sydney Multicenter Study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov. Disord.20(2), 190–199 (2005).
  • Hely MA, Morris JG, Traficante R, Reid WG, O’Sullivan DJ, Williamson PM. The Sydney multicentre study of Parkinson’s disease: progression and mortality at 10 years. J. Neurol. Neurosurg. Psychiatry67(3), 300–307 (1999).
  • Alves G, Wentzel-Larsen T, Aarsland D, Larsen JP. Progression of motor impairment and disability in Parkinson disease: a population-based study. Neurology65(9), 1436–1441 (2005).
  • Sato K, Hatano T, Yamashiro K et al. Prognosis of Parkinson’s disease: time to stage III, IV, V, and to motor fluctuations. Mov. Disord.21(9), 1384–1395 (2006).
  • Jankovic J, Kapadia AS. Functional decline in Parkinson disease. Arch. Neurol.58(10), 1611–1615 (2001).
  • Louis ED, Tang MX, Cote L, Alfaro B, Mejia H, Marder K. Progression of parkinsonian signs in Parkinson disease. Arch. Neurol.56(3), 334–337 (1999).
  • Burn DJ, Rowan EN, Allan LM, Molloy S, O’Brien JT, McKeith IG. Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry77(5), 585–589 (2006).
  • Goetz CG, Stebbins GT, Blasucci LM. Differential progression of motor impairment in levodopa-treated Parkinson’s disease. Mov. Disord.15(3), 479–484 (2000).
  • Schrag A, Dodel R, Spottke A, Bornschein B, Siebert U, Quinn NP. Rate of clinical progression in Parkinson‘s disease. A prospective study. Mov. Disord.22(7), 938–945 (2007).
  • Ransmayr G, Kunig G, Neubauer M, Wagner M, Falk M. Effect of age and disease duration on parkinsonian motor scores under levodopa therapy. J. Neural. Transm. Park. Dis. Dement. Sect.9(2–3), 177–188 (1995).
  • Ross GW, Petrovitch H, Abbott RD et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann. Neurol.63(2), 167–173 (2008).
  • Abbott RD, Petrovitch H, White LR et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology57(3), 456–462 (2001).
  • Iranzo A, Molinuevo JL, Santamaria J et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol.5(7), 572–577 (2006).
  • Shiba M, Bower JH, Maraganore DM et al. Anxiety disorders and depressive disorders preceding Parkinson’s disease: a case–control study. Mov. Disord.15(4), 669–677 (2000).
  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging24(2), 197–211 (2003).
  • Maetzler W, Liepelt I, Berg D. Progression of Parkinson’s disease in the clinical phase: potential markers. Lancet Neurol.8(12), 1158–1171 (2009).
  • Haehner A, Boesveldt S, Berendse HW et al. Prevalence of smell loss in Parkinson’s disease – a multicenter study. Parkinsonism Relat. Disord.15(7), 490–494 (2009).
  • Herting B, Schulze S, Reichmann H, Haehner A, Hummel T. A longitudinal study of olfactory function in patients with idiopathic Parkinson’s disease. J. Neurol.255(3), 367–370 (2008).
  • Doty RL, Deems DA, Stellar S. Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology38(8), 1237–1244 (1988).
  • Kim JY, Lee WY, Chung EJ, Dhong HJ. Analysis of olfactory function and the depth of olfactory sulcus in patients with Parkinson‘s disease. Mov. Disord.22(11), 1563–1566 (2007).
  • Verbaan D, Boesveldt S, van Rooden SM et al. Is olfactory impairment in Parkinson disease related to phenotypic or genotypic characteristics? Neurology71(23), 1877–1882 (2008).
  • Gagnon JF, Postuma RB, Mazza S, Doyon J, Montplaisir J. Rapid-eye-movement sleep behaviour disorder and neurodegenerative diseases. Lancet Neurol.5, 424–432 (2006).
  • Boeve BF, Silber MH, Saper CB et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain130, 2770–2788 (2007).
  • Schenck CH, Bundlie SR, Mahowald MW. Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder. Neurology46, 388–393 (1996).
  • Postuma RB, Gagnon JF, Vendette M, Fantini ML, Massicotte-Marquez J, Montplaisir J. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology72, 1296–1300 (2009).
  • de Lau LM, Giesbergen PC, de Rijk MC et al. Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology63(7), 1240–1244 (2004).
  • Aarsland D, Andersen K, Larsen JP et al. Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology56(6), 730–736 (2001).
  • Williams-Gray CH, Foltynie T, Brayne CE et al. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain130(7), 1787–1798 (2007).
  • Locascio JJ, Corkin S, Growdon JH. Relation between clinical characteristics of Parkinson’s disease and cognitive decline. J. Clin. Exp. Neuropsychol.25(1), 94–109 (2003).
  • Muslimovic D, Post B, Speelman JD et al. Cognitive decline in Parkinson’s disease: a prospective longitudinal study. J. Int. Neuropsychol. Soc.15(3), 426–437 (2009).
  • Janvin CC, Larsen JP, Aarsland D et al. Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov. Disord.21(9), 1343–1349 (2006).
  • Muslimovic D, Post B, Speelman JD et al. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology65(8), 1239–1245 (2005).
  • Caviness JN, Driver-Dunckley E, Connor DJ et al. Defining mild cognitive impairment in Parkinson’s disease. Mov. Disord.22(9), 1272–1277 (2007).
  • Williams-Gray CH, Evans JR, Goris A et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain132(Pt 11), 2958–2969 (2009).
  • Factor SA, Feustel PJ, Friedman JH et al. Longitudinal outcome of Parkinson’s disease patients with psychosis. Neurology60(11), 1756–1761 (2003)
  • Goetz CG, Stebbins GT. Risk factors for nursing home placement in advanced Parkinson’s disease. Neurology43(11), 2227–2229 (1993).
  • Goetz CG, Stebbins GT. Mortality and hallucinations in nursing home patients with advanced Parkinson’s disease. Neurology45(4), 669–671 (1995).
  • Aarsland D, Larsen JP, Cummins JL, Laake K. Prevalence and clinical correlates of psychotic symptoms in Parkinson disease: a community-based study. Arch. Neurol.56(5), 595–601 (1999).
  • Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov. Disord.20(10), 1255–1263 (2005).
  • Aarsland D, Andersen K, Larsen JP, Lolk A, Kragh-Sorensen P. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch. Neurol.60(3), 387–392 (2003).
  • Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov. Disord.23(6), 837–844 (2008).
  • Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain130(7), 1787–1798 (2007).
  • Jakowec MW, Petzinger GM, Sastry S, Donaldson DM, McCormack A, Langston JW. The native form of α-synuclein is not found in the cerebrospinal fluid of patients with Parkinson’s disease or normal controls. Neurosci. Lett.253(1), 13–16 (1998).
  • Borghi R, Marchese R, Negro A et al. Full length α-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci. Lett.287(1), 65–67 (2000).
  • El-Agnaf OM, Salem SA, Paleologou KE et al. Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J.20(3), 419–425 (2006).
  • Lee PH, Lee G, Park HJ, Bang OY, Joo IS, Huh K. The plasma α-synuclein levels in patients with Parkinson’s disease and multiple system atrophy. J. Neural. Transm.113(10), 1435–1439 (2006).
  • Tokuda T, Salem SA, Allsop D et al. Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochem. Biophys. Res. Commun.349(1), 162–166 (2006).
  • Maita C, Tsuji S, Yabe I et al. Secretion of DJ-1 into the serum of patients with Parkinson’s disease. Neurosci. Lett.431(1), 86–89 (2008).
  • Waragai M, Nakai M, Wei J et al. Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson‘s disease. Neurosci. Lett.425(1), 18–22 (2007).
  • Hong Z, Shi M, Chung KA, Quinn JF et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain133(Pt 3), 713–726 (2010).
  • Connolly J, Siderowf A, Clark CM, Mu D, Pratico D. F2 isoprostane levels in plasma and urine do not support increased lipid peroxidation in cognitively impaired Parkinson disease patients. Cogn. Behav. Neurol.21(2), 83–86 (2008).
  • Bogdanov M, Matson WR, Wang L et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain131(2), 389–396 (2008).
  • Parkinson Study Group DATATOP Investigators. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol.66(12), 1460–1468 (2009).
  • Zhang J, Sokal I, Peskind ER et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol.129(4), 526–529 (2008).
  • Snow BJ, Tooyama I, McGeer EG et al. Human positron emission tomographic 18F-dopa studies correlate with dopamine cell counts and levels. Ann. Neurol.34(3), 324–330 (1993).
  • Pate BD, Kawamata T, Yamada T et al. Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices. Ann. Neurol.34(3), 331–338 (1993).
  • Ribeiro MJ, Vidailhet M, Nguyen JP et al. Dopaminergic function and dopamine transporter binding assessed with positron emission tomography in Parkinson disease. Arch. Neurol.59(4), 580–586 (2002).
  • Brooks DJ, Salmon EP, Mathias CJ et al. The relationship between locomotor disability, autonomic dysfunction, and the integrity of the striatal dopaminergic system in patients with multiple system atrophy, pure autonomic failure and Parkinson’s disease studied by PET. Brain113(5), 1539–1552 (1990).
  • Vingerhoets FJG, Schulzer M, Calne DB, Snow BJ. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann. Neurol.41(1), 58–64 (1997).
  • Broussolle E, Dentresangle C, Landais P et al. The relation of putamen and caudate nucleus 18F-dopa uptake to motor and cognitive performances in Parkinson’s disease. J. Neurol. Sci.166(2), 141–151 (1999).
  • Morrish PK, Sawle GV, Brooks DJ. Clinical and [18F] dopa PET findings in early Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry59(6), 597–600 (1995).
  • Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N. Engl. J. Med.318(14), 876–880 (1988).
  • Rakshi JS, Uema T, Ito K et al. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease. A 3D [18F]Dopa-PET study. Brain122(9), 1637–1650 (1999).
  • Kaasinen V, Nurmi E, Brück A et al. Increased frontal [(18)F]fluorodopa uptake in early Parkinson’s disease: sex differences in the prefrontal cortex. Brain124(6), 1125–1130 (2001).
  • Whone AL, Moore RY, Piccini P, Brooks DJ. Plasticity of the nigropallidal pathway in Parkinson’s disease. Ann. Neurol.53(2), 206–213 (2003).
  • Seibyl JP, Marek KL, Quinlan D et al. Decreased singlephoton emission computed tomographic [123I]β-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann. Neurol.38(4), 589–598 (1995).
  • Brucke T, Asenbaum S, Pirker W et al. Measurement of dopaminergic degeneration in Parkinson’s disease with [123I]β-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J. Neural. Transm.50, 9–24 (1997).
  • Pirker W. Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov. Disord.18(Suppl. 7), S43–S51 (2003).
  • Pirker W, Asenbaum S, Hauk M et al. Imaging serotonin and dopamine transporters with 123I-β-CIT SPECT: binding kinetics and effects of normal aging. J. Nucl. Med.41(1), 36–44 (2000).
  • van Dyck CH, Seibyl JP, Malison RT et al. Age-related decline in striatal dopamine transporter binding with iodine-123-β-CITSPECT. J. Nucl. Med.36(7), 1175–1181 (1995).
  • Liu Y, Edwards RH. The role of the vescicular transport proteins in the synaptic transmission and neural degeneration. Annu. Rev. Neurosci.20, 125–156 (1997).
  • Lee CS, Samii A, Sossi V et al.In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopamine nerve terminals in Parkinson’s disease. Ann. Neurol.47(4), 493–503 (2000).
  • Ouchi Y, Yoshikawa E, Sekine Y et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol.57(2), 168–175 (2005).
  • Gerhard A, Pavese N, Hotton G et al.In vivo imaging of microglial activation with [11C](R)- PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis.21(2), 404–412 (2006).
  • Eshuis SA, Jager PL, Maguire RP, Jonkman S, Dierckx RA, Leenders KL. Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson’s disease and healthy controls. Eur. J. Nucl. Med. Mol. Imaging36(3), 454–462 (2009).
  • Piccini P, Burn DJ, Ceravolo R, Maraganore D, Brooks DJ. The role of inheritance in sporadic Parkinson’s disease: evidence from a longitudinal study of dopaminergic function in twins. Ann. Neurol.45(5), 577–582 (1999).
  • Piccini P, Morrish PK, Turjanski N et al. Dopaminergic function in familial Parkinson’s disease: a clinical and 18F-dopa PET study. Ann. Neurol.41(2), 222–229 (1997).
  • Hilker R, Klein C, Hedrich K et al. The striatal dopaminergic deficit is dependent on the number of mutant alleles in a family with mutations in the parkin gene: evidence for enzymatic parkin function in humans. Neurosci. Lett.323(1), 50–54 (2002).
  • Khan NL, Scherfler C, Graham E et al. Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin mutation. Neurology64(1), 134–136 (2005).
  • Parkinson Study Group-PROGENI Investigators. Parkin dosage mutations have greater pathogenicity in familial PD than simple sequence mutations. Neurology73(4), 279–286 (2009).
  • Schwingenschuh P, Ruge D, Edwards MJ et al. Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson’s disease: a clinical and electrophysiological study. Mov. Disord.25(5), 560–569 (2010).
  • Ponsen MM, Stoffers D, Wolters ECH, Booij J, Berendse HW. Olfactory testing combined with dopamine transporter imaging as a method to detect prodromal Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry81(4), 396–399 (2010).
  • Morrish PK, Rakshi JS, Bailey DL, Sawle G, Brooks DJ. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with 18F-dopa PET. J. Neurol. Neurosurg. Psychiatry64(3), 314–319 (1998).
  • Nurmi E, Ruottinen HM, Bergman J et al. Rate of progression in Parkinson’s disease: a 18-F-fluoro-dopa PET study. Mov. Disord.16(4), 608–615 (2001).
  • Brück A, Aalto S, Nurmi E, Vahlberg T, Bergman J, Rinne JO. Striatal subregional 6-[18F] fluoro-L-dopa uptake in early Parkinson’s disease: a two-year follow-up study. Mov. Disord.21(7), 958–963 (2006).
  • Marek K, Innis R, van Dyck C et al. [123I] β-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology57(11), 2089–2094 (2001).
  • Pirker W, Djamshidian S, Asenbaum S et al. Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: a longitudinal β-CIT SPECT study. Mov. Disord.17(1), 45–53 (2002).
  • Winogrodzka A, Bergmans P, Booij J, van Royen EA, Stoof JC, Wolters EC. [(123)I] β-CIT SPECT is a useful method for monitoring dopaminergic degeneration in early stage Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry74(3), 294–298 (2003).
  • Tang CC, Poston KL, Dhawan V, Eidelberg D. Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease. J. Neurosci.30(3), 1049–1056 (2010).
  • Nandhagopal R, Kuramoto L, Schulzer M et al. Longitudinal progression of sporadic Parkinson‘s disease: a multi-tracer positron emission tomography study. Brain132(11), 2970–2979 (2009)
  • Sossi V, de la Fuente-Fernández R, Holden JE, Schulzer M, Ruth TJ, Stoessl J. Changes of dopamine turnover in the progression of Parkinson’s disease as measured by positron emission tomography: their relation to disease-compensatory mechanisms. J. Cereb. Blood Flow Metab.24(8), 869–876 (2004).
  • Rascol O, Brooks DJ, Korczyn AD et al. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. (056 study group). N. Engl. J. Med.342(20), 1484–1491 (2000).
  • Clarke CE, Guttman M. Dopamine agonist monotherapy in Parkinson’s disease. Lancet360(9347), 1767–1769 (2002).
  • Rakshi JS, Pavese N, Uema T et al. A comparison of the progression of early Parkinson’s disease in patients started on ropinirole or L-dopa: an 18F-dopa PET study. J. Neural Transm.109(12), 1433–1443 (2002).
  • Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA287(13), 1653–1661 (2002).
  • Whone AL, Watts RL, Stoessl AJ et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann. Neurol.54(1), 93–101 (2003).
  • Fahn S, Oakes D, Shoulson I et al. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med.351(24), 2498–2508 (2004).
  • Gill SS, Patel NK, Hotton GR et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med.9(5), 589–595 (2003).
  • Brundin P, Pogarell O, Hagell P et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain123(7), 1380–1390 (2000).
  • Hornykiewicz O. Biochemical aspects of Parkinson’s disease. Neurology51(Suppl. 2), S2–S9 (1998).
  • Moore RY, Whone AL, Brooks DJ. Extrastriatal monoamine neuron function in Parkinson’s disease: an 18F-dopa PET study. Neurobiol. Dis.29(3), 381–390 (2008).
  • Seibyl JP, Wallace E, Smith EO et al. Whole-body biodistribution, radiation absorbed dose, and brain SPECT imaging with iodine-123-β-CIT in healthy human subjects. J. Nucl. Med.35(5), 764–770 (1994).
  • Kim SE, Choi JY, Choe YS, Choi Y, Lee Y. Serotonin transporters in the midbrain of Parkinson’s disease patients: a study with 123I-β-CIT SPECT. J. Nucl. Med.44(6), 870–876 (2003).
  • Brooks DJ, Piccini P. Imaging in Parkinson’s disease: the role of monoaminesin behavior. Biol. Psychiatry59(10), 908–918 (2006).
  • Guttman M, Boileau I, Warsh J et al. Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease. Eur. J. Neurol.14(5), 523–528 (2007).
  • Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ. Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology60(4), 601–605 (2003).
  • Remy P, Doder M, Lees AJ, Turjanski N, Brooks DJ. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain128(6), 1314–1322 (2005).
  • Kuhl DE, Minoshima S, Fessler JA et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease and Parkinson’s disease. Ann. Neurol.40(3), 399–410 (1996).
  • Hilker R, Thomas AV, Klein JC et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology65(11), 1716–1722 (2005).
  • Schrag A, Good CD, Miszkiel K et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology54(3), 697–702 (2000).
  • Dexter DT, Wells FR, Agid F et al. Increased nigral iron content in postmortem parkinsonian brain. Lancet2(8569), 1219–1220 (1987).
  • Antonini A, Leenders KL, Meier D, Oertel WH, Boesiger P, Anliker M. T2 relaxation time in patients with Parkinson’s disease. Neurology43(4), 697–700 (1993).
  • Vymazal J, Righini A, Brooks RA et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology211(2), 489–495 (1999).
  • Hutchinson M, Raff U. Structural changes of the substantia nigra in Parkinson’s disease as revealed by MR imaging. Am. J. Neuroradiol.21(4), 697–701 (2000).
  • Hu MT, White SJ, Herlihy AH, Chaudhuri KR, Hajnal JV, Brooks DJ. A comparison of (18)F-dopa PET and inversion recovery MRI in the diagnosis of Parkinson’s disease. Neurology56(9), 1195–1200 (2001).
  • Martin WR. Quantitative estimation of regional brain iron with magnetic resonance imaging. Parkinsonism Relat. Disord.15(Suppl. 3), S215–S218 (2009).
  • Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology70(16), 1411–1417 (2008).
  • Ashburner J, Friston KJ. Voxel-based morphometry – the methods. NeuroImage11(6), 805–821 (2000).
  • Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain127(4), 791–800 (2004).
  • Summerfield C, Junqué C, Tolosa E et al. Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch. Neurol.62(2), 281–285 (2005).
  • Ibarretxe-Bilbao N, Ramirez-Ruiz B, Junque C et al. Differential progression of brain atrophy in Parkinson disease with and without visual hallucinations. J. Neurol. Neurosurg. Psychiatry.81(6), 650–657 (2010).
  • Ibarretxe-Bilbao N, Tolosa E, Junque C, Marti MJ. MRI and cognitive impairment in Parkinson’s disease. Mov. Disord.24(Suppl. 2), S748–S753 (2009).
  • Beyer MK, Janvin CC, Larsen JP, Aarsland D. A magnetic resonance imaging study of patients with Parkinson’s disease with mild cognitive impairment and dementia using voxel-based morphometry. J. Neurol. Neurosurg. Psychiatry78(3), 254–259 (2007).
  • Feldmann A, Illes Z, Kosztolanyi P et al. Morphometric changes of gray matter in Parkinson’s disease with depression: a voxel-based morphometry study. Mov. Disord.23(1), 42–46 (2008).
  • Yoshikawa K, Nakata Y, Yamada K, Nakagawa M. Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J. Neurol. Neurosurg. Psychiatry75(3), 481–484 (2004).
  • Chan LL, Rumpel H, Yap K et al. Case control study of diffusion tensor imaging in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry78(12), 1383–1386 (2007).
  • Scherfler C, Schocke MF, Seppi K et al. Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson’s disease. Brain129(2), 538–542 (2006).
  • Matsui H, Nishinaka K, Oda M et al. Depression in Parkinson’s disease. Diffusion tensor imaging study. J. Neurol.254(9), 1170–1173 (2007).
  • Matsui H, Nishinaka K, Oda M, Niikawa H, Kubori T, Udaka F. Dementia in Parkinson’s disease: diffusion tensor imaging. Acta Neurol. Scand.116(3), 177–181 (2007).
  • Berg D. Transcranial ultrasound as a risk marker for Parkinson’s disease. Mov. Disord.24(Suppl. 2), S677–S683 (2009).
  • Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol.7(11), 1044–1055 (2008).
  • Berg D, Merz B, Reiners K, Naumann M, Becker G. Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov. Disord.20(3), 383–385 (2005).
  • Berg D, Becker G, Zeiler B et al. Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology53(5), 1026–1031 (1999).
  • Hoeppner J, Prudente-Morrissey L, Herpertz SC, Benecke R, Walter U. Substantia nigra hyperechogenicity in depressive subjects relates to motor asymmetry and impaired word fluency. Eur. Arch. Psychiatry Clin. Neurosci.259(2), 92–97 (2009).
  • Walter U, Dressler D, Probst T et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch. Neurol.64(11), 1635–1640 (2007).
  • Walter U, Dressler D, Wolters A, Probst T, Grossmann A, Benecke R. Sonographic discrimination of corticobasal degeneration vs progressive supranuclear palsy. Neurology63(3), 504–509 (2004).
  • Stockner H, Sojer M, K KS et al. Midbrain sonography in patients with essential tremor. Mov. Disord.22(3), 414–417 (2007).
  • Berg D, Siefker C, Ruprecht-Dorfler P, Becker G. Relationship of substantia nigra echogenicity and motor function in elderly subjects. Neurology56(1), 13–17 (2001).
  • Courbon F, Brefel-Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc JL. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov. Disord.18(8), 890–897 (2003).
  • Ishibashi K, Saito Y, Murayama S et al. Validation of cardiac (123)I-MIBG scintigraphy in patients with Parkinson’s disease who were diagnosed with dopamine PET. Eur. J. Nucl. Med. Mol. Imaging37(1), 3–11 (2010).
  • Fröhlich I, Diederich NJ, Pilloy W, Vaillant M. Myocardial MIBG scintigraphy: a useful clinical tool?: a retrospective study in 50 parkinsonian patients. Neurol. Sci.31(3), 403–406 (2010).
  • Tan EK, Skipper L. Pathogenic mutations in Parkinson’s disease. Hum Mutat.28(7), 641–653 (2007).
  • Tan EK. The role of common genetic risk variants in Parkinson disease. Clin. Genet.72(5), 387–393 (2007).
  • Goldberg MS, Lansbury PT Jr. Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson’s disease? Nat. Cell Biol.2(7), E115–E119 (2000).
  • Krüger R, Kuhn W, Müller T et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet.18(2), 106–108 (1998).
  • Papadimitriou A, Veletza V, Hadjigeorgiou GM, Patrikiou A, Hirano M, Anastasopoulos I. Mutated α-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance? Neurology52(3), 651–654 (1999).
  • Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science276(5321), 2045–2047 (1997).
  • Singleton AB, Farrer M, Johnson J et al. α-synuclein locus triplication causes Parkinson’s disease. Science302(5646), 841 (2003).
  • Tan EK, Chai A, Teo YY et al. α-synuclein haplotypes implicated in risk of Parkinson’s disease. Neurology62(1), 128–131 (2004).
  • Xiromerisiou G, Hadjigeorgiou GM, Gourbali V et al. Screening for SNCA and LRRK2 mutations in Greek sporadic and autosomal dominant Parkinson’s disease: identification of two novel LRRK2 variants. Eur. J. Neurol.14(1), 7–11 (2007).
  • Zarranz JJ, Alegre J, Gómez-Esteban JC et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol.55(2), 164–173 (2004).
  • Chartier-Harlin MC, Kachergus J, Roumier C et al. α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet364(9440), 1167–1169 (2004).
  • Fuchs J, Nilsson C, Kachergus J et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology68(12), 916–922 (2007).
  • Eriksen JL, Przedborski S, Petrucelli L. Gene dosage and pathogenesis of Parkinson’s disease. Trends Mol. Med.11(3), 91–96 (2005).
  • Volles MJ, Lansbury PT Jr. Zeroing in on the pathogenic form of α-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry42(26), 7871–7878 (2003).
  • Winkler S, Hagenah J, Lincoln S et al. α-synuclein and Parkinson disease susceptibility. Neurology69(18), 1745–1750 (2007).
  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science305(5688), 1292–1295 (2004).
  • Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA103(15), 5805–5810 (2006).
  • Abbas N, Lücking CB, Ricard S et al. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. Hum. Mol. Genet.8(4), 567–574 (1999).
  • Betarbet R, Sherer TB, Greenamyre JT. Ubiquitin-proteasome system and Parkinson’s diseases. Exp. Neurol.191(Suppl. 1), S17–S27 (2005).
  • Hasegawa T, Treis A, Patenge N, Fiesel FC, Springer W, Kahle PJ. Parkin protects against tyrosinase-mediated dopamine neurotoxicity by suppressing stress-activated protein kinase pathways. J. Neurochem.105(5), 1700–1715 (2008).
  • Kitada T, Asakawa S, Hattori N et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature392(6676), 605–608 (1998).
  • van de Warrenburg BP, Lammens M, Lücking CB et al. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology56(4), 555–557 (2001).
  • Portman AT, Giladi N, Leenders KL et al. The nigrostriatal dopaminergic system in familial early onset parkinsonism with parkin mutations. Neurology56(12), 1759–1762 (2001).
  • Valente EM, Abou-Sleiman PM, Caputo V et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science304(5674), 1158–1160 (2004).
  • Tan EK, Refai FS, Siddique M et al. Clinically reported heterozygous mutations in the PINK1 kinase domain exert a gene dosage effect. Hum. Mutat.30(11), 1551–1557 (2009).
  • Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci.7(3), 207–219 (2006).
  • Tan EK. PINK1 mutations and differential effects on mitochondrial function. Exp. Neurol.221(1), 10–12 (2010).
  • Albanese A, Valente EM, Romito LM, Bellacchio E, Elia AE, Dallapiccola B. The PINK1 phenotype can be indistinguishable from idiopathic Parkinson disease. Neurology64(11), 1958–1960 (2005).
  • Ephraty L, Porat O, Israeli D et al. Neuropsychiatric and cognitive features in autosomalrecessive early parkinsonism due to PINK1 mutations. Mov. Disord.22(4), 566–569 (2007).
  • Bonifati V, Rizzu P, van Baren MJ et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science299(5604), 256–259 (2003).
  • Canet-Avilés RM, Wilson MA, Miller DW et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic aciddriven mitochondrial localization. Proc. Natl Acad. Sci. USA101(24), 9103–9108 (2004).
  • Zhang L, Shimoji M, Thomas B et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum. Mol. Genet.14(14), 2063–2073 (2005).
  • Zimprich A, Biskup S, Leitner P et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron44(4), 601–607 (2004).
  • Kumari U, Tan EK. LRRK2 in Parkinson’s disease: genetic and clinical studies from patients. FEBS J.276(22), 6455–6463 (2009).
  • Skipper L, Shen H, Chua E, et al. Analysis of LRRK2 functional domains in nondominant Parkinson disease. Neurology65(8), 1319–1321 (2005).
  • Healy DG, Falchi M, O’Sullivan SS et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case–control study. Lancet Neurol.7(7), 583–590 (2008).
  • Gilks WP, Abou-Sleiman PM, Gandhi S et al. A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet365(9457), 415–416 (2005).
  • Lesage S, Janin S, Lohmann E et al. LRRK2 exon 41 mutations in sporadic Parkinson disease in Europeans. Arch. Neurol.64(3), 425–430 (2007).
  • Ozelius LJ, Senthil G, Saunders-Pullman R et al. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med.354(4), 424–425 (2006).
  • Tan EK, Zhao Y, Skipper L et al. The LRRK2 Gly2385Arg variant is associated with Parkinson’s disease: genetic and functional evidence. Hum. Genet.120(6), 857–863 (2007).
  • Lesage S, Dürr A, Tazir M et al. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N. Engl. J. Med.354(4), 422–423 (2006).
  • Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA. LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends Neurosci.29(5), 286–293 (2006).
  • Lu YW, Tan EK. Molecular biology changes associated with LRRK2 mutations in Parkinson’s disease. J. Neurosci. Res.86(9), 1895–1901 (2008).
  • Greggio E, Jain S, Kingsbury A et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis.23(2), 329–341 (2006).
  • Ito G, Okai T, Fujino G et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry46(5), 1380–1388 (2007).
  • Di Fonzo A, Wu-Chou YH, Lu CS et al. A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson’s disease risk in Taiwan. Neurogenetics7(3), 133–138 (2006).
  • Tan EK, Peng R, Wu YR et al. LRRK2 G2385R modulates age at onset in Parkinson’s disease: a multi-center pooled analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet.150B(7), 1022–1023 (2009).
  • Ross OA, Wu YR, Lee MC et al. Analysis of Lrrk2 R1628P as a risk factor for Parkinson’s disease. Ann. Neurol.64(1), 88–92 (2008).
  • Scott WK, Nance MA, Watts RL et al. Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA286(18), 2239–2244 (2001).
  • Tobin JE, Latourelle JC, Lew MF et al. Haplotypes and gene expression implicate the MAPT region for Parkinson disease: the GenePD Study. Neurology71(1), 28–34 (2008).
  • Zabetian CP, Hutter CM, Factor SA et al. Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson’s disease. Ann. Neurol.62(2), 137–144 (2007).
  • Healy DG, Abou-Sleiman PM, Lees AJ et al. Tau gene and Parkinson’s disease: a case–control study and meta-analysis. J. Neurol. Neurosurg. Psychiatry75(7), 962–965 (2004).
  • Edwards TL, Scott WK, Almonte C et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet.74(2), 97–109 (2010).
  • Mata IF, Samii A, Schneer SH et al. Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch. Neurol.65(3), 379–382 (2008).
  • Sidransky E, Nalls MA, Aasly JO et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med.361(17), 1651–1661 (2009).
  • Di Fonzo A, Dekker MC, Montagna P et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology72(3), 240–245 (2009).
  • Gregory A, Westaway SK, Holm IE et al. Neurodegeneration associated with genetic defects in phospholipase A(2). Neurology71(18), 1402–1409 (2008).
  • Tan EK, Khajavi M, Thornby JI, Nagamitsu S, Jankovic J, Ashizawa T. Variability and validity of polymorphism association studies in Parkinson’s disease. Neurology55(4), 533–538 (2000).
  • Satake W, Nakabayashi Y, Mizuta I et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet.41(12), 1303–1307 (2009).
  • Simón-Sánchez J, Schulte C, Bras JM et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet.41(12), 1308–1312 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.