191
Views
13
CrossRef citations to date
0
Altmetric
Theme: Nervous system neoplasms - Review

Role of isocitrate dehydrogenase in glioma

&
Pages 1399-1409 | Published online: 09 Jan 2014

References

  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science321(5897), 1807–1812 (2008).
  • Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol.116(6), 597–602 (2008).
  • Bleeker FE, Atai NA, Lamba S et al. The prognostic IDH1 (R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol.119(4), 487–494 (2010).
  • Christensen BC, Smith AA, Zheng S et al. DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. J. Natl Cancer Inst.103(2), 143–153 (2011).
  • Gravendeel LAM, Kouwenhoven MCM, Gevaert O et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res.69(23), 9065–9072 (2009).
  • Hartmann C, Meyer J, Balss J et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol.118(4), 469–474 (2009).
  • Horbinski C, Kofler J, Kelly LM, Murdoch GH, Nikiforova MN. Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J. Neuropathol. Exp. Neurol.68(12), 1319–1325 (2009).
  • Ichimura K, Pearson DM, Kocialkowski S et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol.11(4), 341–347 (2009).
  • Kang MR, Kim MS, Oh JE et al. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int. J. Cancer125(2), 353–355 (2009).
  • Korshunov A, Meyer J, Capper D et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol.118(3), 401–405 (2009).
  • Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin. Cancer Res.15(19), 6002–6007 (2009).
  • Sanson M, Marie Y, Paris S et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J. Clin. Oncol.27(25), 4150–4154 (2009).
  • Sonoda Y, Kumabe T, Nakamura T et al. Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Cancer Sci.100(10), 1996–1998 (2009).
  • Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am. J. Pathol.174(4), 1149–1153 (2009).
  • Wick W, Hartmann C, Engel C et al. NOA-04 randomized Phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J. Clin. Oncol.27(35), 5874–5880 (2009).
  • Yan H, Parsons DW, Jin G et al.IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med.360(8), 765–773 (2009).
  • Gravendeel LAM, Kloosterhof NK, Bralten LBC et al. Segregation of non-p. R132H mutations in IDH1 in distinct molecular subtypes of glioma. Hum. Mutat.31(3), E1186–E1199 (2010).
  • Xu X, Zhao J, Xu Z et al. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J. Biol. Chem.279(32), 33946–33957 (2004).
  • Jennings GT, Sechi S, Stevenson PM, Tuckey RC, Parmelee D, McAlister-Henn L. Cytosolic NADP(+)-dependent isocitrate dehydrogenase. Isolation of rat cDNA and study of tissue-specific and developmental expression of mRNA. J. Biol. Chem.269(37), 23128–23134 (1994).
  • Haselbeck RJ, McAlister-Henn L. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J. Biol. Chem.268(16), 12116–12122 (1993).
  • Ramachandran N, Colman RF. Chemical characterization of distinct subunits of pig heart DPN-specific isocitrate dehydrogenase. J. Biol. Chem.255(18), 8859–8864 (1980).
  • Weller M, Wick W, von Deimling A. Isocitrate dehydrogenase mutations: a challenge to traditional views on the genesis and malignant progression of gliomas. Glia59(8), 1200–1204 (2011).
  • Keys DA, McAlister-Henn L. Subunit structure, expression, and function of NAD(H)-specific isocitrate dehydrogenase in Saccharomyces cerevisiae. J. Bacteriol.172(8), 4280–4287 (1990).
  • Nekrutenko A, Hillis DM, Patton JC, Bradley RD, Baker RJ. Cytosolic isocitrate dehydrogenase in humans, mice, and voles and phylogenetic analysis of the enzyme family. Mol. Biol. Evol.15(12), 1674–1684 (1998).
  • Luo H, Shan X, Wu J. Expression of human mitochondrial NADP-dependent isocitrate dehydrogenase during lymphocyte activation. J. Cell. Biochem.60(4), 495–507 (1996).
  • Park SY, Lee SM, Shin SW, Park J-W. Inactivation of mitochondrial NADP+-dependent isocitrate dehydrogenase by hypochlorous acid. Free Radic. Res.42(5), 467–473 (2008).
  • Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol.12(1), 83–91 (2011).
  • Koh H-J, Lee SM, Son B-G et al. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J. Biol. Chem.279(38), 39968–39974 (2004).
  • Shechter I, Dai P, Huo L, Guan G. IDH1 gene transcription is sterol regulated and activated by SREBP-1a and SREBP-2 in human hepatoma HepG2 cells: evidence that IDH1 may regulate lipogenesis in hepatic cells. J. Lipid Res.44(11), 2169–2180 (2003).
  • Ronnebaum SM, Ilkayeva O, Burgess SC et al. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J. Biol. Chem.281(41), 30593–30602 (2006).
  • Jo SH, Son MK, Koh HJ et al. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J. Biol. Chem.276(19), 16168–16176 (2001).
  • Kim J, Kim KY, Jang H-S et al. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney. Am. J. Physiol. Renal Physiol.296(3), F622–F633 (2009).
  • Kim SY, Park J-W. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radic. Res.37(3), 309–316 (2003).
  • Lee JH, Kim SY, Kil IS, Park J-W. Regulation of ionizing radiation-induced apoptosis by mitochondrial NADP+-dependent isocitrate dehydrogenase. J. Biol. Chem.282(18), 13385–13394 (2007).
  • Lee SM, Koh H-J, Park D-C, Song BJ, Huh T-L, Park J-W. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med.32(11), 1185–1196 (2002).
  • Jo S-H, Lee S-H, Chun HS et al. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase. Biochem. Biophys. Res. Commun.292(2), 542–549 (2002).
  • Lee JH, Kim SY, Kil IS, Park J-W. Regulation of ionizing radiation-induced apoptosis by mitochondrial NADP+-dependent isocitrate dehydrogenase. J. Biol. Chem.282(18), 13385–13394 (2007).
  • Lee S-H, Ha S-O, Koh H-J et al. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress. Mol. Cells29(2), 203–208 (2010).
  • Lee SH, Jo SH, Lee SM et al. Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays. Int. J. Radiat. Biol.80(9), 635–642 (2004).
  • Lee SM, Koh H-J, Park D-C, Song BJ, Huh T-L, Park J-W. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med.32(11), 1185–1196 (2002).
  • Loenarz C, Schofield CJ. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat. Chem. Biol.4(3), 152–156 (2008).
  • Ivan M, Kondo K, Yang H et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292(5516), 464–468 (2001).
  • Jaakkola P, Mole DR, Tian YM et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science292(5516), 468–472 (2001).
  • Maxwell PH, Wiesener MS, Chang GW et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399(6733), 271–275 (1999).
  • Epstein AC, Gleadle JM, McNeill LA et al.C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107(1), 43–54 (2001).
  • Kivirikko KI, Myllylä R, Pihlajaniemi T. Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J.3(5), 1609–1617 (1989).
  • Schofield CJ, Zhang Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol.9(6), 722–731 (1999).
  • Myllylä R, Tuderman L, Kivirikko KI. Mechanism of the prolyl hydroxylase reaction. 2. Kinetic analysis of the reaction sequence. Eur. J. Biochem.80(2), 349–357 (1977).
  • Tuderman L, Myllylä R, Kivirikko KI. Mechanism of the prolyl hydroxylase reaction. 1. Role of co-substrates. Eur. J. Biochem.80(2), 341–348 (1977).
  • Lee S, Nakamura E, Yang H et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell8(2), 155–167 (2005).
  • Schlisio S. Neuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum. J. Cell. Mol. Med.13(10), 4104–4112 (2009).
  • Horbinski C, Kofler J, Yeaney G et al. Isocitrate dehydrogenase 1 analysis differentiates gangliogliomas from infiltrative gliomas. Brain Pathol.21(5), 564–574 (2011).
  • Murugan AK, Bojdani E, Xing M. Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochem. Biophys. Res. Commun.393(3), 555–559 (2010).
  • Mardis ER, Ding L, Dooling DJ et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med.361(11), 1058–1066 (2009).
  • Sjöblom T, Jones S, Wood LD et al. The consensus coding sequences of human breast and colorectal cancers. Science314(5797), 268–274 (2006).
  • Lopez G, Reitman Z, Solomon D. IDH1 (R132) mutation identified in one human melanoma metastasis, but not correlated with metastases to the brain. Biochem. Biophys. Res. Commun.398(3), 585–587 (2010).
  • Shibata T, Kokubu A, Miyamoto M, Sasajima Y, Yamazaki N. Mutant IDH1 confers an in vivo growth in a melanoma cell line with BRAF mutation. Am. J. Pathol.178(3), 1395–1402 (2011).
  • Dubbink HJ, Taal W, van Marion R et al.IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology73(21), 1792–1795 (2009).
  • van den Bent MJ, Dubbink HJ, Marie Y et al.IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin. Cancer Res.16(5), 1597–1604 (2010).
  • Labussière M, Idbaih A, Wang X-W et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology74(23), 1886–1890 (2010).
  • Weller M, Felsberg J, Hartmann C et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J. Clin. Oncol.27(34), 5743–5750 (2009).
  • Verhaak RGW, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell17(1), 98–110 (2010).
  • Noushmehr H, Weisenberger DJ, Diefes K et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell17(5), 510–522 (2010).
  • Watanabe T, Vital A, Nobusawa S, Kleihues P, Ohgaki H. Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li–Fraumeni syndrome. Acta Neuropathol.117(6), 653–656 (2009).
  • Zhao S, Lin Y, Xu W et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science324(5924), 261–265 (2009).
  • Pusch S, Sahm F, Meyer J, Mittelbronn M, Hartmann C, von Deimling A. Scientific correspondence. Neuropathol. Appl. Neurobiol.37(4), 428–430 (2011).
  • Jin G, Reitman ZJ, Spasojevic I et al. 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS ONE6(2), e16812 (2011).
  • Ward PS, Patel J, Wise DR et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell17(3), 225–234 (2010).
  • Dang L, White DW, Gross S et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature462(7274), 739–744 (2009).
  • Chalmers RA, Lawson AM, Watts RW et al. D-2-hydroxyglutaric aciduria: case report and biochemical studies. J. Inherit. Metab. Dis.3(1), 11–15 (1980).
  • van der Knaap MS, Jakobs C, Hoffmann GF et al. D-2-hydroxyglutaric aciduria: further clinical delineation. J. Inherit. Metab. Dis.22(4), 404–413 (1999).
  • Kranendijk M, Struys EA, van Schaftingen E et al.IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science330(6002), 336 (2010).
  • Duran M, Kamerling JP, Bakker HD, van Gennip AH, Wadman SK. L-2-hydroxyglutaric aciduria: an inborn error of metabolism? J. Inherit. Metab. Dis.3(4), 109–112 (1980).
  • Van Schaftingen E, Rzem R, Veiga-da-Cunha M. L: -2-Hydroxyglutaric aciduria, a disorder of metabolite repair. J. Inherit. Metab. Dis.32(2), 135–142 (2009).
  • Reitman ZJ, Jin G, Karoly ED et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc. Natl Acad. Sci. USA108(8), 3270–3275 (2011).
  • Kölker S, Pawlak V, Ahlemeyer B et al. NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in D-2-hydroxyglutaric aciduria. Eur. J. Neurosci.16(1), 21–28 (2002).
  • Yen KE, Bittinger MA, Su SM, Fantin VR. Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene29(49), 6409–6417 (2010).
  • Xu W, Yang H, Liu Y et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell19(1), 17–30 (2011).
  • Pappalardi MB, McNulty DE, Martin JD et al. Biochemical characterization of human HIF hydroxylases using HIF protein substrates that contain all three hydroxylation sites. Biochem. J.436(2), 363–369 (2011).
  • Toedt G, Barbus S, Wolter M et al. Molecular signatures classify astrocytic gliomas by IDH1 mutation status. Int. J. Cancer128(5), 1095–1103 (2011).
  • Metellus P, Colin C, Taieb D et al.IDH mutation status impact on in vivo hypoxia biomarkers expression: new insights from a clinical, nuclear imaging and immunohistochemical study in 33 glioma patients. J. Neurooncol. DOI: 10.1007/s11060-011-0625-2 (2011) (Epub ahead of print).
  • Williams SC, Karajannis MA, Chiriboga L, Golfinos JG, Deimling A, Zagzag D. R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1α upregulation in adult glioma. Acta Neuropathol.121(2), 279–281 (2010).
  • Basanta D, Scott JG, Rockne R, Swanson KR, Anderson ARA. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view. Phys. Biol.8(1), 015016 (2011).
  • Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1α enhances hypoxic gene expression and tumor growth. Mol. Cell Biol.30(1), 344–353 (2010).
  • Chowdhury R, Yeoh KK, Tian Y-M et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep.12(5), 463–469 (2011).
  • Figueroa ME, Lugthart S, Li Y et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell17(1), 13–27 (2010).
  • Dinchuk JE. Absence of post-translational aspartyl β-hydroxylation of epidermal growth factor domains in mice leads to developmental defects and an increased incidence of intestinal neoplasia. J. Biol. Chem.277(15), 12970–12977 (2001).
  • Capper D, Weissert S, Balss J et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol.20(1), 245–254 (2010).
  • Metellus P, Coulibaly B, Colin C et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol.120(6), 719–729 (2010).
  • Houillier C, Wang X, Kaloshi G et al.IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology75(17), 1560–1566 (2010).
  • Seiz M, Tuettenberg J, Meyer J et al. Detection of IDH1 mutations in gliomatosis cerebri, but only in tumors with additional solid component: evidence for molecular subtypes. Acta Neuropathol.120(2), 261–267 (2010).
  • Hartmann C, Hentschel B, Wick W et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol.120(6), 707–718 (2010).
  • Kil IS, Kim SY, Lee SJ, Park J-W. Small interfering RNA-mediated silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase enhances the sensitivity of HeLa cells toward tumor necrosis factor-α and anticancer drugs. Free Radic. Biol. Med.43(8), 1197–1207 (2007).
  • Matsumoto K, Obara N, Ema M et al. Antitumor effects of 2-oxoglutarate through inhibition of angiogenesis in a murine tumor model. Cancer Sci.100(9), 1639–1647 (2009).
  • Seltzer MJ, Bennett BD, Joshi AD et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res.70(22), 8981–8987 (2010).
  • Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med.16(9), 387–397 (2010).
  • Pollack IF, Hamilton RL, Sobol RW et al.IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv. Syst.27(1), 87–94 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.