157
Views
29
CrossRef citations to date
0
Altmetric
Theme: Alzheimer's disease - Review

The association of diabetes and dementia and possible implications for nondiabetic populations

&
Pages 1609-1617 | Published online: 09 Jan 2014

References

  • Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol.61(5), 661–666 (2004).
  • Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R. Relation of diabetes to mild cognitive impairment. Arch. Neurol.64(4), 570–575 (2007).
  • Luchsinger JA, Tang MX, Stern Y, Shea S, Mayeux R. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am. J. Epidemiol.154(7), 635–641 (2001).
  • Luchsinger JA. Adiposity, hyperinsulinemia, diabetes and Alzheimer’s disease: an epidemiological perspective. Eur. J. Pharmacol.585(1), 119–129 (2008).
  • Schnaider Beeri M, Goldbourt U, Silverman JM et al. Diabetes mellitus in midlife and the risk of dementia three decades later. Neurology63(10), 1902–1907 (2004).
  • Ahtiluoto S, Polvikoski T, Peltonen M et al. Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology75(13), 1195–1202 (2010).
  • Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu–Asia Aging Study. Diabetes51(4), 1256–1262 (2002).
  • Leibson CL, Rocca WA, Hanson VA et al. The risk of dementia among persons with diabetes mellitus: a population-based cohort study. Ann. NY Acad.Sci.826, 422–427 (1997).
  • Ott A, Stolk RP, Van HF, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology53(9), 1937–1942 (1999).
  • Rasgon NL, Kenna HA, Wroolie TE et al. Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol. Aging32(11), 1942–1948 (2010).
  • Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology63(4), 658–663 (2004).
  • Gregg EW, Yaffe K, Cauley JA et al. Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group. Arch. Intern. Med.160(2), 174–180 (2000).
  • Haan MN, Shemanski L, Jagust WJ, Manolio TA, Kuller L. The role of APOE ε4 in modulating effects of other risk factors for cognitive decline in elderly persons. JAMA282(1), 40–46 (1999).
  • Xu W, Caracciolo B, Wang HX et al. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes59(11), 2928–2935 (2010).
  • Thomas VS, Darvesh S, Macknight C, Rockwood K. Estimating the prevalence of dementia in elderly people: a comparison of the Canadian Study of Health and Aging and National Population Health Survey approaches. Int. Psychogeriatr.13(Suppl. 1), 169–175 (2001).
  • Ravona-Springer R, Luo X, Schmeidler J et al. Diabetes is associated with increased rate of cognitive decline in questionably demented elderly. Dement. Geriatr. Cogn. Disord.29(1), 68–74 (2010).
  • Kalmijn S, Feskens EJ, Launer LJ, Kromhout D. Cerebrovascular disease, the apolipoprotein e4 allele, and cognitive decline in a community-based study of elderly men. Stroke27(12), 2230–2235 (1996).
  • Kanaya AM, Barrett-Connor E, Gildengorin G, Yaffe K. Change in cognitive function by glucose tolerance status in older adults: a 4-year prospective study of the Rancho Bernardo study cohort. Arch. Intern. Med.164(12), 1327–1333 (2004).
  • Van Den Berg E, De Craen AJ, Biessels GJ, Gussekloo J, Westendorp RG. The impact of diabetes mellitus on cognitive decline in the oldest of the old: a prospective population-based study. Diabetologia49(9), 2015–2023 (2006).
  • Sanz C, Andrieu S, Sinclair A, Hanaire H, Vellas B. Diabetes is associated with a slower rate of cognitive decline in Alzheimer disease. Neurology73(17), 1359–1366 (2009).
  • American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care33(Suppl. 1), S62–S69 (2010).
  • Lu FP, Lin KP, Kuo HK. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One4(1), e4144 (2009).
  • Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol. Psychiatry67(6), 505–512 (2010).
  • Beeri MS, Silverman JM, Davis KL et al. Type 2 diabetes is negatively associated with Alzheimer’s disease neuropathology. J. Gerontol. A Biol. Sci. Med. Sci.60(4), 471–475 (2005).
  • Hoogwerf BJ, Young JB. The HOPE study. Ramipril lowered cardiovascular risk, but vitamin E did not. Cleve. Clin. J. Med.67(4), 287–293 (2000).
  • Blum S, Vardi M, Brown JB et al. Vitamin E reduces cardiovascular disease in individuals with diabetes mellitus and the haptoglobin 2–2 genotype. Pharmacogenomics11(5), 675–684 (2010).
  • Blum S, Vardi M, Levy NS, Miller-Lotan R, Levy AP. The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Atherosclerosis211(1), 25–27 (2010).
  • Triplitt C. Cardiac risk factors and hypoglycemia in an elderly patient: how good is good enough? Consult. Pharm.25(Suppl. B), 19–27 (2010).
  • Gerstein HC, Miller ME, Genuth S et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N. Engl. J. Med.364(9), 818–828 (2011).
  • Gerstein HC, Miller ME, Byington RP et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med.358(24), 2545–2559 (2008).
  • Cavalieri M, Ropele S, Petrovic K et al. Metabolic syndrome, brain magnetic resonance imaging, and cognition. Diabetes Care33(12), 2489–2495 (2010).
  • Luchsinger JA. Diabetes, related conditions, and dementia. J. Neurol. Sci.299(1–2), 35–38 (2010).
  • Power MC, Weuve J, Gagne JJ, Mcqueen MB, Viswanathan A, Blacker D. The association between blood pressure and incident Alzheimer disease: a systematic review and meta-analysis. Epidemiology22(5), 646–659 (2011).
  • Enzinger C, Fazekas F, Matthews PM et al. Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology64(10), 1704–1711 (2005).
  • Yaffe K, Blackwell T, Whitmer RA, Krueger K, Barrett Connor E. Glycosylated hemoglobin level and development of mild cognitive impairment or dementia in older women. J. Nutr. Health Aging10(4), 293–295 (2006).
  • Miyakawa T. Vascular pathology in Alzheimer’s disease. Psychogeriatrics10(1), 39–44 (2010).
  • Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol.3(3), 169–178 (2004).
  • Munch G, Schinzel R, Loske C et al. Alzheimer’s disease – synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J. Neural Transm.105(4–5), 439–461 (1998).
  • Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell. Biol.37(2), 289–305 (2005).
  • Kapogiannis D, Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol.10(2), 187–198 (2011).
  • Fernandez-Gamba A, Leal MC, Morelli L, Castano EM. Insulin-degrading enzyme: structure–function relationship and its possible roles in health and disease. Curr. Pharm. Des.15(31), 3644–3655 (2009).
  • Nelson PT, Head E, Schmitt FA et al. Alzheimer’s disease is not ‘brain aging’: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol.121(5), 571–587 (2011).
  • Heitner J, Dickson D. Diabetics do not have increased Alzheimer-type pathology compared with age-matched control subjects. A retrospective postmortem immunocytochemical and histofluorescent study. Neurology49(5), 1306–1311 (1997).
  • Nelson PT, Smith CD, Abner EA et al. Human cerebral neuropathology of Type 2 diabetes mellitus. Biochim. Biophys. Acta1792(5), 454–469 (2009).
  • Arvanitakis Z, Schneider JA, Wilson RS et al. Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology67(11), 1960–1965 (2006).
  • Van Harten B, De Leeuw FE, Weinstein HC, Scheltens P, Biessels GJ. Brain imaging in patients with diabetes: a systematic review. Diabetes Care29(11), 2539–2548 (2006).
  • Gorelick PB, Scuteri A, Black SE et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke42(9), 2672–2713 (2011).
  • Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA277(10), 813–817 (1997).
  • Beeri MS, Schmeidler J, Silverman JM et al. Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology71(10), 750–757 (2008).
  • Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch. Neurol.66(3), 300–305 (2009).
  • Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature272(5656), 827–829 (1978).
  • Baskin DG, Figlewicz DP, Woods SC, Porte D Jr, Dorsa DM. Insulin in the brain. Annu. Rev. Physiol.49, 335–347 (1987).
  • Kenyon CJ. The genetics of ageing. Nature464(7288), 504–512 (2010).
  • Park CR, Seeley RJ, Craft S, Woods SC. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol. Behav.68(4), 509–514 (2000).
  • Fehm HL, Perras B, Smolnik R, Kern W, Born J. Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology? Eur. J. Pharmacol.405(1–3), 43–54 (2000).
  • Craft S, Asthana S, Newcomer JW et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry56(12), 1135–1140 (1999).
  • Zhao W, Chen H, Xu H et al. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem.274(49), 34893–34902 (1999).
  • Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci. Biobehav. Rev.24(8), 855–872 (2000).
  • Apelt J, Mehlhorn G, Schliebs R. Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain. J. Neurosci. Res.57(5), 693–705 (1999).
  • Skeberdis VA, Lan J, Zheng X, Zukin RS, Bennett MV. Insulin promotes rapid delivery of N-methyl-D-aspartate receptors to the cell surface by exocytosis. Proc. Natl Acad. Sci. USA98(6), 3561–3566 (2001).
  • Kopf SR, Baratti CM. Effects of posttraining administration of insulin on retention of a habituation response in mice: participation of a central cholinergic mechanism. Neurobiol. Learn. Mem.71(1), 50–61 (1999).
  • Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM. Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res.602(1), 161–164 (1993).
  • Hong M, Lee VM. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J. Biol. Chem.272(31), 19547–19553 (1997).
  • Lesort M, Johnson GV. Insulin-like growth factor-1 and insulin mediate transient site-selective increases in tau phosphorylation in primary cortical neurons. Neuroscience99(2), 305–316 (2000).
  • Cheng CM, Tseng V, Wang J, Wang D, Matyakhina L, Bondy CA. Tau is hyperphosphorylated in the insulin-like growth factor-I null brain. Endocrinology146(12), 5086–5091 (2005).
  • Tournoy J, Lee DM, Pendleton N et al. Association of cognitive performance with the metabolic syndrome and with glycaemia in middle-aged and older European men: the European Male Ageing Study. Diabetes Metab. Res. Rev.26(8), 668–676 (2010).
  • Bokura H, Nagai A, Oguro H, Kobayashi S, Yamaguchi S. The association of metabolic syndrome with executive dysfunction independent of subclinical ischemic brain lesions in Japanese adults. Dement. Geriatr. Cogn. Disord.30(6), 479–485 (2010).
  • Yaffe K, Weston AL, Blackwell T, Krueger KA. The metabolic syndrome and development of cognitive impairment among older women. Arch. Neurol.66(3), 324–328 (2009).
  • Ronnemaa E, Zethelius B, Sundelof J et al. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology71(14), 1065–1071 (2008).
  • Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early Type 2 diabetes. Arch. Neurol.68(1), 51–57 (2011).
  • Matsuzaki T, Sasaki K, Tanizaki Y et al. Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology75(9), 764–770 (2010).
  • Mcneilly AD, Williamson R, Sutherland C, Balfour DJ, Stewart CA. High fat feeding promotes simultaneous decline in insulin sensitivity and cognitive performance in a delayed matching and non-matching to position task. Behav. Brain Res.217(1), 134–141 (2011).
  • Cornier MA, Dabelea D, Hernandez TL et al. The metabolic syndrome. Endocr. Rev.29(7), 777–822 (2008).
  • Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med.46, 223–234 (1995).
  • Nicholl ID, Bucala R. Advanced glycation endproducts and cigarette smoking. Cell Mol. Biol.(Noisy-le-grand)44(7), 1025–1033 (1998).
  • O’brien J, Morrissey PA. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit. Rev. Food Sci. Nutr.28(3), 211–248 (1989).
  • Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia44(2), 129–146 (2001).
  • Monnier VM, Glomb M, Elgawish A, Sell DR. The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution. Diabetes45(Suppl. 3), S67–S72 (1996).
  • Monnier VM, Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science211(4481), 491–493 (1981).
  • Chiarelli F, De Martino M, Mezzetti A et al. Advanced glycation end products in children and adolescents with diabetes: relation to glycemic control and early microvascular complications. J. Pediatr.134(4), 486–491 (1999).
  • Jerums G, Panagiotopoulos S, Forbes J, Osicka T, Cooper M. Evolving concepts in advanced glycation, diabetic nephropathy, and diabetic vascular disease. Arch. Biochem. Biophys.419(1), 55–62 (2003).
  • Lee AT, Cerami A. Role of glycation in aging. Ann. NY Acad. Sci.663, 63–70 (1992).
  • Srikanth V, Maczurek A, Phan T et al. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging32(5), 763–777 (2011).
  • Shuvaev VV, Laffont I, Serot JM, Fujii J, Taniguchi N, Siest G. Increased protein glycation in cerebrospinal fluid of Alzheimer’s disease. Neurobiol. Aging22(3), 397–402 (2001).
  • Ahmed N, Ahmed U, Thornalley PJ, Hager K, Fleischer G, Munch G. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J. Neurochem.92(2), 255–263 (2005).
  • Riviere S, Birlouez-Aragon I, Vellas B. Plasma protein glycation in Alzheimer’s disease. Glycoconj. J.15(10), 1039–1042 (1998).
  • Emanuele E, D’angelo A, Tomaino C et al. Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Arch. Neurol.62(11), 1734–1736 (2005).
  • Ghidoni R, Benussi L, Glionna M et al. Decreased plasma levels of soluble receptor for advanced glycation end products in mild cognitive impairment. J. Neural. Transm.115(7), 1047–1050 (2008).
  • Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology63(7), 1181–1186 (2004)
  • Wu JH, Haan MN, Liang J, Ghosh D, Gonzalez HM, Herman WH. Impact of antidiabetic medications on physical and cognitive functioning of older Mexican Americans with diabetes mellitus: a population-based cohort study. Ann. Epidemiol.13(5), 369–376 (2003).
  • Xu WL, Von Strauss E, Qiu CX, Winblad B, Fratiglioni L. Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia52(6), 1031–1039 (2009).
  • Gao L, Matthews FE, Sargeant LA, Brayne C. An investigation of the population impact of variation in HbA1c levels in older people in England and Wales: from a population based multi-centre longitudinal study. BMC Public Health8, 54 (2008).
  • Shorr RI, De Rekeneire N, Resnick HE et al. Glycemia and cognitive function in older adults using glucose-lowering drugs. J. Nutr. Health Aging10(4), 297–301 (2006).
  • Yaffe K, Blackwell T, Whitmer RA, Krueger K, Barrett CE. Glycosylated hemoglobin level and development of mild cognitive impairment or dementia in older women. J. Nutr. Health Aging10(4), 293–295 (2006).
  • Risner ME, Saunders AM, Altman JF et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J.6(4), 246–254 (2006).
  • Reger MA, Watson GS, Green PS et al. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology70(6), 440–448 (2008).
  • Plastino M, Fava A, Pirritano D et al. Effects of insulinic therapy on cognitive impairment in patients with Alzheimer disease and diabetes mellitus Type-2. J. Neurol. Sci.288(1–2), 112–116 (2010).
  • Mcclean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci.31(17), 6587–6594 (2011).
  • Rodriguez-Rivera J, Denner L, Dineley KT. Rosiglitazone reversal of Tg2576 cognitive deficits is independent of peripheral gluco-regulatory status. Behav. Brain Res.216(1), 255–261 (2011).
  • Gasparini L, Gouras GK, Wang R et al. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci.21(8), 2561–2570 (2001).
  • Selkoe DJ. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol8(11), 447–453 (1998).
  • Cole SL, Vassar R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol. Neurodegener.2, 22 (2007).
  • Vetrivel KS, Zhang YW, Xu H, Thinakaran G. Pathological and physiological functions of presenilins. Mol. Neurodegener.1, 4 (2006).
  • Chen Y, Zhou K, Wang R et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc. Natl Acad. Sci. USA106(10), 3907–3912 (2009).
  • De Felice FG, Vieira MN, Bomfim TR et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc. Natl Acad. Sci. USA106(6), 1971–1976 (2009).
  • Noh RM, Graveling AJ, Frier BM. Medically minimising the impact of hypoglycaemia in Type 2 diabetes: a review. Expert Opin. Pharmacother.12(14), 2161–2175 (2011).
  • Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV. Hypoglycemic episodes and risk of dementia in older patients with Type 2 diabetes mellitus. JAMA301(15), 1565–1572 (2009).
  • Bruce DG, Davis WA, Casey GP et al. Severe hypoglycaemia and cognitive impairment in older patients with diabetes: the Fremantle Diabetes Study. Diabetologia52(9), 1808–1815 (2009).
  • Bauduceau B, Doucet J, Bordier L, Garcia C, Dupuy O, Mayaudon H. Hypoglycaemia and dementia in diabetic patients. Diabetes Metab.36(Suppl. 3), S106–S111 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.