117
Views
8
CrossRef citations to date
0
Altmetric
Theme: Nervous system neoplasms - Review

Progress towards personalized therapeutics: biologic- and risk-directed therapy for neuroblastoma

&
Pages 1411-1423 | Published online: 09 Jan 2014

References

  • Ries LAG, Smith MA, Gurney JG et al. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995. National Cancer Institute, SEER Program. NIH, MD, USA, Pub. No. 99-4649 (1999).
  • Navalkele P, O’Dorisio MS, O’Dorisio TM, Zamba GKD, Lynch CF. Incidence, survival, and prevalence of neuroendocrine tumors versus neuroblastoma in children and young adults: nine standard SEER registries, 1975–2006. Pediatr. Blood Cancer56(1), 50–57 (2011).
  • Moroz V, Machin D, Faldum A et al. Changes over three decades in outcome and the prognostic influence of age-at-diagnosis in young patients with neuroblastoma: a report from the International Neuroblastoma Risk Group Project. Eur. J. Cancer47(4), 561–571 (2011).
  • Nickerson HJ, Matthay KK, Seeger RC et al. Favorable biology and outcome of stage IV-S neuroblastoma with supportive care or minimal therapy: a Children’s Cancer Group study. J. Clin. Oncol.18(3), 477–486 (2000).
  • Hero B, Simon T, Spitz R et al. Localized infant neuroblastomas often show spontaneous regression: results of the prospective trials NB95-S and NB97. J. Clin. Oncol.26(9), 1504–1510 (2008).
  • Rubie H, De Bernardi B, Gerrard M et al. Excellent outcome with reduced treatment in infants with nonmetastatic and unresectable neuroblastoma without MYCN amplification: results of the prospective INES 99.1. J. Clin. Oncol.29(4), 449–455 (2011).
  • Perez CA, Matthay KK, Atkinson JB et al. Biologic variables in the outcome of stages I and II neuroblastoma treated with surgery as primary therapy: a Children’s Cancer Group study. J. Clin. Oncol.18(1), 18–26 (2000).
  • Baker DL, Schmidt ML, Cohn SL et al. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N. Engl. J. Med.363(14), 1313–1323 (2010).
  • Attiyeh EF, London WB, Mosse YP et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N. Engl. J. Med.353(21), 2243–2253 (2005).
  • Seeger RC, Brodeur GM, Sather H et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med.313(18), 1111–1116 (1985).
  • Chen Y, Takita J, Choi YL et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature455(7215), 971–974 (2008).
  • George RE, Sanda T, Hanna M et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature455(7215), 975–978 (2008).
  • Janoueix-Lerosey I, Lequin D, Brugières L et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature455(7215), 967–997 (2008).
  • Mossé YP, Laudenslager M, Longo L et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature455(7215), 930–935 (2008).
  • Palmer RH, Vernersson E, Grabbe C, Hallberg B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J.420(3), 345–361 (2009).
  • Mossé Y, Wood A, Maris J. Inhibition of ALK signaling for cancer therapy. Clin. Cancer Res.15(18), 5609–5614 (2009).
  • Mosse YP, Laudenslager M, Khazi D et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am. J. Hum. Genet.75(4), 727–730 (2004).
  • Trochet D, O’Brien LM, Gozal D et al.PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome. Am. J. Hum. Genet.76(3), 421–426 (2005).
  • Raabe EH, Laudenslager M, Winter C et al. Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene27(4), 469–476 (2008).
  • Clausen N, Andersson P, Tommerup N. Familial occurrence of neuroblastoma, von Recklinghausen’s neurofibromatosis, Hirschsprung’s agangliosis and jaw-winking syndrome. Acta Paediatr. Scand.78(5), 736–741 (1989).
  • Rohrer T, Trachsel D, Engelcke G, Hammer J. Congenital central hypoventilation syndrome associated with Hirschsprung’s disease and neuroblastoma: case of multiple neurocristopathies. Pediatr. Pulmonol.33(1), 71–76 (2002).
  • Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J.16(11), 2985–2995 (1997).
  • Hölzel M, Huang S, Koster J et al.NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell142(2), 218–229 (2010).
  • Wang K, Diskin SJ, Zhang H et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature469(7329), 216–220 (2010).
  • Capasso M, Devoto M, Hou C et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat. Genet.41(6), 718–723 (2009).
  • Maris JM, Mosse YP, Bradfield JP et al. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N. Engl. J. Med.358(24), 2585–2593 (2008).
  • Diskin SJ, Hou C, Glessner JT et al. Copy number variation at 1q21.1 associated with neuroblastoma. Nature459(7249), 987–991 (2009).
  • Riley RD, Heney D, Jones DR et al. A systematic review of molecular and biological tumor markers in neuroblastoma. Clin. Cancer Res.10(1 Pt 1), 4–12 (2004).
  • Look AT, Hayes FA, Nitschke R, McWilliams NB, Green AA. Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma. N. Engl. J. Med.311(4), 231–235 (1984).
  • Bown N, Cotterill S, Lastowska M et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N. Engl. J. Med.340(25), 1954–1961 (1999).
  • Attiyeh EF, London WB, Mossé YP et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N. Engl. J. Med.353(21), 2243–2253 (2005).
  • Ambros PF, Ambros IM, Brodeur GM et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br. J. Cancer100(9), 1471–1482 (2009).
  • Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science224(4653), 1121–1124 (1984).
  • Gustafson WC, Weiss WA. Myc proteins as therapeutic targets. Oncogene29(9), 1249–1259 (2010).
  • Ohira M, Nakagawara A. Global genomic and RNA profiles for novel risk stratification of neuroblastoma. Cancer Sci,101(11), 2295–2301 (2010).
  • Berwanger B, Hartmann O, Bergmann E et al. Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell2(5), 377–386 (2002).
  • Ohira M, Oba S, Nakamura Y et al. Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell7(4), 337–350 (2005).
  • Schramm A, Schulte JH, Klein-Hitpass L et al. Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene24(53), 7902–7912 (2005).
  • Asgharzadeh S, Pique-Regi R, Sposto R et al. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J. Natl Cancer Inst.98(17), 1193–1203 (2006).
  • Oberthuer A, Berthold F, Warnat P et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J. Clin. Oncol.24(31), 5070–5078 (2006).
  • Lastowska M, Viprey V, Santibanez-Koref M et al. Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data. Oncogene26(53), 7432–7444 (2007).
  • Tomioka N, Oba S, Ohira M et al. Novel risk stratification of patients with neuroblastoma by genomic signature, which is independent of molecular signature. Oncogene27(4), 441–449 (2008).
  • Oberthuer A, Hero B, Berthold F et al. Prognostic impact of gene expression-based classification for neuroblastoma. J. Clin. Oncol.28(21), 3506–3515 (2010).
  • Westermann F, Muth D, Benner A et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol.9(10), R150 (2008).
  • Chen QR, Song YK, Wei JS et al. An integrated cross-platform prognosis study on neuroblastoma patients. Genomics92(4), 195–203 (2008).
  • Vermeulen J, De Preter K, Naranjo A et al. Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol.10(7), 663–671 (2009).
  • De Preter K, Vermeulen J, Brors B et al. Accurate outcome prediction in neuroblastoma across independent data sets using a multigene signature. Clin. Cancer Res.16(5), 1532–1541 (2010).
  • Schulte JH, Schowe B, Mestdagh P et al. Accurate prediction of neuroblastoma outcome based on miRNA expression profiles. Int. J. Cancer127(10), 2374–2385 (2010).
  • Bilke S, Chen QR, Westerman F, Schwab M, Catchpoole D, Khan J. Inferring a tumor progression model for neuroblastoma from genomic data. J. Clin. Oncol.23(29), 7322–7331 (2005).
  • Selzer RR, Richmond TA, Pofahl NJ et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer44(3), 305–319 (2005).
  • Spitz R, Hero B, Simon T, Berthold F. Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clin. Cancer Res.12(11 Pt 1), 3368–3373 (2006).
  • Stallings RL, Nair P, Maris JM et al. High-resolution analysis of chromosomal breakpoints and genomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. Cancer Res.66(7), 3673–3680 (2006).
  • Michels E, Vandesompele J, De Preter K et al. Array CGH-based classification of neuroblastoma into genomic subgroups. Genes Chromosomes Cancer46(12), 1098–1108 (2007).
  • Schleiermacher G, Michon J, Huon I et al. Chromosomal CGH identifies patients with a higher risk of relapse in neuroblastoma without MYCN amplification. Br. J. Cancer97(2), 238–246 (2007).
  • Schleiermacher G, Janoueix-Lerosey I, Ribeiro A et al. Accumulation of segmental alterations determines progression in neuroblastoma. J. Clin. Oncol.28(19), 3122–3130 (2010).
  • Cohn SL, Pearson ADJ, London WB et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J. Clin. Oncol.27(2), 289–297 (2009).
  • Shimada H, Ambros IM, Dehner LP et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer86(2), 364–372 (1999).
  • Monclair T, Brodeur GM, Ambros PF et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J. Clin. Oncol.27(2), 298–303 (2009).
  • Matthay KK, Shulkin B, Ladenstein R et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br. J. Cancer102(9), 1319–1326 (2010).
  • Simon T, Hero B, Benz-Bohm G, von Schweinitz D, Berthold F. Review of image defined risk factors in localized neuroblastoma patients: results of the GPOH NB97 trial. Pediatr. Blood Cancer50(5), 965–969 (2008).
  • London WB, Frantz CN, Campbell LA et al. Phase II randomized comparison of topotecan plus cyclophosphamide versus topotecan alone in children with recurrent or refractory neuroblastoma: a Children’s Oncology Group study. J. Clin. Oncol.28(24), 3808–3815 (2010).
  • Kushner BH, LaQuaglia MP, Bonilla MA et al. Highly effective induction therapy for stage 4 neuroblastoma in children over 1 year of age. J. Clin. Oncol.12(12), 2607–2613 (1994).
  • Cheung NV, Heller G. Chemotherapy dose intensity correlates strongly with response, median survival, and median progression-free survival in metastatic neuroblastoma. J. Clin. Oncol.9(6), 1050–1058 (1991).
  • Beiske K, Burchill SA, Cheung IY et al. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br. J. Cancer100(10), 1627–1637 (2009).
  • Pritchard J, Cotterill SJ, Germond SM, Imeson J, de Kraker J, Jones DR. High dose melphalan in the treatment of advanced neuroblastoma: results of a randomised trial (ENSG-1) by the European Neuroblastoma Study Group. Pediatr. Blood Cancer44(4), 348–357 (2005).
  • Matthay KK, Villablanca JG, Seeger RC et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N. Engl. J. Med.341(16), 1165–1173 (1999).
  • Berthold F, Boos J, Burdach S et al. Myeloablative megatherapy with autologous stem-cell rescue versus oral maintenance chemotherapy as consolidation treatment in patients with high-risk neuroblastoma: a randomised controlled trial. Lancet Oncol.6(9), 649–658 (2005).
  • Matthay KK, Reynolds CP, Seeger RC et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J. Clin. Oncol.27(7), 1007–1013 (2009).
  • George RE, Li S, Medeiros-Nancarrow C et al. High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J. Clin. Oncol.24(18), 2891–2896 (2006).
  • Villablanca JG, Krailo MD, Ames MM, Reid JM, Reaman GH, Reynolds CP. Phase I trial of oral fenretinide in children with high-risk solid tumors: a report from the Children’s Oncology Group (CCG 09709). J. Clin. Oncol.24(21), 3423–3430 (2006).
  • Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP. Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J. Natl Cancer Inst.91(13), 1138–1146 (1999).
  • Garaventa A, Luksch R, Lo Piccolo MS et al. Phase I trial and pharmacokinetics of fenretinide in children with neuroblastoma. Clin. Cancer Res.9(6), 2032–2039 (2003).
  • Yu AL, Gilman AL, Ozkaynak MF et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med.363(14), 1324–1334 (2010).
  • Treuner J, Feine U, Niethammer D et al. Scintigraphic imaging of neuroblastoma with [131-I]iodobenzylguanidine. Lancet1(8372), 333–334 (1984).
  • Haas-Kogan DA, Swift PS, Selch M et al. Impact of radiotherapy for high-risk neuroblastoma: a Children’s Cancer Group study. Int. J. Radiat. Oncol. Biol. Phys.56(1), 28–39 (2003).
  • DuBois SG, Matthay KK. Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl. Med. Biol.35(Suppl. 1), S35–S48 (2008).
  • Matthay KK, Tan JC, Villablanca JG et al. Phase I dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem-cell transplantation in refractory neuroblastoma: a new approaches to Neuroblastoma Therapy Consortium Study. J. Clin. Oncol.24(3), 500–506 (2006).
  • Lu L, Ghose AK, Quail MR et al. ALK mutants in the kinase domain exhibit altered kinase activity and differential sensitivity to small molecule ALK inhibitors. Biochemistry48(16), 3600–3609 (2009).
  • Otto T, Horn S, Brockmann M et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell15(1), 67–78 (2009).
  • Maris JM, Morton CL, Gorlick R et al. Initial testing of the aurora kinase a inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr. Blood Cancer55(1), 26–34 (2010).
  • De Brouwer S, De Preter K, Kumps C et al. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin. Cancer Res.16(17), 4353–4362 (2010).
  • Eggert A, Ikegaki N, Kwiatkowski J, Zhao H, Brodeur GM, Himelstein BP. High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin. Cancer Res.6(5), 1900–1908 (2000).
  • Sims TL, Williams RF, Ng CY, Rosati SF, Spence Y, Davidoff AM. Bevacizumab suppresses neuroblastoma progression in the setting of minimal disease. Surgery144(2), 269–275 (2008).
  • Keshelava N, Davicioni E, Wan Z et al. Histone deacetylase 1 gene expression and sensitization of multidrug-resistant neuroblastoma cell lines to cytotoxic agents by depsipeptide. J. Natl Cancer Inst.99(14), 1107–1119 (2007).
  • Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM. Modulation of radiation response by histone deacetylase inhibition. Int. J. Radiat. Oncol. Biol. Phys.62(1), 223–229 (2005).
  • Fouladi M, Park JR, Stewart CF et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J. Clin. Oncol.28(22), 3623–3629 (2010).
  • Jubert C, Wall DA, Grimley M, Champagne MA, Duval M. Engraftment of unrelated cord blood after reduced-intensity conditioning regimen in children with refractory neuroblastoma: a feasibility trial. Bone Marrow Transplant.46(2), 232–237 (2010).
  • Huebener N, Fest S, Strandsby A et al. A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity. Mol. Cancer Ther.7(7), 2241–2251 (2008).
  • Fest S, Huebener N, Weixler S et al. Characterization of GD2 peptide mimotope DNA vaccines effective against spontaneous neuroblastoma metastases. Cancer Res.66(21), 10567–10575 (2006).
  • Croce M, Meazza R, Orengo AM et al. Immunotherapy of neuroblastoma by an Interleukin-21-secreting cell vaccine involves survivin as antigen. Cancer Immunol. Immunother.57(11), 1625–1634 (2008).
  • Fest S, Huebener N, Bleeke M et al. Survivin minigene DNA vaccination is effective against neuroblastoma. Int. J. Cancer125(1), 104–114 (2009).
  • Zhang L, Smith KM, Chong AL et al.In vivo antitumor and antimetastatic activity of sunitinib in preclinical neuroblastoma mouse model. Neoplasia11(5), 426–435 (2009).
  • Maris JM, Courtright J, Houghton PJ et al. Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatr. Blood Cancer51(1), 42–48 (2008).
  • Nilsson MB, Zage PE, Zeng L et al. Multiple receptor tyrosine kinases regulate HIF-1α and HIF-2α in normoxia and hypoxia in neuroblastoma: implications for antiangiogenic mechanisms of multikinase inhibitors. Oncogene29(20), 2938–2949 (2010).
  • Donfrancesco A, De Ioris MA, McDowell HP et al. Gefitinib in combination with oral topotecan and cyclophosphamide in relapsed neuroblastoma: pharmacological rationale and clinical response. Pediatr. Blood Cancer54(1), 55–61 (2010).
  • Iyer R, Evans AE, Qi X et al. Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin. Cancer Res.16(5), 1478–1485 (2010).
  • Houghton PJ, Morton CL, Gorlick R et al. Initial testing of a monoclonal antibody (IMC-A12) against IGF-1R by the Pediatric Preclinical Testing Program. Pediatr. Blood Cancer54(7), 921–926 (2010).
  • Bender A, Opel D, Naumann I et al. PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis. Oncogene30(4), 494–503 (2010).
  • Chesler L, Schlieve C, Goldenberg DD et al. Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res.66(16), 8139–8146 (2006).
  • Li Z, Tan F, Liewehr DJ, Steinberg SM, Thiele CJ. In vitro and in vivo inhibition of neuroblastoma tumor cell growth by AKT inhibitor perifosine. J. Natl Cancer Inst.102(11), 758–770 (2010).
  • Feldman ME, Shokat KM. New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor kinase domain inhibitors (TORKinibs). Curr. Top. Microbiol. Immunol.347, 241–262 (2010).
  • Witt O, Deubzer HE, Lodrini M, Milde T, Oehme I. Targeting histone deacetylases in neuroblastoma. Curr. Pharm. Des.15(4), 436–447 (2009).
  • Kim E, Shohet J. Targeted molecular therapy for neuroblastoma: the ARF/MDM2/p53 axis. J. Natl Cancer Inst.101(22), 1527–1529 (2009).
  • Yu AL, Gilman AL, Ozkaynak MF et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med.363(14), 1324–1334 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.