104
Views
25
CrossRef citations to date
0
Altmetric
Theme: Parkinson's disease - Review

Pathways towards an effective immunotherapy for Parkinson’s disease

, &
Pages 1703-1715 | Published online: 09 Jan 2014

References

  • Jellinger KA. Formation and development of Lewy pathology: a critical update. J. Neurol.256(Suppl. 3), 270–279 (2009).
  • Jellinger KA. α-synuclein pathology in Parkinson's and Alzheimer's disease brain: incidence and topographic distribution – a pilot study. Acta Neuropathol.106(3), 191–201 (2003).
  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci.20(4), 415–455 (1973).
  • Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet373(9680), 2055–2066 (2009).
  • Mercuri NB, Bernardi G. The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol. Sci.26(7), 341–344 (2005).
  • Silver DE, Ruggieri S. Initiating therapy for Parkinson’s disease. Neurology50(Suppl. 6), S18–S22 (1998).
  • Fahn S. ‘On-off’ phenomenon with levodopa therapy in Parkinsonism. Clinical and pharmacologic correlations and the effect of intramuscular pyridoxine. Neurology24(5), 431–441 (1974).
  • Hutton JT, Morris JL. Long-acting carbidopa–levodopa in the management of moderate and advanced Parkinson’s disease. Neurology42(1 Suppl. 1), 51–56 (1992).
  • Rascol O, Lozano A, Stern M, Poewe W. Milestones in Parkinson’s disease therapeutics. Mov. Disord.26(6), 1072–1082 (2011).
  • Clarkson ED. Fetal tissue transplantation for patients with Parkinson’s disease: a database of published clinical results. Drugs Aging18(10), 773–785 (2001).
  • Lindvall O, Rehncrona S, Brundin P et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch. Neurol.46(6), 615–631 (1989).
  • Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med.344(10), 710–719 (2001).
  • Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol.54(3), 403–414 (2003).
  • Olanow CW, Kordower JH, Lang AE, Obeso JA. Dopaminergic transplantation for Parkinson’s disease: current status and future prospects. Ann. Neurol.66(5), 591–596 (2009).
  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med.14(5), 504–506 (2008).
  • Dawson TM. Non-autonomous cell death in Parkinson’s disease. Lancet Neurol.7(6), 474–475 (2008).
  • Ferrari G, Minozzi MC, Toffano G, Leon A, Skaper SD. Basic fibroblast growth factor promotes the survival and development of mesencephalic neurons in culture. Dev. Biol.133(1), 140–147 (1989).
  • Knusel B, Michel PP, Schwaber JS, Hefti F. Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J. Neurosci.10(2), 558–570 (1990).
  • Park TH, Mytilineou C. Protection from 1-methyl-4-phenylpyridinium (MPP+) toxicity and stimulation of regrowth of MPP(+)-damaged dopaminergic fibers by treatment of mesencephalic cultures with EGF and basic FGF. Brain Res.599(1), 83–97 (1992).
  • Hyman C, Hofer M, Barde YA et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature350(6315), 230–232 (1991).
  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science260(5111), 1130–1132 (1993).
  • Beck KD, Valverde J, Alexi T et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature373(6512), 339–341 (1995).
  • Gash DM, Zhang Z, Ovadia A et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature380(6571), 252–255 (1996).
  • Kordower JH, Emborg ME, Bloch J et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science290(5492), 767–773 (2000).
  • Hong M, Mukhida K, Mendez I. GDNF therapy for Parkinson’s disease. Expert Rev. Neurother.8(7), 1125–1139 (2008).
  • Rangasamy SB, Soderstrom K, Bakay RA, Kordower JH. Neurotrophic factor therapy for Parkinson’s disease. Prog. Brain Res.184, 237–264 (2010).
  • Kordower JH, Palfi S, Chen EY et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann. Neurol.46(3), 419–424 (1999).
  • Nutt JG, Burchiel KJ, Comella CL et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology60(1), 69–73 (2003).
  • Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J. Neurosurg.102(2), 216–222 (2005).
  • Gill SS, Patel NK, Hotton GR et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med.9(5), 589–595 (2003).
  • Luo XG, Ding JQ, Chen SD. Microglia in the aging brain: relevance to neurodegeneration. Mol. Neurodegener.5, 12 (2010).
  • Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol.119(1), 89–105 (2010).
  • Kosloski LM, Ha DM, Hutter JA et al. Adaptive immune regulation of glial homeostasis as an immunization strategy for neurodegenerative diseases. J. Neurochem.114(5), 1261–1276 (2010).
  • Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54(Pt 1), 1–13 (1989).
  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002).
  • Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology129(2), 154–169 (2010).
  • McGeer PL, Yasojima K, McGeer EG. Inflammation in Parkinson’s disease. Adv. Neurol.86, 83–89 (2001).
  • Smith PF. Inflammation in Parkinson’s disease: an update. Curr. Opin. Investig. Drugs9(5), 478–484 (2008).
  • Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis.37(3), 510–518 (2010).
  • Siffrin V, Brandt AU, Herz J, Zipp F. New insights into adaptive immunity in chronic neuroinflammation. Adv. Immunol.96, 1–40 (2007).
  • McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov. Dis.23(4), 474–483 (2008).
  • Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol.8(4), 382–397 (2009).
  • Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol.120(3), 277–286 (2010).
  • Liu B, Gao HM, Hong JS. Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ. Health Perspect.111(8), 1065–1073 (2003).
  • Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat. Med.10(Suppl.), S18–S25 (2004).
  • Blasko I, Grubeck-Loebenstein B. Role of the immune system in the pathogenesis, prevention and treatment of Alzheimer’s disease. Drugs Aging20(2), 101–113 (2003).
  • Klegeris A, McGeer PL. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr. Alzheimer Res.2(3), 355–365 (2005).
  • Rich JB, Rasmusson DX, Folstein MF, Carson KA, Kawas C, Brandt J. Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology45(1), 51–55 (1995).
  • in t’ Veld BA, Ruitenberg A, Hofman A et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N. Engl. J. Med.345(21), 1515–1521 (2001).
  • Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC. Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology59(6), 880–886 (2002).
  • Becker C, Jick SS, Meier CR. NSAID use and risk of Parkinson disease: a population-based case–control study. Eur. J. Neurol.18(11), 1336–1342 (2011).
  • Gao X, Chen H, Schwarzschild MA, Ascherio A. Use of ibuprofen and risk of Parkinson disease. Neurology76(10), 863–869 (2011).
  • Manthripragada AD, Schernhammer ES, Qiu J et al. Non-steroidal anti-inflammatory drug use and the risk of Parkinson’s disease. Neuroepidemiology36(3), 155–161 (2011).
  • Cunningham C, Skelly DT. Non-steroidal anti-inflammatory drugs and cognitive function: are prostaglandins at the heart of cognitive impairment in dementia and delirium? J. Neuroimmune Pharmacol. doi:10.1007/s11481-011-9312-5 (2011) (Epub ahead of print).
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science308(5726), 1314–1318 (2005).
  • Davalos D, Grutzendler J, Yang G et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci.8(6), 752–758 (2005).
  • Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics7(4), 354–365 (2010).
  • Zhang SC, Fedoroff S. Neuron-microglia interactions in vitro. Acta Neuropathol.91(4), 385–395 (1996).
  • Glezer I, Simard AR, Rivest S. Neuroprotective role of the innate immune system by microglia. Neuroscience147(4), 867–883 (2007).
  • Giulian D, Baker TJ, Shih LC, Lachman LB. Interleukin 1 of the central nervous system is produced by ameboid microglia. J. Exp. Med.164(2), 594–604 (1986).
  • Sawada M, Kondo N, Suzumura A, Marunouchi T. Production of tumor necrosis factor-α by microglia and astrocytes in culture. Brain Res.491(2), 394–397 (1989).
  • Elkabes S, Dicicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci.16(8), 2508–2521 (1996).
  • Heese K, Hock C, Otten U. Inflammatory signals induce neurotrophin expression in human microglial cells. J. Neurochem.70(2), 699–707 (1998).
  • Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity32(5), 593–604 (2010).
  • Rock RB, Gekker G, Hu S et al. Role of microglia in central nervous system infections. Clin. Microbiol. Rev.17(4), 942–964, (2004).
  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci.29(43), 13435–13444 (2009).
  • McGeer PL, Itagaki S, McGeer EG. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol.76(6), 550–557 (1988).
  • Muhleisen H, Gehrmann J, Meyermann R. Reactive microglia in Creutzfeldt–Jakob disease. Neuropathol. Appl. Neurobiol.21(6), 505–517 (1995).
  • Gonzalez-Scarano F, Baltuch G. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci.22, 219–240 (1999).
  • Engelhardt JI, Appel SH. IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. Arch. Neurol.47(11), 1210–1216 (1990).
  • Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH. Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am. J. Pathol.132(1), 86–101 (1988).
  • Mattiace LA, Davies P, Yen SH, Dickson DW. Microglia in cerebellar plaques in Alzheimer’s disease. Acta Neuropathol.80(5), 493–498 (1990).
  • McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology38(8), 1285–1291 (1988).
  • Crystal H, Dickson D, Fuld P et al. Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology38(11), 1682–1687 (1988).
  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies. Nature388(6645), 839–840 (1997).
  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc. Natl Acad. Sci. USA95(11), 6469–6473 (1998).
  • Goldman JE, Yen SH, Chiu FC, Peress NS. Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science221(4615), 1082–1084 (1983).
  • Jellinger KA. Lewy body disorders. In: Degenerative Diseases of the Nervous System. Youdim MBH (Ed.). Springer Science, New York, NY, USA, 270–343 (2007).
  • Shimura H, Schlossmacher MG, Hattori N et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease. Science293(5528), 263–269 (2001).
  • Fujiwara H, Hasegawa M, Dohmae N et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol.4(2), 160–164 (2002).
  • Giasson BI, Duda JE, Murray IV et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science290(5493), 985–989 (2000).
  • Uversky VN, Yamin G, Munishkina LA et al. Effects of nitration on the structure and aggregation of α-synuclein. Brain Res. Mol. Brain Res.134(1), 84–102 (2005).
  • Cavallarin N, Vicario M, Negro A. The role of phosphorylation in synucleinopathies: focus on Parkinson’s disease. CNS Neurol. Disord. Drug Targets9(4), 471–481 (2010).
  • Lee SJ. Origins and effects of extracellular α-synuclein: implications in Parkinson’s disease. J. Mol. Neurosci.34(1), 17–22 (2008).
  • Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson’s disease. J. Neuropathol. Exp. Neurol.57(4), 338–342 (1998).
  • Beach TG, Adler CH, Sue LI et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol.119(6), 689–702 (2010).
  • Koprich JB, Johnston TH, Reyes MG, Sun X, Brotchie JM. Expression of human A53T α-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson’s disease. Mol. Neurodegener.5, 43 (2010).
  • Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. α-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int. J. Biochem. Cell Biol.41(10), 2015–2024 (2009).
  • Polymeropoulos MH, Higgins JJ, Golbe LI et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science274(5290), 1197–1199 (1996).
  • Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science276(5321), 2045–2047 (1997).
  • Kruger R, Kuhn W, Muller T et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet.18(2), 106–108 (1998).
  • Zarranz JJ, Alegre J, Gomez-Esteban JC et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol.55(2), 164–173 (2004).
  • Chartier-Harlin MC, Kachergus J, Roumier C et al. α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet364(9440), 1167–1169 (2004).
  • Singleton AB, Farrer M, Johnson J et al. α-Synuclein locus triplication causes Parkinson’s disease. Science302(5646), 841 (2003).
  • Uversky VN. Neuropathology, biochemistry, and biophysics of α-synuclein aggregation. J. Neurochem.103(1), 17–37 (2007).
  • Narhi L, Wood SJ, Steavenson S et al. Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. J. Biol. Chem.274(14), 9843–9846 (1999).
  • Li J, Uversky VN, Fink AL. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein. Biochemistry40(38), 11604–11613 (2001).
  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci.20(16), 6309–6316 (2000).
  • Theodore S, Cao S, McLean PJ, Standaert DG. Targeted overexpression of human α-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol.67(12), 1149–1158 (2008).
  • Zhang W, Wang T, Pei Z et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J.19(6), 533–542 (2005).
  • Reynolds AD, Kadiu I, Garg SK et al. Nitrated α-synuclein and microglial neuroregulatory activities. J. Neuroimmune Pharm.3(2), 59–74 (2008).
  • Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM. Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration. Neuroscience28(30), 7687–7698 (2008).
  • Hunot S, Boissiere F, Faucheux B et al. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience72(2), 355–363 (1996).
  • Shavali S, Combs CK, Ebadi M. Reactive macrophages increase oxidative stress and α-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem. Res.31(1), 85–94 (2006).
  • Rentzos M, Nikolaou C, Andreadou E et al. Circulating interleukin-15 and RANTES chemokine in Parkinson’s disease. Acta Neurol. Scand.116(6), 374–379 (2007).
  • Rentzos M, Nikolaou C, Andreadou E et al. Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol. Scand.119(5), 332–337 (2009).
  • Teismann P, Tieu K, Choi DK et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc. Natl Acad. Sci. USA100(9), 5473–5478 (2003).
  • Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett.202(1–2), 17–20 (1995).
  • Reynolds AD, Glanzer JG, Kadiu I et al. Nitrated α-synuclein-activated microglial profiling for Parkinson’s disease. J. Neurochem.104(6), 1504–1525 (2008).
  • Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood–brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant16(3), 285–299 (2007).
  • Wong D, Prameya R, Dorovini-Zis K. In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1. J. Neuropathol. Exp. Neurol.58(2), 138–152 (1999).
  • Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol.173(6), 3916–3924 (2004).
  • Aloisi F, Ria F, Columba-Cabezas S, Hess H, Penna G, Adorini L. Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. Eur. J. Immunol.29(9), 2705–2714 (1999).
  • McGeer EG, McGeer PL. Inflammatory processes in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry27(5), 741–749 (2003).
  • Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging9(4), 339–349 (1988).
  • Togo T, Akiyama H, Iseki E et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol.124(1–2), 83–92 (2002).
  • Farkas E, De Jong GI, Apro E, De Vos RA, Steur EN, Luiten PG. Similar ultrastructural breakdown of cerebrocortical capillaries in Alzheimer’s disease, Parkinson’s disease, and experimental hypertension. What is the functional link? Ann. NY Acad. Sci.903, 72–82 (2000).
  • Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol.29(1), 58–69 (1948).
  • Benner EJ, Banerjee R, Reynolds AD et al. Nitrated α-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS ONE3(1), e1376 (2008).
  • Brochard V, Combadiere B, Prigent A et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest.119(1), 182–192 (2009).
  • McRae-Degueurce A, Rosengren L, Haglid K et al. Immunocytochemical investigations on the presence of neuron-specific antibodies in the CSF of Parkinson’s disease cases. Neurochem. Res.13(7), 679–684 (1988).
  • Maetzler W, Berg D, Synofzik M et al. Autoantibodies against amyloid and glial-derived antigens are increased in serum and cerebrospinal fluid of lewy body-associated dementias. J. Alzheimers Dis.26(1), 171–179 (2011).
  • Fiszer U, Mix E, Fredrikson S, Kostulas V, Link H. Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol. Scand.90(3), 160–166 (1994).
  • Hisanaga K, Asagi M, Itoyama Y, Iwasaki Y. Increase in peripheral CD4 bright+ CD8 dull+ T cells in Parkinson disease. Arch. Neurol.58(10), 1580–1583 (2001).
  • Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T. Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat. Disord.11(8), 493–498 (2005).
  • Fiszer U. Does Parkinson’s disease have an immunological basis? The evidence and its therapeutic implications. Biodrugs15(6), 351–355 (2001).
  • Bradbury J. Immunotherapy for Parkinson’s disease: a developing therapeutic strategy. Drug Discov. Today10(16), 1075–1076 (2005).
  • Klegeris A, McGeer EG, McGeer PL. Therapeutic approaches to inflammation in neurodegenerative disease. Curr. Opin. Neurol.20(3), 351–357 (2007).
  • Pride M, Seubert P, Grundman M, Hagen M, Eldridge J, Black RS. Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener. Dis.5(3–4), 194–196 (2008).
  • Villoslada P, Moreno B, Melero I et al. Immunotherapy for neurological diseases. Clin. Immunol.128(3), 294–305 (2008).
  • Agbo DB, Neff F, Seitz F et al. Immunization as treatment for Parkinson’s disease. J. Neural. Transm. Suppl.73, 311–315 (2009).
  • Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs3(1), 76–99 (2011).
  • Janeway CA Jr, Medzhitov R. Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol.10(5), 349–350 (1998).
  • Weiner HL. A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J. Neurol.255(Suppl. 1), 3–11 (2008).
  • Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400(6740), 173–177 (1999).
  • Weiner HL, Lemere CA, Maron R et al. Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann. Neurol.48(4), 567–579 (2000).
  • Janus C, Pearson J, McLaurin J et al. A β peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature408(6815), 979–982 (2000).
  • Morgan D, Diamond DM, Gottschall PE et al. A β peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature408(6815), 982–985 (2000).
  • Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med.6(8), 916–919 (2000).
  • Demattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A β antibody alters CNS and plasma A β clearance and decreases brain A β burden in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA98(15), 8850–8855 (2001).
  • Senior K. Dosing in Phase II trial of Alzheimer’s vaccine suspended. Lancet Neurol.1(1), 3 (2002).
  • Masliah E, Rockenstein E, Adame A et al. Effects of α-synuclein immunization in a mouse model of Parkinson’s disease. Neuron46(6), 857–868 (2005).
  • Schneeberger A, Mandler M, Mattner F, Schmidt W. AFFITOME(R) technology in neurodegenerative diseases: the doubling advantage. Hum. Vaccin.6(11), 64–68 (2010).
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol (Balt.)155(3), 1151–1164 (1995).
  • Sakaguchi S, Hori S, Fukui Y, Sasazuki T, Sakaguchi N, Takahashi T. Thymic generation and selection of CD25+CD4+ regulatory T cells: implications of their broad repertoire and high self-reactivity for the maintenance of immunological self-tolerance. Novartis Found. Symp.252, 106–114 (2003).
  • Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann. Rev. Immunol.22, 531–562 (2004).
  • Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol.8(2), 191–197 (2007).
  • Coombes JL, Robinson NJ, Maloy KJ, Uhlig HH, Powrie F. Regulatory T cells and intestinal homeostasis. Immunol. Rev.204, 184–194 (2005).
  • Bourreau E, Ronet C, Darcissac E et al. Intralesional regulatory T-cell suppressive function during human acute and chronic cutaneous leishmaniasis due to Leishmania guyanensis. Infect. Immun.77(4), 1465–1474 (2009).
  • Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol.30(6), 1538–1543 (2000).
  • Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc. Natl Acad. Sci. USA99(24), 15620–15625 (2002).
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol.4(4), 330–336 (2003).
  • Hall BM, Pearce NW, Gurley KE, Dorsch SE. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J. Exp. Med.171(1), 141–157 (1990).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science299(5609), 1057–1061 (2003).
  • Fletcher JM, Lonergan R, Costelloe L et al. CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J. Immunol. (Balt.)183(11), 7602–7610 (2009).
  • Kleinewietfeld M, Starke M, Di Mitri D et al. CD49d provides access to ‘untouched’ human Foxp3+ Treg free of contaminating effector cells. Blood113(4), 827–836 (2009).
  • Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol.21(3), 274–280 (2009).
  • Khattar M, Chen W, Stepkowski SM. Expanding and converting regulatory T cells: a horizon for immunotherapy. Arch. Immunol. Ther. Exp. (Warsz.)57(3), 199–204 (2009).
  • Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-β are resistant to Th17 conversion by IL-6. J. Immunol. (Balt.)180(11), 7112–7116 (2008).
  • Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-β to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. (Balt.)178(4), 2018–2027 (2007).
  • Johnson J, Pahuja A, Graham M, Hering B, Hancock WW, Bansal-Pakala P. Effects of histone deacetylase inhibitor SAHA on effector and FOXP3+regulatory T cells in rhesus macaques. Transplant. Proc.40(2), 459–461 (2008).
  • Lucas JL, Mirshahpanah P, Haas-Stapleton E, Asadullah K, Zollner TM, Numerof RP. Induction of Foxp3+ regulatory T cells with histone deacetylase inhibitors. Cell. Immunol.257(1–2), 97–104 (2009).
  • Saouaf SJ, Li B, Zhang G et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp. Mol. Pathol.87(2), 99–104 (2009).
  • Tao R, De Zoeten EF, Ozkaynak E et al. Histone deacetylase inhibitors and transplantation. Curr. Opin. Immunol.19(5), 589–595 (2007).
  • Delgado M, Chorny A, Gonzalez-Rey E, Ganea D. Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. J. Leukoc. Biol.78(6), 1327–1338 (2005).
  • Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Ganea D, Delgado M. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood107(9), 3632–3638 (2006).
  • Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Delgado M. Vasoactive intestinal peptide induces CD4+,CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum.54(3), 864–876 (2006).
  • Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J. Leukoc. Biol.82(5), 1083–1094 (2007).
  • Benner EJ, Mosley RL, Destache CJ et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc. Natl Acad. Sci. USA101(25), 9435–9440 (2004).
  • Garg SK, Banerjee R, Kipnis J. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J. Immunol. (Balt.)180(6), 3866–3873 (2008).
  • Rossi D, Volterra A. Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res. Bull.80(4–5), 224–232 (2009).
  • Wahl SM, Swisher J, McCartney-Francis N, Chen W. TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J. Leukoc. Biol.76(1), 15–24 (2004).
  • Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med.197(1), 111–119 (2003).
  • Costantino CM, Baecher-Allan CM, Hafler DA. Human regulatory T cells and autoimmunity. Eur. J. Immunol.38(4), 921–924 (2008).
  • Putnam AL, Brusko TM, Lee MR et al. Expansion of human regulatory T-cells from patients with Type 1 diabetes. Diabetes58(3), 652–662 (2009).
  • Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol. Rev.223, 371–390 (2008).
  • Haas J, Korporal M, Balint B, Fritzsching B, Schwarz A, Wildemann B. Glatiramer acetate improves regulatory T-cell function by expansion of naive CD4(+)CD25(+)FOXP3(+)CD31(+) T-cells in patients with multiple sclerosis. J. Neuroimmunol.216(1–2), 113–117 (2009).
  • Vandenbark AA, Huan J, Agotsch M et al. Interferon-β-1a treatment increases CD56bright natural killer cells and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J. Neuroimmunol.215(1–2), 125–128 (2009).
  • Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela M, Arnon R. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc. Natl Acad. Sci. USA97(21), 11472–11477 (2000).
  • Chen M, Gran B, Costello K, Johnson K, Martin R, Dhib-Jalbut S. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult. Scler.7(4), 209–219 (2001).
  • Aharoni R, Teitelbaum D, Sela M, Arnon R. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA94(20), 10821–10826 (1997).
  • Aharoni R, Eilam R, Stock A et al. Glatiramer acetate reduces Th-17 inflammation and induces regulatory T-cells in the CNS of mice with relapsing–remitting or chronic EAE. J. Neuroimmunol.225(1–2), 100–111 (2010).
  • Laurie C, Reynolds A, Coskun O, Bowman E, Gendelman HE, Mosley RL. CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J. Neuroimmunol.183(1–2), 60–68 (2007).
  • Reynolds AD, Stone DK, Hutter JA, Benner EJ, Mosley RL, Gendelman HE. Regulatory T cells attenuate TH17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J. Immunol. (Balt.)184(5), 2261–2271 (2010).

Patent

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.