155
Views
20
CrossRef citations to date
0
Altmetric
Theme: Parkinson's disease - Review

Metal attenuating therapies in neurodegenerative disease

, , , , &
Pages 1717-1745 | Published online: 09 Jan 2014

References

  • Hider RC, Ma YM, Molina-Holgado F, Gaeta A, Roy S. Iron chelation as a potential therapy for neurodegenerative disease. Biochem. Soc. Trans.36, 1304–1308 (2008).
  • Martinez A, Portero-Otin M, Pamplona R, Ferrer I. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol.20, 281–297 (2010).
  • Molina-Holgado F, Hider RC, Gaeta A, Williams R, Francis P. Metals ions and neurodegeneration. Biometals20, 639–654 (2007).
  • Sayre LM, Moreira PI, Smith MA, Perry G. Metal ions and oxidative protein modification in neurological disease. Ann. Ist. Super. Sanita41(2), 143–164 (2005).
  • Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov.3(3), 205–214 (2004).
  • Cho SY, Lee JH, Bae HD et al. Transglutaminase 2 inhibits apoptosis induced by calcium-overload through down-regulation of Bax. Exp. Mol. Med.42(9), 639–650 (2010).
  • Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J. Biol. Chem.276, 44284–44296 (2001).
  • Halliwell B, Gutteridge JM. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett.307, 108 (1992).
  • Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br. J. Pharmacol.146, 1041–1059 (2005).
  • Rana A, Gnaneswari D, Bansal S, Kundu B. Prion metal interaction: is prion pathogenesis a cause or a consequence of metal imbalance? Chem. Biol. Interact.181, 282–291 (2009).
  • Zimmermann M, Clarke O, Gulbis JM et al. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Biochemistry48, 11640–11654 (2009).
  • Maret W, Vallee BL. Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc. Natl Acad. Sci. USA95, 3478–3482 (1998).
  • Shastry BS. Neurodegenerative disorders of protein aggregation. Neurochem. Internat.43, 1–7 (2003).
  • Sungur CI, van der Hilst JCH, Simon A, Drenth JPH, Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N. Engl. J. Med.349, 1872–1872 (2003).
  • Antzutkin ON, Leapman RD, Balbach JJ, Tycko R. Supramolecular structural constraints on Alzheimer’s beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Biochemistry41, 15436–15450 (2002).
  • Török M, Milton S, Kayed R et al. Structural and dynamic features of Alzheimer’s abeta peptide in amyloid fibrils studied by site-directed spin labeling. J. Biol. Chem.43, 40810–40815 (2002).
  • Sikorski P, Atkins EDT, Serpell LC. Structure and texture of fibrous crystals formed by Alzheimer’s Aβ (11–25) peptide fragment. Structure11, 915–926 (2003).
  • Okon M, Bray P, Vucelic D. 1H NMR assignments and secondary structure of human beta 2-microglobulin in solution. Biochemistry31, 8906–8915 (1992).
  • Calabrese MF, Miranker AD. Metal binding sheds light on mechanism of amyloid assembly. Prion3, 1–4 (2009).
  • Rochet JC, Lansbury PT. Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol.10, 60–68 (2000).
  • Dobson CM. Protein folding and misfolding. Nature426, 884–890 (2003).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002).
  • Minaki H, Sasaki K, Honda H, Iwaki T. Prion protein oligomers in Creutzfeldt–Jakob disease detected by gel-filtration centrifuge columns. Neuropathology29(5), 536–542 (2009).
  • Lee S, Fernandez EJ, Good TA. Role of aggregation conditions in structure, stability, and toxicity of intermediates in the A beta fibril formation pathway. Protein Sci.16, 723–732 (2007).
  • Cowan CM, Raymond LA. Selective neuronal degeneration in Huntington’s disease. Curr. Top. Dev. Biol.75, 25–71 (2006).
  • Tobin AJ, Singer ER. Huntington disease: the challenge for cell biologists. Trends Cell Biol.10, 531–536 (2000).
  • Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu. Rev. Neurosci.30, 575–621 (2007).
  • Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin. Genet.65, 267–277 (2004).
  • Meriin AB, Zhang XQ, He HW, Newnam GP, Chernoff YO, Sherman MY. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol.157, 997–1004 (2002).
  • Nishitoh H, Matsuzawa A, Tobiume K et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev.16, 1345–1355 (2002).
  • Nguyen T, Hamby A, Massa SM. Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proc. Natl Acad. Sci. USA102, 11840–11845 (2005).
  • Carlson KM, Andresen JM, Orr HT. Emerging pathogenic pathways in the spinocerebellar ataxias. Curr. Opin. Genet. Dev.19, 247–253 (2009).
  • Soong B, Paulson HL. Spinocerebellar ataxias: an update. Curr. Opin. Neurol.20, 438–346 (2007).
  • Alper G, Narayanan V. Friedreich’s ataxia. Pediatr. Neurol.28, 335–341 (2003).
  • Babcock M, de Silva D, Oaks R et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homology of frataxin. Science276, 1709–1712 (1997).
  • Knight SAB, Kim R, Pain D, Dancis A. Insights from model systems – the yeast connection to Friedreich Ataxia. Am. J. Hum. Genet.64, 365–371 (1999).
  • Babady NE, Carelle N, Wells RD et al. Advancements in the pathophysiology of Friedreich’s Ataxia and new prospects for treatments. Mol. Genet. Metab.92, 23–35 (2007).
  • Boddaert N, Le Quan Sang KH, Rotig A et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood110(1), 401–408 (2007).
  • Pashankar F, Singhal V, Akabogu I, Gatti RA, Goldman FD. Intact T cell responses in ataxia telangiectasia. Clin. Immunol.120, 156–162 (2006).
  • Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell130, 991–1004 (2007).
  • Shackelford RE, Manuszak RP, Johnson CD et al. Desferrioxamine treatment increases the genomic stability of Ataxia-telangiectasis cells. DNA Repair2, 971–981 (2003).
  • Battistini S, Giannini F, Greco G et al. SOD1 mutations in amyotrophic lateral sclerosis. Results from a multicenter Italian study. J. Neurol.252, 782–788 (2005).
  • Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci.7, 710–723 (2006).
  • Kabashi E, Valdmanis PN, Dion P, Rouleau GA. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann. Neurol.62, 553–559 (2007).
  • Carri MT, Ferri A, Cozzolino M et al. Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res. Bull.61, 365–374 (2003).
  • Watanabe S, Nagano S, Duce J et al. Increased affinity for copper mediated by cysteine 111 in forms of mutant superoxide dismutase 1 linked to amyotrophic lateral sclerosis. Free Radic. Biol. Med.42, 1534–1542 (2007).
  • Wicklund MP. Amyotrophic lateral sclerosis: possible role of environmental influences. Neurol. Clin.23, 461–484 (2005).
  • Petri S, Calingasan NY, Alsaied OA et al. The lipophilic metal chelators DP-109 and DP-460 are neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurochem.102, 991–1000 (2007).
  • Pfeiffer RF. Wilson’s disease. Semin. Neurol.27, 123–132 (2007).
  • Hoogenraad TU. Paradigm shift in the treatment of Wilson’s disease: zinc therapy now treatment of choice. Brain Dev.28, 141–146 (2006).
  • Walshe JM. Penicillamine, a new oral therapy for Wilson’s disease. Am. J. Med.21, 487–495 (1956).
  • Brewer GJ, Askari F, Lorincz MT et al. Treatment of Wilson disease with ammonium tetrathiomolybdate. Arch. Neurol.63, 521–527 (2006).
  • Walshe JM, Yealland M. Chelation treatment of neurological Wilson’s disease. Q. J. Med.86, 197–204 (1993).
  • Tanzi RE, Petrukhin K, Chernov I et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat. Genet.5, 344–350 (1993).
  • Bertini I, Rosato A. Menkes disease. Cell Mol. Life Sci.65, 89–91 (2008).
  • Garnica A, Chan WY, Rennert O. Copper–histidine treatment of Menkes disease. J. Pediatr.123(4), 336–338 (1994).
  • Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome. Nat. Genet.28, 345–349 (2001).
  • Hayflick SJ. Unraveling the Hallervorden–Spatz syndrome: pantothenate kinase-associated neurodegeneration is the name. Curr. Opin. Pediatr.15, 572–577 (2003).
  • Hayflick SJ. First scientific workshop on Hallervorden–Spatz syndrome: executive summary. Pediatr. Neurol.25, 99–101 (2001).
  • Tripathi RC, Tripathi BJ, Bauserman SC et al. Clinicopathologic correlation and pathogenesis of ocular and central nervous system manifestations in Hallervorden–Spatz syndrome. Acta Neuropathol.83, 113–119 (1992).
  • Miyajima H. Aceruloplasminemia, an iron metabolic disorder. Neuropathology23, 345–350 (2003).
  • Miyajima H, Takahashi Y, Kamata T, Shimizu H, Sakai N, Gitlin JD. Use of desferrioxamine in the treatment of aceruloplasminemia. Ann. Neurol.41, 404–407 (1997).
  • Kono S, Miyajima H. Molecular and pathological basis of aceruloplasminaemia. Biol. Res.39, 15–23 (2006).
  • Hautot D, Pankhurst QA, Morris CM, Curtis A, Burn J, Dobson J. Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim. Biophys. Acta1772, 21–25 (2007).
  • Ohta E, Nagasaka T, Shindo K et al. [Clinical features of neuroferritinopathy]. Rinsho Shinkeigaku49, 254–261 (2009).
  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N. Eng. J. Med.362(4), 329–344 (2010).
  • Jalbert JJ, Daiello LA, Lapane KL. Dementia of the Alzheimer type. Epidemiol. Rev.30, 15–34 (2008).
  • Rogers D, Schor NF. The child is father to the man: developmental roles for proteins of importance for neurodegenerative disease. Ann. Neurol.67(2), 151–158 (2010).
  • den Dunnen WF, Brouwer WH, Bijlard E et al. No disease in the brain of a 115-year-old woman. Neurobiol. Aging29(8), 1127–1132 (2008).
  • Urbanelli L, Magini A, Ciccarone V et al. New perspectives for the diagnosis of Alzheimer’s disease. Recent Pat. CNS Drug Discov.4(3), 160–181 (2009).
  • McDonald CR, McEvoy LK, Gharapetian L et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology73(6), 457–465 (2009).
  • Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev.81(2), 741–766 (2001).
  • Crouch PJ, Harding SM, White AR, Camakaris J, Bush AI, Masters CL. Mechanisms of A beta mediated neurodegeneration in Alzheimer’s disease. Int. J. Biochem. Cell Biol.40(2), 181–198 (2008).
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol.8(2), 101–112 (2007).
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science256(5054), 184–185 (1992).
  • Muresan Z, Muresan V. A phosphorylated, carboxy-terminal fragment of beta-amyloid precursor protein localizes to the splicing factor compartment. Hum. Mol. Genet.13(5), 475–488 (2004).
  • Cottrell BA, Galvan V, Banwait S et al. A pilot proteomic study of amyloid precursor interactors in Alzheimer’s disease. Ann. Neurol.58(2), 277–289 (2005).
  • Perreau VM, Orchard S, Adlard PA et al. A domain level interaction network of amyloid precursor protein and Abeta of Alzheimer’s disease. Proteomics10(12), 2377–2395 (2010).
  • Dawson GR, Seabrook GR, Zheng H et al. Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience90(1), 1–13 (1999).
  • Ring S, Weyer SW, Kilian SB et al. The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J. Neurosci.27(29), 7817–7826 (2007).
  • Sinha S, Anderson JP, Barbour R et al. Purification and cloning of amyloid precursor protein beta-secretase from human Brain Nature402(6761), 537–540 (1999).
  • Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG. Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease Brain Biochem. Biophys. Res. Commun.276(2), 422–427 (2000).
  • Lim KH, Collver HH, Le YT, Nagchowdhuri P, Kenney JM. Characterizations of distinct amyloidogenic conformations of the Abeta (1–40) and (1–42) peptides. Biochem. Biophys. Res. Commun.353(2), 443–449 (2007).
  • Harper JD, Wong SS, Lieber CM, Lansbury PT Jr. Assembly of A beta amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease. Biochemistry38(28), 8972–8980 (1999).
  • Jarrett JT, Lansbury PT Jr. Seeding ‘one-dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell73(6), 1055–1058 (1993).
  • Kayed R, Head E, Thompson JL et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300(5618), 486–489 (2003).
  • Klein WL, Krafft GA, Finch CE. Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci.24(4), 219–224 (2001).
  • Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J. Biol. Chem.277(35), 32046–32053 (2002).
  • Klyubin I, Betts V, Welzel AT et al. Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J. Neurosci.28(16), 4231–4237 (2008).
  • Lue LF, Kuo YM, Roher AE et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol.155(3), 853–862 (1999).
  • McLean CA, Cherny RA, Fraser FW et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol.46(6), 860–866 (1999).
  • Walsh DM, Selkoe DJ. A beta oligomers – a decade of discovery. J. Neurochem.101(5), 1172–1184 (2007).
  • Walsh DM, Townsend M, Podlisny MB et al. Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J. Neurosci.25(10), 2455–2462 (2005).
  • Crouch PJ, Blake R, Duce JA et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1–42. J. Neurosci.25(3), 672–679 (2005).
  • Crouch PJ, Hung LW, Adlard PA et al. Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc. Natl Acad. Sci. USA106(2), 381–386 (2009).
  • Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell120(4), 545–555 (2005).
  • Higuchi M, Lee VM, Trojanowski JQ. Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med.2(2), 131–150 (2002).
  • Khlistunova I, Biernat J, Wang Y et al. Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J. Biol. Chem.281(2), 1205–1214 (2006).
  • Iqbal K, Liu F, Gong CX et al. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol.118(1), 53–69 (2009).
  • Gotz J, Chen F, van Dorpe J et al. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science293(5534), 1491–1495 (2001).
  • Lewis J, Dickson DW, Lin WL et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science293(5534), 1487–1491 (2001).
  • Oddo S, Caccamo A, Shepherd JD et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron39(3), 409–421 (2003).
  • Rapoport M, Dawson HN, Binder LI et al. Tau is essential to beta-amyloid-induced neurotoxicity. Proc. Natl Acad. Sci. USA99(9), 6364–6369 (2002).
  • Roberson ED, Scearce-Levie K, Palop JJ et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science316(5825), 750–754 (2007).
  • Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell77(6), 817–827 (1994).
  • Huang X, Atwood CS, Hartshorn MA et al. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry38(24), 7609–7616 (1999).
  • Opazo C, Huang X, Cherny RA et al. Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J. Biol. Chem.277(43), 40302–40308 (2002).
  • Atwood CS, Huang X, Moir RD, Tanzi RE, Bush AI. Role of free radicals and metal ions in the pathogenesis of Alzheimer’s disease. Met. Ions Biol. Syst.36, 309–364 (1999).
  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci.158(1), 47–52 (1998).
  • Gaggelli E, Grzonka Z, Kozlowski H et al. Structural features of the Cu(II) complex with the rat Abeta(1–28) fragment. Chem. Commun. (Camb.)3, 341–343 (2008).
  • Arlt S, Beisiegel U, Kontush A. Lipid peroxidation in neurodegeneration: new insights into Alzheimer’s disease. Curr. Opin. Lipidol.13(3), 289–294 (2002).
  • Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging23(5), 655–664 (2002).
  • Perry G, Taddeo MA, Petersen RB et al. Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals16(1), 77–81 (2003).
  • Smith CD, Carney JM, Starke-Reed PE et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc. Natl Acad. Sci. USA88(23), 10540–10543 (1991).
  • Bush AI. Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol. Aging23(6), 1031–1038 (2002).
  • Good PF, Perl DP, Bierer LM, Schmeidler J. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann. Neurol.31(3), 286–292 (1992).
  • Gupta VB, Anitha S, Hegde ML et al. Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol. Life Sci.62(2), 143–158 (2005).
  • Kawahara M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J. Alzheimers Dis.8(2), 171–182; discussion 209–115 (2005).
  • Ridge PG, Zhang Y, Gladyshev VN. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS One3(1), E1378 (2008).
  • Xie CX, Mattson MP, Lovell MA et al. Intraneuronal aluminum potentiates iron-induced oxidative stress in cultured rat hippocampal neurons. Brain Res.743(1–2), 271–277 (1996).
  • Clauberg M, Joshi JG. Regulation of serine protease activity by aluminum: implications for Alzheimer disease. Proc. Natl Acad. Sci. USA90(3), 1009–1012 (1993).
  • Kawahara M, Muramoto K, Kobayashi K et al. Aluminum promotes the aggregation of Alzheimer’s amyloid beta-protein in vitro. Biochem. Biophys. Res. Commun.198(2), 531–535 (1994).
  • Schlief ML, Craig AM, Gitlin JD. NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J. Neurosci.25(1), 239–246 (2005).
  • Giese A, Buchholz M, Herms J, Kretzschmar HA. Mouse brain synaptosomes accumulate copper-67 efficiently by two distinct processes independent of cellular prion protein. J. Mol. Neurosci.27(3), 347–354 (2005).
  • Duce JA, Bush AI. Biological metals and Alzheimer’s disease: implications for therapeutics and diagnostics. Prog. Neurobiol.92(1), 1–18 (2010).
  • Bucossi S, Ventriglia M, Panetta V et al. Copper in Alzheimer’s disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies. J. Alzheimers Dis.24(1), 175–185 (2011).
  • Squitti R, Lupoi D, Pasqualetti P et al. Elevation of serum copper levels in Alzheimer’s disease. Neurology59(8), 1153–1161 (2002).
  • Deibel MA, Ehmann WD, Markesbery WR. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J. Neurol. Sci.143(1–2), 137–142 (1996).
  • Loeffler DA, LeWitt PA, Juneau PL et al. Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Res.738(2), 265–274 (1996).
  • Brown DR. Brain proteins that mind metals: a neurodegenerative perspective. Dalton Trans.21, 4069–4076 (2009).
  • Huang X, Cuajungco MP, Atwood CS et al. Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem.274(52), 37111–37116 (1999).
  • Atwood CS, Perry G, Zeng H et al. Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-beta. Biochemistry43(2), 560–568 (2004).
  • Barnham KJ, Haeffner F, Ciccotosto GD et al. Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J.18(12), 1427–1429 (2004).
  • Vallee BL, Coleman JE, Auld DS. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc. Natl Acad. Sci. USA88(3), 999–1003 (1991).
  • Frederickson CJ. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol.31, 145–238 (1989).
  • Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci.6(6), 449–462 (2005).
  • Smart TG, Hosie AM, Miller PS. Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist10(5), 432–442 (2004).
  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl Acad. Sci. USA96(4), 1716–1721 (1999).
  • Linkous DH, Flinn JM, Koh JY et al. Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J. Histochem. Cytochem.56(1), 3–6 (2008).
  • Palmiter RD, Cole TB, Quaife CJ, Findley SD. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl Acad. Sci. USA93(25), 14934–14939 (1996).
  • Deshpande A, Kawai H, Metherate R et al. A role for synaptic zinc in activity-dependent Aβ oligomer formation and accumulation at excitatory synapses. J. Neurosci.29(13), 4004–4015 (2009).
  • Baum L, Chan IH, Cheung SK et al. Serum zinc is decreased in Alzheimer’s disease and serum arsenic correlates positively with cognitive ability. Biometals23(1), 173–179 (2010).
  • Molina JA, Jimenez-Jimenez FJ, Aguilar MV et al. Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J. Neural Transm.105(4–5), 479–488 (1998).
  • Friedlich AL, Lee JY, van Groen T et al. Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J. Neurosci.24(13), 3453–3459 (2004).
  • Suh SW, Jensen KB, Jensen MS et al. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res.852(2), 274–278 (2000).
  • Adlard PA, Parncutt JM, Finkelstein DI, Bush AI. Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J. Neurosci.30(5), 1631–1636 (2010).
  • Lee JY, Kim JH, Hong SH et al. Estrogen decreases zinc transporter 3 expression and synaptic vesicle zinc levels in mouse Brain J. Biol. Chem.279(10), 8602–8607 (2004).
  • Hebert LE, Scherr PA, McCann JJ, Beckett LA, Evans DA. Is the risk of developing Alzheimer’s disease greater for women than for men? Am. J. Epidemiol.153(2), 132–136 (2001).
  • Ruitenberg A, Ott A, van Swieten J C et al. Incidence of dementia: does gender make a difference? Neurobiol. Aging22(4), 575–580 (2001).
  • Bush AI, Pettingell WH Jr, Paradis MD, Tanzi RE. Modulation of A beta adhesiveness and secretase site cleavage by zinc. J. Biol. Chem.269(16), 12152–12158 (1994).
  • Atwood CS, Moir RD, Huang X et al. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem.273(21), 12817–12826 (1998).
  • Bush AI, Pettingell WH, Multhaup G et al. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science265(5177), 1464–1467 (1994).
  • Cherny RA, Legg JT, McLean CA et al. Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. J. Biol. Chem.274(33), 23223–23228 (1999).
  • Yoshiike Y, Tanemura K, Murayama O et al. New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity. J. Biol. Chem.276(34), 32293–32299 (2001).
  • Terry RD. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol.55(10), 1023–1025 (1996).
  • Carson JA, Turner AJ. Beta-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases? J. Neurochem.81(1), 1–8 (2002).
  • Ling Y, Morgan K, Kalsheker N. Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int. J. Biochem. Cell Biol.35(11), 1505–1535 (2003).
  • Beard JL, Wiesinger JA. Connor JR. Pre- and post-weaning iron deficiency alters myelination in Sprague–Dawley rats. Dev. Neurosci.25, 308–315 (2003).
  • Lozoff B, Beard JL, Connor JR, Barbara F, Georgieff M, Schallert T. Long-lasting neural and behavioural effects of iron deficiency in infancy. Nutr. Rev.64, S34–S43 (2006).
  • Bishop GM, Robinson SR, Liu Q, Perry G, Atwood CS, Smith MA. Iron: a pathological mediator of Alzheimer disease? Dev. Neurosci.24(2–3), 184–187 (2002).
  • Collingwood J, Dobson J. Mapping and characterization of iron compounds in Alzheimer’s tissue. J. Alzheimers Dis.10(2–3), 215–222 (2006).
  • Collingwood JF, Mikhaylova A, Davidson M et al. In situ characterization and mapping of iron compounds in Alzheimer’s disease tissue. J. Alzheimers Dis.7(4), 267–272 (2005).
  • Connor JR, Menzies SL, St Martin SM, Mufson EJ. A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J. Neurosci. Res.31(1), 75–83 (1992).
  • Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J. Neurosci. Res.31(2), 327–335 (1992).
  • Grundke-Iqbal I, Fleming J, Tung YC, Lassmann H, Iqbal K, Joshi JG. Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol.81(2), 105–110 (1990).
  • Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet.39(1), 17–23 (2007).
  • Robson KJ, Lehmann DJ, Wimhurst VL et al. Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer’s disease. J. Med. Genet.41(4), 261–265 (2004).
  • Pinero DJ, Hu J, Connor JR. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer’s diseased brains. Cell Mol. Biol. (Noisy-le-Grand)46(4), 761–776 (2000).
  • Scott LE, Orvig C. Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem. Rev.109(10), 4885–4910 (2009).
  • Keberle H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann. NY Acad. Sci.119, 758–768 (1964).
  • Crapper McLachlan DR, Dalton AJ, Kruck TP et al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet337(8753), 1304–1308 (1991).
  • Squitti R, Rossini PM, Cassetta E et al. d-penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur. J. Clin. Invest.32(1), 51–59 (2002).
  • Lee JY, Friedman JE, Angel I, Kozak A, Koh JY. The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human beta-amyloid precursor protein transgenic mice. Neurobiol. Aging25(10), 1315–1321 (2004).
  • Barnham KJ, Kenche VB, Ciccotosto GD et al. Platinum-based inhibitors of amyloid-beta as therapeutic agents for Alzheimer’s disease. Proc. Natl Acad. Sci. USA105(19), 6813–6818 (2008).
  • Malm TM, Iivonen H, Goldsteins G et al. Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting beta-amyloid burden. J. Neurosci.27(14), 3712–3721 (2007).
  • Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ. Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure–activity relationships. J. Biol. Inorg. Chem.7(3), 249–259 (2002).
  • Green MA, Klippenstein DL, Tennison JR. Copper(II) bis(thiosemicarbazone) complexes as potential tracers for evaluation of cerebral and myocardial blood flow with PET. J. Nucl. Med.29(9), 1549–1557 (1988).
  • Donnelly PS, Caragounis A, Du T et al. Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide. J. Biol. Chem.283(8), 4568–4577 (2008).
  • Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J. Nucl. Med.38(7), 1155–1160 (1997).
  • Di Vaira M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P. Clioquinol, a drug for Alzheimer’s disease specifically interfering with brain metal metabolism: structural characterization of its zinc(II) and copper(II) complexes. Inorg. Chem.43(13), 3795–3797 (2004).
  • Cherny RA, Atwood CS, Xilinas ME et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron30(3), 665–676 (2001).
  • Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci.23(12), 5088–5095 (2003).
  • Ritchie CW, Bush AI, Mackinnon A et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot Phase 2 clinical trial. Arch. Neurol.60(12), 1685–1691 (2003).
  • Hegde LL, Bharathi P, Suram A et al. Challenges associated with metal chelation therapy in Alzheimer’s disease. J. Alzheimers Dis.17(3), 457–468 (2009).
  • Adlard PA, Cherny RA, Finkelstein DI et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron59(1), 43–55 (2008).
  • Adlard PA, Bica L, White AR et al. Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS One6(3), E17669 (2011).
  • Lannfelt L, Blennow K, Zetterberg H et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a Phase IIa, doubleblind, randomised, placebo-controlled trial. Lancet Neurol.7, 779–786 (2008).
  • White AR, Du T, Laughton KM et al. Degradation of the Alzheimer disease amyloid β-peptide by metal-dependent up-regulation of metalloprotease activity. J. Biol. Chem.281, 17670–17680 (2006).
  • Elbaz A, Bower JH, Maraganore DM et al. Risk tables for parkinsonism and Parkinson’s disease. J. Clin. Epidemiol.55, 25–31 (2002).
  • Hughes AJ, Daniel SE, Ben-Shlomo Y. Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain125, 861–870 (2002).
  • Hayes MW, Fung VS, Kimber TE, O’Sullivan JD. Current concepts in the management of Parkinson disease. Med. J. Aust.192, 144–149 (2010).
  • Braak H, Braak E. Pathoanatomy of Parkinson’s disease. J. Neurol.247(Suppl. 2), II3–II10 (2000).
  • Double KK, Gerlach M, Ben-Shachar D, Youdim MBH, Zecca L, Riederer P. Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotox. Teratol.24, 621–628 (2002).
  • Payami H, Zareparsi S, James D, Nutt J. Familial aggregation of Parkinson’s disease: a comparative study of early-onset and late-onset disease. Arch. Neurol.59, 848–850 (2002).
  • Tang GM, Xie XJ, Xu L, Hao YX, Lin DY, Ren DM. Genetic study of apolipoprotein E gene, α-1 antichymotrypsin gene in sporadic Parkinson’s disease. Am. J. Med. Genet.114, 446–449 (2002).
  • Altschuler E. Aluminum-containing antacids as a cause of idiopathic Parkinson’s disease. Med. Hypotheses53, 22–23 (1999).
  • Gorell JM, Johnson CC, Rybicki BA et al. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology20, 239–247 (1999).
  • Feldman AL, Johansson AL, Nise G et al. Occupational exposure in Parkinsonian disorders: a 43-year prospective cohort study in men. Parkinsonism Relat. Disord. doi:10.1016/j.parkreldis.2011.06.009 (2011) (Epub ahead of print).
  • Good PF, Olanow CW, Perl DP. Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res.593(2), 343–346 (1992).
  • Yasui M, Kihira T, Ota K. Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology13(3), 593–600 (1992).
  • Exley C, Birchall JD. The cellular toxicity of aluminium. J. Theor. Biol.159(1), 83–98 (1992).
  • Spillantini MG, Crowther RA, Jakes R et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl Acad. Sci. USA95(11), 6469–6473 (1998).
  • George JM, Jin H, Woods WS, Clayton DF. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron15(2), 361–372 (1995).
  • Alim MA, Ma QL, Takeda K et al. Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J. Alzheimers Dis.6(4), 435–442 (2004).
  • Beyer K. Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol.112(3), 237–251 (2006).
  • Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA. Fiber diffraction of synthetic a-synuclein filaments shows amyloid-like cross b-conformation. Proc. Natl Acad. Sci. USA97, 4897–4902 (2000).
  • Hochstrasser H, Bauer P, Walter U et al. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology63(10), 1912–1917 (2004).
  • Miranda S, Opazo C, Larrondo LF et al. The role of oxidative stress in the toxicity induced by amyloid b-peptide in Alzheimer’s disease. Prog. Neurobiol.62, 633–648 (2000).
  • Hedge ML, Jagannatha-Rao KS. Challenges and complexities of a-synuclein toxicity: new postulates in unfolding the mystery associated with Parkinson’s disease. Arch. Biochem. Biophys.418, 169–178 (2003).
  • Narhi L, Wood SJ, Steavenson S et al. Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J. Biol. Chem.274, 9843–9846 (1999).
  • Li J, Uversky VN, Fink AL. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein. Biochemistry40, 11604–11613 (2001).
  • Johnson J, Hague SM, Hanson M et al. SNCA multiplication is not a common cause of Parkinson disease or dementia with Lewy bodies. Neurology63, 554–556 (2004).
  • Bradbury J. Alpha-synuclein gene triplication discovered in Parkinson’s disease. Lancet Neurol.2, 715 (2003).
  • Sofic E, Lange KW, Jellinger K, Riederer P. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci. Lett.142, 128–130 (1992).
  • Gotz ME, Kunig G, Riederer P, Youdim MBM. Oxidative stress: free radical production in neural degeneration. Pharmacol. Ther.63, 37–122 (1994).
  • Ye FQ, Allen PS, Martin WRW. Basal ganglia iron content in Parkinson’s disease measured with magnetic resonance. Mov. Disord.11, 243–249 (1996).
  • Jelliger KA. The role of iron in neurodegeneration: prospects for pharmacology of Parkinson’s disease. Drugs Aging14, 115–140 (1999).
  • Xu J, Kao SY, Lee FJS, Song W, Jin LW, Yankner BA. Dopamine-dependent neurotoxicity of a-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med.8, 600–606 (2002).
  • Kienzl E, Puchinger L, Jellinger K, Linert W, Stachelberger H, Jameson RF. The role of transition metals in the pathogenesis of Parkinson’s disease. J. Neurol. Sci.134(Suppl.), 69–78 (1995).
  • Mandemakers W, Morais VA, De Strooper B. A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J. Cell Sci.120, 1707–1716 (2007).
  • Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR. MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn. Reson. Imaging15, 29–35 (1997).
  • Martin WR, Ye FQ, Allen PS. Increasing striatal iron content associated with normal aging. Mov. Disord.13, 281–286 (1998).
  • Caughman SW, Hentze MW, Rouault TA, Harford JB, Klausner RD. The iron-responsive element is the single element responsible for iron-dependent translational regulation of ferritin biosynthesis. Evidence for function as the binding site for a translational repressor. J. Biol. Chem.263, 19048–19052 (1988).
  • Kikinis Z, Eisenstein RS, Bettany AJ, Munro HN. Role of RNA secondary structure of the iron-responsive element in translational regulation of ferritin synthesis. Nucleic Acids Res.23, 4190–4195 (1995).
  • Levine SM, Chakrabarty A. The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann. NY Acad. Sci.1012, 252–266 (2004).
  • Connor JR, Snyder BS, Arosio P, Loeffler DA, Lewitt P. A quantitative analysis of isoferritins in select regions of aged, parkinsonian and Alzheimer’s diseased brains. J. Neurochem.65, 717–724 (1995).
  • Grunblatt E, Mandel S, Youdim MB. MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson’s disease: neuroprotective strategies. J. Neurol.247(Suppl. 2), 95–102 (2000).
  • Youdim MB, Grunblatt E, Mandel S. The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson’s disease with iron chelators. Ann. NY Acad. Sci.890, 7–25 (1999).
  • Rasia RM, Bertoncini CW, Marsh D et al. Structural characterization of copper(II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson’s disease. Proc. Natl Acad. Sci. USA102, 4294–4299 (2005).
  • Binolfi A, Rasia RM, Bertoncini CW et al. Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J. Am. Chem. Soc.128, 9893–9901 (2006).
  • Drew SC, Leong SL, Pham CL et al. Cu2+ binding modes of recombinant alpha-synuclein: insights from EPR spectroscopy. J. Am. Chem. Soc.130, 7766–7773 (2008).
  • Liu LL, Franz KJ. Phosphorylation of alpha-synuclein peptide fragment enhances metal binding. J. Am. Chem. Soc.127, 9662–9963 (2005).
  • Liu LL, Franz KJ. Phosphorylation-dependent metal binding by alpha-synuclein peptide fragments. J. Am. Chem. Soc.12, 234–247 (2007).
  • Nakamura T, Yamashita H, Nagano Y et al. Activation of Pyk2/RAFTK induces tyrosine phosphorylation of alpha-synuclein via Src-family kinases. FEBS Lett.521, 190–194 (2002).
  • Kim TD, Paik SR, Yang CH, Kim J. Structural changes in a-synuclein affect its chaperone-like activity in vitro.Protein Sci.9, 2489–2496 (2000).
  • Binolfi A, Lamberto GR, Duran R et al. Site-specific interactions of Cu(II) with alpha and beta-synuclein: bridging the molecular gap between metal binding and aggregation. J. Am. Chem. Soc.130, 11801–11812 (2008).
  • Swan GA. Structure, chemistry and biosynthesis of the melanins. Fortschr. Chem. Org. Naturst.31, 521–582 (1974).
  • Cheun WL. The chemical structure of melanin. Pigm. Cell Res.17, 422–424 (2004).
  • Ben-Shachar D, Riederer P, Youdim MB. Iron melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J. Neurochem.57, 1609–1614 (1991).
  • Youdim MBH. The enigma of neuromelanin in Parkinsonian substantia nigra. J. Neural Transm.43(Suppl.), 113–122 (1994).
  • Kropf AJ, Bunker BA, Eisner M et al. X-ray absorption finestructure spectroscopy studies of Fe sites in natural human neuromelanin and synthetic analogues. Biophys. J.75, 3135–3142 (1998).
  • Brindelli MG, Tampellini D, Zecca L. The structure of neuromelanin and its iron binding site studied by infrared spectroscopy. FEBS Lett.457, 18–22 (1999).
  • Kastner A, Hirsch EC, Lejeune O. Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J. Neurochem.59, 1080–1089 (1992).
  • Zecca L, Zucca FA, Wilms H, Sulzer D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci.26, 578–580 (2003).
  • Pahwa R. Pharmacologic management of Parkinson disease: initial therapy. Formulary41(Suppl.), 4–11 (2006).
  • Harris DC, Aisen P. Facilitation of Fe(II) autoxidation by Fe(III) complexing agents. Biochim. Biophys. Acta329, 156–158 (1973).
  • Hider RC. Potential protection from toxicity by oral iron chelators. Toxicol. Lett.82–83, 961–967 (1995).
  • Abeysinghe RD, Roberts PJ, Cooper CE, Maclean KH, Hider RC, Porter JB. The environment of the lipoxygenase iron binding site explored with novel hydroxypyridinone iron chelators. J. Biol. Chem.271, 7965–7972 (1996).
  • Cooper CE, Lynagh GR, Hoyes KP, Hider RC, Cammack R, Porter JB. The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase. J. Biol. Chem.271, 20291–20299 (1996).
  • Liu ZD, Lockwood M, Rose S, Theobald AE, Hider RC. Structure–activity investigation of the inhibition of 3-hydroxypyridin-4-ones on mammalian tyrosine hydroxylase. Biochem. Pharmacol.61, 285–290 (2001).
  • Kaur D, Yantiri F, Rajagopalan S et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo. Neuron37(6), 899–909 (2003).
  • Kidani Y, Naga S, Koike H. Mass spectrometry of 5-chloro-7-iodo-8-quinol metal chelates. Jap. Analyst23, 1375–1378 (1974).
  • Yassin MS, Ekblom J, Xilinas M, Gottfries CG, Oreland L. Changes in uptake of vitamin B(12) and trace metals in brains of mice treated with clioquinol. J. Neurol. Sci.173, 40–44 (2000).
  • Thompson KJ, Shoham S, Connor JR. Iron and neurodegenerative disorders. Brain Res. Bull.55, 155–164 (2001).
  • Porter JB, Huehns ER. The toxic effects of desferrioxamine. Baillieres Clin. Haematol.2, 459–474 (1989).
  • Marciani MG, Cianciulli P, Stefani N et al. Toxic effects of high-dose deferoxamine treatment in patients with iron overload: an electrophysiological study of cerebral and visual function. Haematologica76, 131–134 (1991).
  • Masters C. Alzheimer’s disease: modulation of the APP/beta-amyloid pathways toward rational therapeutic intervention. Presented at: 8th International Conference on Alzheimer’s Disease and Related Disorders. Stockholm, Sweden, 20–25 July 2002.
  • Tsubaki T, Honma Y, Hoshi M. Neurological syndrome associated with clioquinol. Lancet1, 696–697 (1971).
  • Ghosh B, Antonio T, Reith MEA, Dutta AK. Discovery of 4-(4-(2-((5-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)ethyl)piperazin-1-yl) quinolin-8-ol and its analogues as highly potent dopamine D2/D3 agonists and as iron chelator: in vivo activity indicates potential application in symptomatic and neuroprotective therapy for Parkinson’s disease. J. Med. Chem.53, 2114–2125 (2010).
  • Brown DR, Qin K, Herms JW et al. The cellular prion protein binds copper in vivo. Nature390, 684–687 (1997).
  • Jones CE, Abdelraheim SR, Brown DR, Viles JH. Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J. Biol. Chem.279, 32018–32027 (2004).
  • Jones CE, Klewpatinond M, Abdelraheim SR, Brown DR, Viles JH. Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. J. Mol. Biol.346, 1393–1407 (2005).
  • Stockel J, Safar J, Wallace AC, Cohen FE, Prusiner SB. Prion protein selectively binds copper(II) ions. Biochemistry37, 7185–7193 (1998).
  • Jackson GS, Murray I, Hosszu LL et al. Location and properties of metal-binding sites on the human prion protein. Proc. Natl Acad. Sci. USA98, 8531–8535 (2001).
  • Walter ED, Chattopadhyay M, Millhauser GL. The affinity of copper binding to the prion protein octarepeat domain: evidence for negative cooperativity. Biochemistry45, 13083–13092 (2006).
  • Treiber C, Thompsett AR, Pipkorn R, Brown DR, Multhaup G. Real-time kinetics of discontinuous and highly conformational metal-ion binding sites of prion protein. J. Biol. Inorg. Chem.12, 711–720 (2007).
  • Davies P, Brown DR. Manganese enhances prion protein survival in model soil and increases prion infectivity to cells. PLoS One4(10), E7518 (2009).
  • Nadal RC, Davies P, Brown DR, Viles JH. Evaluation of copper2+ affinities for the prion protein. Biochemistry48, 8929–8931 (2009).
  • Xiao Z, Wedd AG. The challenges of determining metal–protein affinities. Nat. Prod. Rep.27, 768–789 (2010).
  • Aronoff-Spencer E, Burns CS, Avdievich NI et al. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry39, 13760–13771 (2000).
  • Burns CS, Aronoff-Spencer E, Legname G et al. Copper coordination in the full-length, recombinant prion protein. Biochemistry42(22), 6794–6803 (2003).
  • Chattopadhyay M, Walter ED, Newell DJ et al. The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4. J. Am. Chem. Soc.127, 12647–12656 (2005).
  • Klewpatinond M, Viles JH. Fragment length influences affinity for Cu2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Biochem. J.404, 393–402 (2007).
  • Qin K, Yang DS, Yang Y et al. Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J. Biol. Chem.275, 19121–19131 (2000).
  • Quaglio E, Chiesa R, Harris DA. Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J. Biol. Chem.276, 11432–11438 (2001).
  • Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem.277, 21140–21148 (2002).
  • Bocharova OV, Breydo L, Salnikov VV, Baskakov IV. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry44, 6776–6787 (2005).
  • Thackray AM, Knight R, Haswell SJ, Bujdoso R, Brown DR. Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem. J.362, 253–258 (2002).
  • Wong BS, Chen SG, Colucci M et al. Aberrant metal binding by prion protein in human prion disease. J. Neurochem.78, 1400–1408 (2001).
  • Pauly PC, Harris DA. Copper stimulates endocytosis of the prion protein. J. Biol. Chem.273, 33107–33110 (1998).
  • Brown LR, Harris DA. Copper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the Golgi. J. Neurochem.87, 353–363 (2003).
  • Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH. A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics29, 764–779 (1962).
  • Kralovicova S, Fontaine SN, Alderton A et al. The effects of prion protein expression on metal metabolism. Mol. Cell. Neurosci.41(2), 135 (2009).
  • Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM. Normal prion protein has an activity like that of superoxide dismutase. Biochem. J.344(Pt 1), 1–5 (1999).
  • Jones S, Batchelor M, Bhelt D, Clarke AR, Collinge J, Jackson GS. Recombinant prion protein does not possess SOD-1 activity. Biochem. J.392, 309–312 (2005).
  • Hutter G, Heppner FL, Aguzzi A. No superoxide dismutase activity of cellular prion protein in vivo. Biol. Chem.384(9), 1279–1285 (2003).
  • Brazier MW, Doctrow SR, Masters CL, Collins SJ. A manganese-superoxide dismutase/catalase mimetic extends survival in a mouse model of human prion disease. Free Radic. Biol. Med.45(2), 184–192 (2008).
  • Davies P, Marken F, Salter S, Brown DR. Thermodynamic and voltammetric characterisation of the metal binding to the prion protein: insights into pH dependence and redox chemistry. Biochemistry48, 2610–2619 (2009).
  • Klamt F, Dal-Pizzol F, Conte da Frota MJ et al. Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic. Biol. Med.30, 1137–1144 (2001).
  • Brown DR, Schmidt B, Kretzschmar HA. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature380, 345–347 (1996).
  • White AR, Collins SJ, Maher F et al. Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am. J. Pathol.155(5), 1723–1730 (1999).
  • Choi CJ, Anantharam V, Saetveit NJ, Houk R, Kanthasamy A, Kanthasamy AG. Normal cellular prion protein protects against manganese-induced oxidative stress and apoptotic cell death. Toxicol. Sci.98(2), 495–509 (2007).
  • Brown DR, Schmidt B, Kretzschmar HA. Effects of copper on survival of prion protein knockout neurons and glia. J. Neurochem.70, 1686–1693 (1998).
  • Brown DR, Schulz-Schaeffer WJ, Schmidt B, Kretzschmar HA. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol.146, 104–112 (1997).
  • Brown DR, Schmidt B, Kretzschmar HA. Effects of oxidative stress on prion protein expression in PC12 cells. Int. J. Dev. Neurosci.15, 961–972 (1997).
  • Guentchev M, Voigtlander T, Haberler C, Groschup MH, Budka H. Evidence for oxidative stress in experimental prion disease. Neurobiol. Dis.7, 270–273 (2000).
  • Brazier MW, Lewis V, Ciccotosto GD et al. Correlative studies support lipid peroxidation is linked to PrP(res) propagation as an early primary pathogenic event in prion disease. Brain Res. Bull.68(5), 346–354 (2006).
  • Wong BS, Liu T, Li R et al. Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J. Neurochem.76, 565–572 (2001).
  • Pietri M, Caprini A, Mouillet-Richard SI et al. Overstimulation of PrPC signaling pathways by prion peptide 106–126 causes oxidative injury of bioaminergic neuronal cells. J. Biol. Chem.281, 28470–28479 (2006).
  • Bueler H, Aguzzi A, Sailer A et al. Mice devoid of PrP are resistant to scrapie. Cell73, 1339–1347 (1993).
  • Pandey K, Snyder JP, Liotta DC, Musaev DG. Computational studies of transition metal selectivity of octapeptide repeat region of prion protein (PrP). J. Phys. Chem.114(2), 1127–1135 (2010).
  • Brown DR, Hafiz F, Glasssmith LL et al. Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J.19, 1180–1186 (2000).
  • Garnett AP, Viles JH. Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding, and cooperativity: insights from circular dichroism. J. Biol. Chem.278, 6795–6802 (2003).
  • Brazier MW, Davies P, Player E, Marken F, Viles JH, Brown DR. Manganese binding to the prion protein. J. Biol. Chem.283(19) 12831–12839 (2008).
  • Hesketh S, Sassoon J, Knight R, Brown DR. Elevated manganese levels in blood and CNS in human prion disease. Mol. Cell Neurosci.37, 590–598 (2008).
  • Hesketh S, Sassoon J, Knight R, Hopkins J, Brown DR. Elevated manganese levels in blood and central nervous system occur before onset of clinical signs in scrapie and bovine spongiform encephalopathy. J. Anim. Sci.85, 1596–1609 (2007).
  • Purdey M. Ecosystems supporting clusters of sporadic TSEs demonstrate excesses of the radical-generating divalent cation manganese and deficiencies of antioxidant co factors Cu, Se, Fe, Zn. Does a foreign cation substitution at prion protein’s Cu domain initiate TSE? Med. Hypotheses54, 278–306 (2000).
  • Legleiter LR, Ahola JK, Engle TE, Spears JW. Decreased brain copper due to copper deficiency has no effect on bovine prion proteins. Biochem. Biophys. Res. Commun.352, 884–888 (2007).
  • Legleiter LR, Liu HC, Lloyd KE, Hansen SL, Fry RS, Spears JW. Exposure to low dietary copper or low copper coupled with high dietary manganese for one year does not alter brain prion protein characteristics in the mature cow. J. Anim. Sci.85, 2895–2903 (2007).
  • Imrie CE, Korre A, Munoz-Melendez G. Spatial correlation between the prevalence of transmissible spongiform diseases and British soil geochemistry. Environ. Geochem. Health31, 133–145 (2009).
  • Chihota CM, Gravenor MB, Baylis M. Investigation of trace elements in soil as risk factors in the epidemiology of scrapie. Vet. Rec.154, 809–813 (2004).
  • Giese A, Levin J, Bertsch U, Kretzschmar H. Effect of metal ions on de novo aggregation of full-length prion protein. Biochem. Biophys. Res. Commun.320, 1240–1246 (2004).
  • Levin J, Bertsch U, Kretzschmar H, Giese A. Single particle analysis of manganese-induced prion protein aggregates. Biochem. Biophys. Res. Commun.329(4), 1200–1207 (2005).
  • Zhu F, Davies P, Thompsett AR et al. Raman optical activity and circular dichroism reveal dramatic differences in the influence of divalent copper and manganese ions on prion protein folding. Biochemistry47, 2510–2517 (2008).
  • Tsenkova RN, Iordanova IK, Toyoda K, Brown DR. Prion protein fate governed by metal binding. Biochem. Biophys. Res. Commun.325, 1005–1012 (2004).
  • Treiber C, Simons A, Multhaup G. Effect of copper and manganese on the de novo generation of protease-resistant prion protein in yeast cells. Biochemistry45, 6674–6680 (2006).
  • Kim NH, Choi JK, Jeong BH et al. Effect of transition metals (Mn, Cu, Fe) and deoxycholic acid (DA) on the conversion of PrPC to PrPres. FASEB J.19(7), 783–785 (2005).
  • Li X, Dong C, Wang G et al. Manganese induces changes of the biochemical characteristics of the recombinant wild-type and mutant PrPs. Med. Microbiol. Immunol.198, 239–245 (2009).
  • Varela-Nallar L, Toledo EM, Larrondo LF, Cabral AL, Martins VR, Inestrosa NC. Induction of cellular prion protein gene expression by copper in neurons. Am. J. Physiol. Cell Physiol.290, C271–C281 (2006).
  • Choi CJ, Kanthasamy A, Anantharam V, Kanthasamy AG. Interaction of metals with prion protein: possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology27, 777–787 (2006).
  • Rachidi W, Vilette D, Guiraud P et al. Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J. Biol. Chem.278, 9064–9072 (2003).
  • Kim NH, Park SJ, Jin JK et al. Increased ferric iron content and iron-induced oxidative stress in the brains of scrapie-infected mice. Brain Res.884, 98–103 (2000).
  • Basu S, Mohan ML, Luo X, Kundu B, Kong Q, Singh N. Modulation of proteinase K-resistant prion protein in cells and infectious brain homogenate by redox iron: implications for prion replication and disease pathogenesis. Mol. Biol. Cell.18, 3302–3312 (2007).
  • Singh A, Kong Q, Luo X, Petersen RB, Meyerson H, Singh N. Prion protein (PrP) knock-out mice show altered iron metabolism: a functional role for PrP in iron uptake and transport. PLoS One4, E6115 (2009).
  • Singh A, Mohan ML, Isaac AO et al. Prion protein modulates cellular iron uptake: a novel function with implications for prion disease pathogenesis. PLoS One4, E4468 (2009).
  • Singh A, Isaac A. O, Luo X et al. Abnormal brain iron homeostasis in human and animal prion disorders. PLoS Pathog.5, E1000336 (2009).
  • Stefureac RI, Madampage CA, Andrievskaia O, Lee JS. Nanopore analysis of the interaction of metal ions with prion proteins and peptides. Biochem. Cell Biol.88, 347–358 (2010).
  • Jobling MF, Huang X, Stewart LR et al. Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106–126. Biochemistry40, 8073–8084 (2001).
  • Ju WK, Park KJ, Choi EK et al. Expression of inducible nitric oxide synthase in the brains of scrapie-infected mice. J. Neurovirol.4, 445–450 (1998).
  • Choi SI, Ju WK, Choi EK et al. Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent. Acta Neuropathol.96, 279–286 (1998).
  • Guentchev M, Siedlak SL, Jarius C et al. Oxidative damage to nucleic acids in human prion disease. Neurobiol. Dis.9, 275–281 (2002).
  • Andreoletti O, Levavasseur E, Uro-Coste E et al. Oxidative damage to nucleic acids in human prion disease. Neurobiol. Dis.11, 386–393 (2002).
  • Mitteregger G, Korte S, Shakarami M, Herms J, Kretzschmar HA. Role of copper and manganese in prion disease progression. Brain Res.1292, 155–164 (2009).
  • Sigurdsson EM, Brown DR, Alim MA et al. Copper chelation delays the onset of prion disease. J. Biol. Chem.278, 46199–46202 (2003).
  • Brazier MW, Volitakis I, Kvasnicka M et al. Manganese chelation therapy extends survival in a mouse model of M1000 prion disease. J. Neurochem.114, 440–451 (2010).
  • Ponti W, Sala M, Pollera C, Braida D, Poli G, Bareggi S. In vivo model for the evaluation of molecules active towards transmissible spongiform encephalopathies. Vet. Res. Comm.28, 307–310 (2004).
  • Pollera C, Lucchini B, Formentin E, Bareggi S, Poli G, Ponti W. Evaluation of anti-prionic activity of clioquinol in an in vivo model (Mesocricetus auratus). Vet. Res. Comm.29(Suppl. 2), 253–255 (2005).
  • Brazier MW, Wall V, Brazier BW, Masters CL, Collins SJ. Therapeutic interventions ameliorating prion disease. Exp. Rev. Anti Infect. Ther.7(1), 83–105 (2009).
  • Hijazi N, Shaked Y, Rosenmann H, Ben-Hur T, Gabizon R. Copper binding to PrPC may inhibit prion disease propagation. Brain Res.993, 192–200 (2003).
  • Hortells P, Monleón E, Acín C et al. The effect of metal imbalances on scrapie neurodegeneration. Zoonoses Public Health57(5), 358–366 (2010).
  • Melov S, Doctrow SR, Schneider JA et al. Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J. Neurosci.21, 8348–8353 (2001).
  • Horning MS, Blakemore LJ, Trombley PQ. Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine. Brain Res.852(1), 56–61 (2000).
  • Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF. Delineating common molecular mechanisms in Alzheimer’s and prion diseases. Trends Biochem. Sci.31(8), 465–472 (2006).
  • Herrero Hernandez E, Discalzi G, Dassi P, Jarre L, Pira E. Manganese intoxication: the cause of an inexplicable epileptic syndrome in a 3 year old child. Neurotoxicology23(6), 669–674 (2003).
  • Herrero Hernandez E, Discalzi G, Valentini C et al. Follow-up of patients affected by manganese-induced Parkinsonism after treatment with CaNaEDTA. Neurotoxicology27(3), 333–339 (2006).
  • Lang BF, Gray MW, Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet.33, 351–397 (1999).
  • Manella CA. Structural diversity of mitochondria: functional implications. Ann. NY Acad. Sci.1147, 171–179 (2008).
  • Lin MT, Flint Beal M. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature443, 787–795 (2006).
  • Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience145(4), 1233–1248 (2007).
  • Cassarino DS, Bennett JP Jr. An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res. Rev.29, 1–25 (1999).
  • Petri S, Kiaei M, Damiano M et al. Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J. Neurochem.98(4), 1141–1148 (2006).
  • Moreira PI, Zhu Z, Wang X et al. Mitochondria: a therapeutic target in neurodegeneration. Biochim. Biophys. Acta1802(1), 212–220 (2010).
  • Valla J, Berndt JD, Gonzalez-Lima F. Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration. J. Neurosci.21, 4923–4930 (2001).
  • Manczak M, Park BS, Jung Y, Reddy PH. Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med.5, 147–162 (2004).
  • Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol.58, 495–505 (2005).
  • Castellani R, Hirai K, Aliev G et al. Role of mitochondrial dysfunction in Alzheimer’s disease. J. Neurosci. Res.70, 357–360 (2002).
  • Gibson GE, Zhang H, Toral-Barza L, Szolosi S, Tofel-Grehl B. Calcium stores in cultured fibroblasts and their changes with Alzheimer’s disease. Biochim. Biophys. Acta.1316, 71–77 (1996).
  • Mutisya EM, Bowling AC, Beal MF. Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J. Neurochem.63, 2179–2184 (1994).
  • Nagy Z, Esiri MM, LeGris M, Matthews PM. Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology. Acta Neuropathol. (Berl.)97, 346–354 (1999).
  • Cottrell DA, Blakely EL, Johnson MA, Ince PG, Turnbull DM. Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology57, 260–264 (2001).
  • Eckert A, Schulz KL, Rhein V, Gotz J. Convergence of amyloid-b and tau pathologies on mitochondria in vivo. J. Mol. Neurobiol.41(2–3), 107–114 (2010).
  • Schapira AHV, Mann VM, Cooper JM et al. Anatomic and disease specificity of NADH CoQ reductase (complex I) deficiency in Parkinson’s disease. J. Neurochem.55(6), 2142–2145 (1990).
  • Mann VM, Cooper JM, Kriige D, Daniel SE, Schapira AHV, Marsden D. Brain, skeletal muscle, and platelet homogenate mitochondrial functions in Parkinson’s disease. Brain115, 333–342 (1992).
  • Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet1, 1269 (1989).
  • Shon EA, Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J. Clin. Invest.111, 303–312 (2003).
  • Lagadic-Gossmann D, Huc L, Lecureur V. Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ.11, 953–961 (2004).
  • Nilsson C, Johansson U, Johansson AC, Kagedal K, Ollinger K. Cytosolic acidification and lysosomal alkalinization during TNF-alpha induced apoptosis in U937 cells. Apoptosis11, 1149–1159 (2006).
  • Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL. Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. J. Biol. Chem.283, 9089–9100 (2008).
  • Nakamura K, Nemani VM, Wallender EK, Kaehlcke K, Ott M, Edwards RH. Optical reporters for the conformation of alpha-synuclein reveal a specific interaction with mitochondria. J. Neurosci.28, 12305–12317 (2008).
  • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci.26, 9057–9068 (2006).
  • Elkon H, Don J, Melamed E, Ziv I, Shirvan A, Offen D. Mutant and wild-type α-synuclein interact with mitochondrial cytochrome c oxidase. J. Mol. Neurosci.18, 229–238 (2002).
  • O’Donovan CN, Tobin D, Cotter TG. Prion protein fragment PrP-(106–126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J. Biol. Chem.47(276), 43516–43523 (2001).
  • Lee DW, Sohn HO, Lim HB et al. Alteration of free radical metabolism in the of mice infected with scrapie agent. Free Rad. Res.30, 499–507 (1999).
  • Siskova Z, Mahad DJ, Pudney C et al. Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease. Am. J. Pathol.177(3), 1411–1421 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.