125
Views
6
CrossRef citations to date
0
Altmetric
Theme: Demyelinating diseases - Review

Traumatic white matter injury and toxic leukoencephalopathies

&
Pages 1315-1324 | Published online: 09 Jan 2014

References

  • Waller A. Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog and observations of the alternatives produced thereby in the structure of their primitive fibres. Philos. Trans. R. Soc. Lond. B Biol. Sci.140, 423–429 (1850).
  • Serbest G, Burkhardt MF, Siman R, Raghupathi R, Saatman KE. Temporal profiles of cytoskeletal protein loss following traumatic axonal injury in mice. Neurochemic Res.32, 2006–2014 (2007).
  • Shea TB, Chan WK. Regulation of neurofilament dynamics by phosphorylation. Eur. J. Neurosci.27, 1893–1901 (2008).
  • Barry DM, Millecamps S, Julien JP, Garcia ML. New movements in neurofilament transport, turnover and disease. Exp. Cell Res.313, 2110–2120 (2007).
  • Al-Chalabi A, Miller CC. Neurofilaments and neurological disease. BioEssays25, 346–355 (2003).
  • Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J. Neurol. Sci.33, 183–198 (2005).
  • Liu Q, Xie F, Siedlak SL et al. Neurofilament proteins in neurodegenerative diseases. Cell Mol. Life Sci.61, 3057–3075 (2004).
  • Wang L, Ho C, Sun D et al. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol.2, 137–141 (2000).
  • Perrot R, Berges R, Bocquet A, Eyer J. Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol. Neurobiol.38, 27–65 (2008).
  • Nguyen MD, Lariviere RC, Julien JP. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron30, 135–147 (2001).
  • De Waegh SM, Lee VM, Brady ST. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell68, 451–463 (1992).
  • Grant P, Pant HC. Neurofilament protein synthesis and phosphorylation. J. Neurocytology29, 843–872 (2000).
  • Strong MJ, Strong WL, Jaffe H, Traggert B, Sopper MM, Pant HC. Phosphorylation state of the native high-molecular-weight neurofilament subunit protein from cervical spinal cord in sporadic amyotrophic lateral sclerosis. J. Neurochem.76, 1315–1325 (2001).
  • Betts JC, Blackstock WP, Ward MA, Anderton BH. Identification of phosphorylation sites on neurofilament proteins by nanoelectrospray mass spectrometry. J. Biol. Chem.272, 12922–12927 (1997).
  • Guan RJ, Khatra BS, Cohlberg JA. Phosphorylation of bovine neurofilament proteins by protein kinase FA (glycogen synthase kinase 3). J. Biol. Chem.266, 8262–8267 (1991).
  • Guidato S, Tsai LH, Woodgett J, Miller CC. Differential cellular phosphorylation of neurofilament heavy side-arms by glycogen synthase kinase-3 and cyclin-dependent kinase-5. J. Neurochem.66, 1698–1706 (1996).
  • Roder HM, Hoffman FJ, Schroder W. Phosphatase resistance of ERK2 brain kinase PK40erk2. J. Neurochem.64, 2203–2212 (1995).
  • Roder HM, Ingram VM. Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios. J. Neurosci.11, 3325–3343 (1991).
  • Shetty KT, Link WT, Pant HC. cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: isolation and characterization. Proc. Natl Acad. Sci. USA90, 6844–6848 (1993).
  • Sihag RK, Nixon RA. Identification of Ser-55 as a major protein kinase A phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport. J. Biol. Chem.266, 18861–18867 (1991).
  • Zhulina EB, Leermakers FA. The polymer brush model of neurofilament projections: effect of protein composition. Biophys. J.98, 462–469 (2010).
  • Chang R, Kwak Y, Gebremichael Y. Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture. J. Mol. Biol.391, 648–660 (2009).
  • Saatman KE, Graham DI, McIntosh TK. The neuronal cytoskeleton is at risk after mild and moderate brain injury. J. Neurotrauma15, 1047–1058 (1998).
  • Yaghmai A, Povlishock J. Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. J. Neuropathol. Exp. Neurol.51, 158–176 (1992).
  • Saatman KE, Abai B, Grosvenor A, Vorwerk CK, Smith DH, Meaney DF. Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J. Cerebral Blood Flow Metab.23, 34–42 (2003).
  • McCracken E, Hunter AJ, Patel S, Graham DI, Dewar D. Calpain activation and cytoskeletal protein breakdown in the corpus callosum of head-injured patients. J. Neurotrauma16, 749–761 (1999).
  • Maxwell WL, Domleo A, McColl G, Jafari SS, Graham DI. Post-acute alterations in the axonal cytoskeleton after traumatic axonal injury. J. Neurotrauma20, 151–168 (2003).
  • Schirmer L, Antel JP, Brück W, Stadelmann C. Axonal loss and neurofilament phosphorylation changes accompany lesion development and clinical progression in multiple sclerosis. Brain Pathol.21, 428–440 (2011)
  • Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol.12, 564–574 (1982).
  • Graham DI, Adams JH, Murray LS, Jennett B. Neuropathology of the vegetative state after head injury. Neuropsychol. Rehab.15, 198–213 (2005).
  • Geddes JF, Whitwell HL, Graham DI. Traumatic axonal injury: practical issues for diagnosis in medicolegal cases. Neuropathol. Applied Neurobiol.26, 105–116 (2000).
  • Strich SJ. Diffuse degeneration of the cerebral white matter in severe dementia following head injury. J. Neurol. Neurosurg. Psychiatry19, 163–185 (1956).
  • Maxwell WL, Povlishock JT, Graham DI. A mechanistic analysis of nondisruptive axonal injury: a review. J. Neurotrauma14, 419–440 (1997).
  • Maas AI, Marmarou A, Murray GD, Steyerberg EW. Clinical trials in traumatic brain injury: current problems and future solutions. Acta Neurochir. Suppl.89, 113–118 (2004).
  • Friess SH, Ichord RN, Owens K et al. Neurobehavioral functional deficits following closed head injury in the neonatal pig. Exp. Neurol.204, 234–243 (2007).
  • Duhaime AC, Margulies SS, Durham SR et al. Maturation-dependent response of the piglet brain to scaled cortical impact. J. Neurosurg.93, 455–462 (2000).
  • Arbogast K, Margulies S. A fiber-reinforced composite model of the viscoelastic behaviour of the brainstem in shear. J. Biomechanics32, 865–870 (1999).
  • Eucker SA, Smith C, Ralston J, Friess SH, Margulies SS. Physiological and histopathological responses following closed rotational head injury depend on direction of head motion. Exp. Neurol.227, 79–88 (2011).
  • Friess SH, Ichord RN, Ralston J et al. Repeated traumatic brain injury affects composite cognitive function in piglets. J. Neurotrauma26, 1111–1121 (2009).
  • Gennarelli TA, Thibault LE, Tipperman R et al. Axonal injury in the optic nerve: a model simulating diffuse axonal injury in the brain. J. Neurosurg.71, 244–253 (1989).
  • Mohammed Sulaiman A, Denman N, Buchanan S et al. Stereology and ultrastructure of chronic phase axonal and cell soma pathology in stretch-injured central nerve fibers. J. Neurotrauma28, 383–400 (2011).
  • Farkas O, Povlishock JT. Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog. Brain Research161, 43–59 (2007).
  • Maxwell WL, Watts C, Graham DI, Gennarelli TA. Ultrastructural evidence of axonal shearing as a result of lateral acceleration of the head in non-human primates. Acta Neuropathol.86, 136–144 (1993).
  • Povlishock JT, Becker DP, Cheng DLY, Vaughan GW. Axonal change in minor head injury. J. Neuropathol. Exp. Neurol.42, 225–242 (1983).
  • Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J. Neurotrauma12, 555–564 (1995).
  • Maxwell WL, Irvine A, Graham et al. Focal axonal injury: the early axonal response to stretch. J. Neurocytol.20, 157–164 (1991).
  • Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci.21, 1923–1930 (2001).
  • Stirling DP, Stys PK. Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends Mol. Med.16, 160–170 (2010).
  • Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J. Neurochem.112, 1147–1155 (2010).
  • Maxwell WL, Graham DI. Loss of axonal microtubules and neurofilaments after stretch-injury to guinea pig optic nerve fibers. J. Neurotrauma14, 603–614 (1997).
  • McIntosh TK, Vink R, Noble L et al. Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience28, 233–244 (1989).
  • Morales DM, Marklund N, Lebold D et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience136, 971–989 (2005).
  • Stone JR, Singleton RH, Povlishock JT. Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp. Neurol.172, 320–331 (2001).
  • Kelley BJ, Farkas O, Lifshitz J, Povlishock JT. Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and Wallerian degeneration. Exp. Neurol.198, 350–360 (2006).
  • Adams JH, Doyle D, Ford I et al. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology15, 49–59 (1989).
  • Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ. Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet344, 1055–1056 (1994).
  • Oppenheimer DR. Microscopic lesions in the brain following head injury. J. Neurol. Neurosurg. Psychiatry31, 299–306 (1968).
  • Shaw NA. The neurophysiology of concussion. Prog. Neurobiol.67, 281–344 (2002).
  • Ommaya AK, Gennarelli TA. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain97, 633–654 (1974).
  • Sherriff FE, Bridges LR, Gentleman SM, Sivaloganathan S, Wilson S. Markers of axonal injury in post mortem human brain. Acta Neuropathol.88, 433–439 (1994).
  • Hortobagyi T, Wise S, Hunt N et al. Traumatic axonal damage in the brain can be detected using β-APP immunohistochemistry within 35 min after head injury to human adults. Neuropathol. Appl. Neurobiol.33, 226–237 (2007).
  • Dolinak D, Smith C, Graham DI. Global hypoxia per se is an unusual cause of axonal injury. Acta Neuropathol.100, 553–560 (2000).
  • Dolinak D, Smith C, Graham DI. Hypoglycaemia is a cause of axonal injury. Neuropathol. Appl. Neurobiol.26, 448–453 (2000).
  • Reichard RR, Smith C, Graham DI. The significance of β-APP immunoreactivity in forensic practice. Neuropathol. Appl. Neurobiol.31, 304–313 (2005).
  • Marmarou CR, Walker SA, Davis L, Povlishock JT. Quantitative analysis of the relationship between intra-axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury. J. Neurotrauma22, 1066–1080 (2005).
  • Mac Donald CL, Dikranian K, Bayly P, Holtzman D, Brody D. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J. Neurosci.27, 11869–11876 (2007).
  • Li J, Li XY, Feng DF, Gu L. Quantitative evaluation of microscopic injury with diffusion tensor imaging in a rat model of diffuse axonal injury. Eur. J. Neurosci.33, 933–945 (2011).
  • Kinnunen KM, Greenwood R, Powell JH et al. White matter damage and cognitive impairment after traumatic brain injury. Brain134, 449–463 (2011).
  • Caeyenberghs K, Leemans A, Coxon J et al. Bimanual Coordination and Corpus Callosum Microstructure in Young Adults with Traumatic Brain Injury: a diffusion tensor imaging study. J. Neurotrauma28, 897–913 (2011).
  • Beauchamp MH, Ditchfield M, Babl FE et al. Detecting traumatic brain lesions in children: CT versus MRI versus susceptibility weighted imaging (SWI). J. Neurotrauma28, 915–927 (2011).
  • Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nat. Review Neurosci.6, 889–898 (2005).
  • Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci.1, 27–33 (1989).
  • Ribchester RR, Tsao JW, Barry JA, Asgari-Jirhandeh N, Perry VH, Brown MC. Persistence of neuromuscular junctions after axotomy in mice with slow Wallerian degeneration (C57BL/WldS). Eur. J. Neurosci.7, 1641–1650 (1995).
  • Coleman MP, Freeman MR. Wallerian degeneration, WLDs, and Nmnat. Annu. Rev. Neurosci.33, 245–267 (2010).
  • Gilley J, Coleman MP. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol.8, e1000200 (2010).
  • Wang J, Zhai Q, Chen Y et al. A local mechanism mediates NAD-dependent protection of axon degeneration. J. Cell Biol.170, 349–355 (2005).
  • Meyer zu Horste G, Miesbach TA, Muller JI et al. The Wlds transgene reduces axon loss in a Charcotx–Marie–Tooth disease 1A rat model and nicotinamide delays post-traumatic axonal degeneration. Neurobiol. Dis.42, 1–8 (2011).
  • Barrientos SA, Martinez NW, Yoo S et al. Axonal degeneration is mediated by the mitochondrial permeability transition pore. J. Neurosci.31, 966–978 (2011).
  • Sullivan PG, Rabchevsky AG, Hicks RR, Gibson TR, Fletcher-Turner A, Scheff SW. Dose–response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience101, 289–295 (2000).
  • Kilbaugh TJ, Bhandare S, Lorom DH, Saraswati M, Robertson CL, Margulies SS. Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet. J. Neurotrauma28(5), 763–774 (2011).
  • Naim MY, Friess S, Smith C et al. Folic acid enhances early functional recovery in a piglet model of pediatric head injury. Dev. Neurosci.32, 466–479 (2010).
  • Filley CM, Kleinschmidt-DeMasters BK. Toxic leukoencephalopathy. N. Engl. J. Med.345, 425–432 (2001).
  • Buttner A. The neuropathology of drug abuse. Neuropathol. Appl. Neurobiol.37, 118–134 (2011).
  • Ryan A, Molloy FM, Farrell MA, Hutchinson M. Fatal toxic leukoencephalopathy: clinical, radiological, and necropsy findings in two patients. J. Neurol. Neurosurg. Psychiatry76, 1014–1016 (2005).
  • Kriegstein AR, Shungu DC, Millar WS et al. Leukoencephalopathy and raised brain lactate from heroin vapor inhalation (‘chasing the dragon’) Neurology53, 1765–1773 (1999).
  • Al-Hajri Z, Del Bigio MR. Brain damage in a large cohort of solvent abusers. Acta Neuropathol.119, 435–445 (2010).
  • Rosenberg NL, Kleinschmidt-DeMasters BK, Davis KA, Dreisbach JN, Hormes JT, Filley CM. Toluene abuse causes diffuse central nervous system white matter changes. Ann. Neurol.23, 611–614 (1988).
  • Yücel M, Takagi M, Walterfang M, Lubman DI. Toluene misuse and long-term harms: a systematic review of the neuropsychological and neuroimaging literature. Neurosci. Biobehav. Rev.32, 910–926 (2008).
  • Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy Lancet374, 1639–1651 (2009).
  • Han CH, Findlay MP. Chemotherapy-induced reversible posterior leucoencephalopathy syndrome. Intern. Med. J.40, 153–159 (2010).
  • Rubinstein LJ, Herman MM, Long TF, Wilbur JR. Disseminated necrotizing leukoencephalopathy: a complication of treated central nervous system leukemia and lymphoma. Cancer35, 291–305 (1975).
  • Matsubayashi J, Tsuchiya K, Matsunaga T, Mukai K. Methotrexate-related leukoencephalopathy without radiation therapy: distribution of brain lesions and pathological heterogeneity on two autopsy cases. Neuropathology29, 105–115 (2010).
  • Moore-Maxwell CA, Datto MB, Hulette CM. Chemotherapy-induced toxic leukoencephalopathy causes a wide range of symptoms: a series of four autopsies. Mod. Pathol.17, 241–247 (2004).
  • Filley CM. Toxic leukoencephalopathy. Clin. Neuropharmacol.22, 249–260 (1999).
  • Schultheiss TE, Kun LE, Ang KK, Stephens LC. Radiation response of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys.31, 1093–1112 (1995).
  • Burger P, Mahaley MS Jr, Dudka L. The morphologic effects of radiation administered therapeutically for intracranial gliomas. Cancer44, 1256–1272 (1979).
  • Yoneoka Y, Satoh M, Akiyama K, Sano K, Fujii Y, Tanaka R. An experimental study of radiation-induced cognitive dysfunction in an adult rat model. Br. J. Radiol.72, 1196–1201 (1999).
  • Panagiotakos G, Alshamy G, Chan B et al. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One2, e588 (2007).
  • Peña LA, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res.60, 321–327 (2000).
  • Ginsberg MD, Myers RE, McDonagh BF. Experimental carbon monoxide encephalopathy in the primate. II. Clinical aspects, neuropathology, and physiologic correlation. Arch. Neurol.30, 201–216 (1974).
  • Weaver LK. Carbon monoxide poisoning. N. Engl. J. Med.360, 1217–1225 (2009).
  • Alonso JR, Cardellach F, Lopez S, Casademont J, Miro O. Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol. Toxicol.93, 142–146 (2003).
  • Piantadosi CA, Zhang J, Levin ED, Folz RJ, Schmechel DE. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp. Neurol.147, 103–114 (1997).
  • Okeda R, Song S-Y, Funta N, Higashino F. An experimental study of the pathogenesis of Grinker’s myelinopathy in carbon monoxide intoxication. Acta Neuropathol.59, 200–206 (1983).
  • Thom SR. Carbon monoxide pathophysiology and treatment. In: Physiology and Medicine of Hyperbaric Oxygen Therapy. Neuman TS, Thom SR (Eds). Saunders Elsevier, PA, USA, 321–347 (2008).
  • Thom SR, Taber RL, Mendiguren II, Clark JM, Hardy KR, Fisher AB. Delayed neuropsychologic sequelae following carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann. Emerg. Med.25, 474–480 (1995).
  • Weaver LK, Hopkins RO, Chan KJ et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N. Engl. J. Med.347, 1057–1067 (2002).
  • Thom SR. Antagonism of carbon monoxide-mediated brain lipid per- oxidation by hyperbaric oxygen. Toxicol. Appl. Pharmacol.105, 340–344 (1990).
  • Hopkins RO, Weaver LK, Valentine KJ, Mower C, Churchill S, Carlquist J. Apolipoprotein E genotype and response of carbon monoxide poisoning to hyperbaric oxygen treatment. Am. J. Respir. Crit. Care Med.176, 1001–1006 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.