213
Views
22
CrossRef citations to date
0
Altmetric
Theme: CNS neoplasms - Review

Galectin-1 and immunotherapy for brain cancer

, , , &
Pages 533-543 | Published online: 09 Jan 2014

References

  • Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol.114(2), 97–109 (2007).
  • Stupp R, Hegi ME, Mason WP et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol.10(5), 459–466 (2009).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Brada M, Hoang-Xuan K, Rampling R et al. Multicenter Phase II trial of temozolomide in patients with glioblastoma multiforme at first relapse. Ann. Oncol.12(2), 259–266 (2001).
  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol.3(11), 991–998 (2002).
  • Dunn GP, Dunn IF, Curry WT. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun.7, 12 (2007).
  • Okada H, Kohanbash G, Zhu X et al. Immunotherapeutic approaches for glioma. Crit. Rev. Immunol.29(1), 1–42 (2009).
  • Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol.25, 267–296 (2007).
  • Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat. Rev. Cancer5(1), 29–41 (2005).
  • Demydenko D, Berest I. Expression of galectin-1 in malignant tumors. Exp. Oncol.31(2), 74–79 (2009).
  • Rabinovich GA. Galectin-1 as a potential cancer target. Br. J. Cancer92(7), 1188–1192 (2005).
  • Rabinovich GA, Liu FT, Hirashima M, Anderson A. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand. J. Immunol.66(2–3), 143–158 (2007).
  • Ilarregui JM, Bianco GA, Toscano MA, Rabinovich GA. The coming of age of galectins as immunomodulatory agents: impact of these carbohydrate binding proteins in T cell physiology and chronic inflammatory disorders. Ann. Rheum. Dis.64(Suppl. 4), 96–103 (2005).
  • Levi G, Teichberg VI. Isolation and physicochemical characterization of electrolectin, a β-D-galactoside binding lectin from the electric organ of Electrophorus electricus. J. Biol. Chem.256(11), 5735–5740 (1981).
  • Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem.269(33), 20807–20810 (1994).
  • Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med.10, e17 (2008).
  • Leffler H. Galectins structure and function – a synopsis. Results Probl. Cell Differ.33, 57–83 (2001).
  • Cooper DN, Barondes SH. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J. Cell Biol.110(5), 1681–1691 (1990).
  • Yamaoka K, Mishima K, Nagashima Y, Asai A, Sanai Y, Kirino T. Expression of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of 9 glioma cells. J. Neurosci. Res.59(6), 722–730 (2000).
  • Rorive S, Belot N, Decaestecker C et al. Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia33(3), 241–255 (2001).
  • Camby I, Belot N, Rorive S et al. Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol.11(1), 12–26 (2001).
  • Cooper D, Ilarregui JM, Pesoa SA, Croci DO, Perretti M, Rabinovich GA. Multiple functional targets of the immunoregulatory activity of galectin-1: control of immune cell trafficking, dendritic cell physiology, and T-cell fate. Methods Enzymol.480, 199–244 (2010).
  • Tran Thang NN, Derouazi M, Philippin G et al. Immune infiltration of spontaneous mouse astrocytomas is dominated by immunosuppressive cells from early stages of tumor development. Cancer Res.70(12), 4829–4839 (2010).
  • Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. J. Neuroimmunol.100(1–2), 216–232 (1999).
  • Grauer OM, Nierkens S, Bennink E et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int. J. Cancer121(1), 95–105 (2007).
  • Rabinovich GA, Ilarregui JM. Conveying glycan information into T-cell homeostatic programs: a challenging role for galectin-1 in inflammatory and tumor microenvironments. Immunol. Rev.230(1), 144–159 (2009).
  • Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature378(6558), 736–739 (1995).
  • Endharti AT, Zhou YW, Nakashima I, Suzuki H. Galectin-1 supports survival of naive T cells without promoting cell proliferation. Eur. J. Immunol.35(1), 86–97 (2005).
  • Blaser C, Kaufmann M, Muller C et al. β-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur. J. Immunol.28(8), 2311–2319 (1998).
  • Kopcow HD, Rosetti F, Leung Y, Allan DS, Kutok JL, Strominger JL. T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proc. Natl Acad. Sci. USA105(47), 18472–18477 (2008).
  • Roberts AA, Amano M, Felten C et al. Galectin-1-mediated apoptosis in mycosis fungoides: the roles of CD7 and cell surface glycosylation. Mod. Pathol.16(6), 543–551 (2003).
  • Rappl G, Abken H, Muche JM et al. CD4+CD7- leukemic T cells from patients with Sezary syndrome are protected from galectin-1-triggered T cell death. Leukemia16(5), 840–845 (2002).
  • Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. J. Immunol.165(5), 2331–2334 (2000).
  • Walzel H, Blach M, Hirabayashi J, Kasai KI, Brock J. Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology10(2), 131–140 (2000).
  • Pace KE, Lee C, Stewart PL, Baum LG. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J. Immunol.163(7), 3801–3811 (1999).
  • Ion G, Fajka-Boja R, Toth GK, Caron M, Monostori E. Role of p56lck and ZAP70-mediated tyrosine phosphorylation in galectin-1-induced cell death. Cell Death. Differ.12(8), 1145–1147 (2005).
  • Ion G, Fajka-Boja R, Kovacs F et al. Acid sphingomyelinase mediated release of ceramide is essential to trigger the mitochondrial pathway of apoptosis by galectin-1. Cell Signal.18(11), 1887–1896 (2006).
  • Matarrese P, Tinari A, Mormone E et al. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J. Biol. Chem.280(8), 6969–6985 (2005).
  • Hahn HP, Pang M, He J et al. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ.11(12), 1277–1286 (2004).
  • Stowell SR, Karmakar S, Arthur CM et al. Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol. Biol. Cell20(5), 1408–1418 (2009).
  • Allione A, Wells V, Forni G, Mallucci L, Novelli F. β-galactoside-binding protein (β GBP) alters the cell cycle, up-regulates expression of the α- and β-chains of the IFN-γ receptor, and triggers IFN-γ-mediated apoptosis of activated human T lymphocytes. J. Immunol.161(5), 2114–2119 (1998).
  • Valenzuela HF, Pace KE, Cabrera PV et al. O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res.67(13), 6155–6162 (2007).
  • Toscano MA, Bianco GA, Ilarregui JM et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol.8(8), 825–834 (2007).
  • Amano M, Galvan M, He J, Baum LG. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J. Biol. Chem.278(9), 7469–7475 (2003).
  • Nguyen JT, Evans DP, Galvan M et al. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J. Immunol.167(10), 5697–5707 (2001).
  • Galvan M, Tsuboi S, Fukuda M, Baum LG. Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J. Biol. Chem.275(22), 16730–16737 (2000).
  • Rabinovich GA, Modesti NM, Castagna LF, Landa CA, Riera CM, Sotomayor CE. Specific inhibition of lymphocyte proliferation and induction of apoptosis by CLL-I, a β-galactoside-binding lectin. J. Biochem.122(2), 365–373 (1997).
  • Liu SD, Tomassian T, Bruhn KW, Miller JF, Poirier F, Miceli MC. Galectin-1 tunes TCR binding and signal transduction to regulate CD8 burst size. J. Immunol.182(9), 5283–5295 (2009).
  • Vespa GN, Lewis LA, Kozak KR et al. Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. J. Immunol.162(2), 799–806 (1999).
  • Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC. Galectin-1 induces partial TCR ζ-chain phosphorylation and antagonizes processive TCR signal transduction. J. Immunol.165(7), 3722–3729 (2000).
  • Mocellin S, Wang E, Marincola FM. Cytokines and immune response in the tumor microenvironment. J. Immunother.24(5), 392–407 (2001).
  • Perone MJ, Bertera S, Shufesky WJ et al. Suppression of autoimmune diabetes by soluble galectin-1. J. Immunol.182(5), 2641–2653 (2009).
  • Rabinovich GA, Daly G, Dreja H et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J. Exp. Med.190(3), 385–398 (1999).
  • Santucci L, Fiorucci S, Cammilleri F, Servillo G, Federici B, Morelli A. Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology31(2), 399–406 (2000).
  • Santucci L, Fiorucci S, Rubinstein N et al. Galectin-1 suppresses experimental colitis in mice. Gastroenterology124(5), 1381–1394 (2003).
  • van der Leij J, van den Berg A, Harms G et al. Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol. Immunol.44(4), 506–513 (2007).
  • Toscano MA, Commodaro AG, Ilarregui JM et al. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J. Immunol.176(10), 6323–6332 (2006).
  • Stowell SR, Qian Y, Karmakar S et al. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J. Immunol.180(5), 3091–3102 (2008).
  • Blois SM, Ilarregui JM, Tometten M et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nat. Med.13(12), 1450–1457 (2007).
  • Motran CC, Molinder KM, Liu SD, Poirier F, Miceli MC. Galectin-1 functions as a Th2 cytokine that selectively induces Th1 apoptosis and promotes Th2 function. Eur. J. Immunol.38(11), 3015–3027 (2008).
  • Norling LV, Sampaio AL, Cooper D, Perretti M. Inhibitory control of endothelial galectin-1 on in vitro and in vivo lymphocyte trafficking. FASEB J.22(3), 682–690 (2008).
  • He J, Baum LG. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab. Invest.86(6), 578–590 (2006).
  • Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood109(5), 2058–2065 (2007).
  • Sugimoto N, Oida T, Hirota K et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol.18(8), 1197–1209 (2006).
  • Juszczynski P, Ouyang J, Monti S et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl Acad. Sci. USA104(32), 13134–13139 (2007).
  • Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol.20, 621–667 (2002).
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003).
  • Ilarregui JM, Rabinovich GA. Tolerogenic dendritic cells in the control of autoimmune neuroinflammation: an emerging role of protein–glycan interactions. Neuroimmunomodulation17(3), 157–160 (2010).
  • Levroney EL, Aguilar HC, Fulcher JA et al. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J. Immunol.175(1), 413–420 (2005).
  • Fulcher JA, Chang MH, Wang S et al. Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling. J. Biol. Chem.284(39), 26860–26870 (2009).
  • Fulcher JA, Hashimi ST, Levroney EL et al. Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix. J. Immunol.177(1), 216–226 (2006).
  • Perone MJ, Bertera S, Tawadrous ZS et al. Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice. J. Immunol.177(8), 5278–5289 (2006).
  • Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro. Oncol.8(3), 261–279 (2006).
  • Roggendorf W, Strupp S, Paulus W. Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol.92(3), 288–293 (1996).
  • Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y. Prognostic value of tumor-associated macrophage count in human bladder cancer. Int. J. Urol.7(7), 263–269 (2000).
  • Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int. J. Oncol.17(3), 445–451 (2000).
  • Ohno S, Ohno Y, Suzuki N et al. Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res.24(5C), 3335–3342 (2004).
  • Sica A, Larghi P, Mancino A et al. Macrophage polarization in tumour progression. Semin. Cancer Biol.18(5), 349–355 (2008).
  • Correa SG, Sotomayor CE, Aoki MP, Maldonado CA, Rabinovich GA. Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology13(2), 119–128 (2003).
  • De Vleeschouwer S, Rapp M, Sorg RV et al. Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery59(5), 988–999 (2006).
  • Ardon H, De Vleeschouwer S, Van Calenbergh F et al. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr. Blood Cancer54(4), 519–525 (2010).
  • Ardon H, Van Gool S, Lopes IS et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J. Neurooncol.99(2), 261–272 (2010).
  • De Vleeschouwer S, Van CF, Demaerel P et al. Transient local response and persistent tumor control in a child with recurrent malignant glioma: treatment with combination therapy including dendritic cell therapy. Case report. J. Neurosurg.100(5 Suppl.), 492–497 (2004).
  • De Vleeschouwer S, Fieuws S, Rutkowski S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin. Cancer Res.14(10), 3098–3104 (2008).
  • Rutkowski S, De VS, Kaempgen E et al. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br. J. Cancer91(9), 1656–1662 (2004).
  • Van Gool SW, Maes W, Ardon H, Verschuere T, Van Cauter S, DeVleeschouwer S. Dendritic cell therapy of high-grade gliomas. Brain Pathol.19(4), 694–712 (2009).
  • De Vleeschouwer S, Arredouani M, Ade M et al. Uptake and presentation of malignant glioma tumor cell lysates by monocyte-derived dendritic cells. Cancer Immunol. Immunother.54(4), 372–382 (2005).
  • Wheeler CJ, Das A, Liu G, Yu JS, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin. Cancer Res.10(16), 5316–5326 (2004).
  • Wheeler CJ, Black KL, Liu G et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res.68(14), 5955–5964 (2008).
  • Salatino M, Rabinovich GA. Fine-tuning antitumor responses through the control of galectin–glycan interactions: an overview. Methods Mol. Biol.677, 355–374 (2011).
  • Vega EA, Graner MW, Sampson JH. Combating immunosuppression in glioma. Future Oncol.4(3), 433–442 (2008).
  • Grauer OM, Wesseling P, Adema GJ. Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol.19(4), 674–693 (2009).
  • Hau P, Jachimczak P, Schlingensiepen R et al. Inhibition of TGF-β2 with AP 12009 in recurrent malignant gliomas: from preclinical to Phase I/II studies. Oligonucleotides17(2), 201–212 (2007).
  • Le Mercier M, Fortin S, Mathieu V, Kiss R, Lefranc F. Galectins and gliomas. Brain Pathol.20(1), 17–27 (2010).
  • Rubinstein N, Alvarez M, Zwirner NW et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell5(3), 241–251 (2004).
  • Le QT, Shi G, Cao H et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J. Clin. Oncol.23(35), 8932–8941 (2005).
  • Gandhi MK, Moll G, Smith C et al. Galectin-1 mediated suppression of Epstein–Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood110(4), 1326–1329 (2007).
  • Daroqui CM, Ilarregui JM, Rubinstein N et al. Regulation of galectin-1 expression by transforming growth factor β1 in metastatic mammary adenocarcinoma cells: implications for tumor-immune escape. Cancer Immunol. Immunother.56(4), 491–499 (2007).
  • van der Leij J, van den Berg A, Blokzijl T et al. Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. J. Pathol.204(5), 511–518 (2004).
  • Stannard KA, Collins PM, Ito K et al. Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model. Cancer Lett.299(2), 95–110 (2010).
  • Ingrassia L, Camby I, Lefranc F et al. Anti-galectin compounds as potential anti-cancer drugs. Curr. Med. Chem.13(29), 3513–3527 (2006).
  • Neder L, Marie SK, Carlotti CG Jr et al. Galectin-3 as an immunohistochemical tool to distinguish pilocytic astrocytomas from diffuse astrocytomas, and glioblastomas from anaplastic oligodendrogliomas. Brain Pathol.14(4), 399–405 (2004).
  • Strik HM, Deininger MH, Frank B, Schluesener HJ, Meyermann R. Galectin-3: cellular distribution and correlation with WHO-grade in human gliomas. J. Neurooncol.53(1), 13–20 (2001).
  • Kuklinski S, Pesheva P, Heimann C et al. Expression pattern of galectin-3 in neural tumor cell lines. J. Neurosci. Res.60(1), 45–57 (2000).
  • Wei J, Barr J, Kong LY et al. Glioma-associated cancer-initiating cells induce immunosuppression. Clin. Cancer Res.16(2), 461–473 (2010).
  • Debray C, Vereecken P, Belot N et al. Multifaceted role of galectin-3 on human glioblastoma cell motility. Biochem. Biophys. Res. Commun.325(4), 1393–1398 (2004).
  • Gordower L, Decaestecker C, Kacem Y et al. Galectin-3 and galectin-3-binding site expression in human adult astrocytic tumours and related angiogenesis. Neuropathol. Appl. Neurobiol.25(4), 319–330 (1999).
  • Bresalier RS, Yan PS, Byrd JC, Lotan R, Raz A. Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer80(4), 776–787 (1997).
  • Lahm H, Andre S, Hoeflich A et al. Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J. Cancer Res. Clin. Oncol.127(6), 375–386 (2001).
  • Miller MC, Klyosov A, Mayo KH. The α-galactomannan Davanat binds galectin-1 at a site different from the conventional galectin carbohydrate binding domain. Glycobiology19(9), 1034–1045 (2009).
  • Demotte N, Wieers G, Van Der Smissen P et al. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res.70(19), 7476–7488 (2010).
  • Thijssen VL, Barkan B, Shoji H et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res.70(15), 6216–6224 (2010).
  • Le Mercier M, Fortin S, Mathieu V et al. Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression. Neoplasia11(5), 485–496 (2009).
  • Le Mercier M, Mathieu V, Haibe-Kains B et al. Knocking down galectin 1 in human hs683 glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J. Neuropathol. Exp. Neurol.67(5), 456–469 (2008).
  • Mathieu V, Le Mercier M, De NN et al. Galectin-1 knockdown increases sensitivity to temozolomide in a B16F10 mouse metastatic melanoma model. J. Invest Dermatol.127(10), 2399–2410 (2007).
  • Le Mercier M, Lefranc F, Mijatovic T et al. Evidence of galectin-1 involvement in glioma chemoresistance. Toxicol. Appl. Pharmacol.229(2), 172–183 (2008).
  • Scherer LJ, Rossi JJ. Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol.21(12), 1457–1465 (2003).
  • van den Brule FA, Buicu C, Baldet M et al. Galectin-1 modulates human melanoma cell adhesion to laminin. Biochem. Biophys. Res. Commun.209(2), 760–767 (1995).
  • van den Brule FA, Waltregny D, Castronovo V. Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J. Pathol.193(1), 80–87 (2001).
  • Szoke T, Kayser K, Trojan I et al. The role of microvascularization and growth/adhesion-regulatory lectins in the prognosis of non-small cell lung cancer in stage II. Eur. J. Cardiothorac. Surg.31(5), 783–787 (2007).
  • Szoke T, Kayser K, Baumhakel JD et al. Prognostic significance of endogenous adhesion/growth-regulatory lectins in lung cancer. Oncology69(2), 167–174 (2005).
  • Jung EJ, Moon HG, Cho BI et al. Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int. J. Cancer120(11), 2331–2338 (2007).
  • Hittelet A, Legendre H, Nagy N et al. Upregulation of galectins-1 and -3 in human colon cancer and their role in regulating cell migration. Int. J. Cancer103(3), 370–379 (2003).
  • Saussez S, Camby I, Toubeau G, Kiss R. Galectins as modulators of tumor progression in head and neck squamous cell carcinomas (HNSCCs). Head Neck29, 874–884 (2007).
  • Berberat PO, Friess H, Wang L et al. Comparative analysis of galectins in primary tumors and tumor metastasis in human pancreatic cancer. J. Histochem. Cytochem.49(4), 539–549 (2001).
  • Cindolo L, Benvenuto G, Salvatore P et al. Galectin-1 and galectin-3 expression in human bladder transitional-cell carcinomas. Int. J. Cancer84(1), 39–43 (1999).
  • Xu XC, el-Naggar AK, Lotan R. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am. J. Pathol.147(3), 815–822 (1995).
  • Demydenko D, Berest I. Expression of galectin-1 in malignant tumors. Exp. Oncol.31(2), 74–79 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.