275
Views
19
CrossRef citations to date
0
Altmetric
Review

Cell replacement therapy for Parkinson’s disease: how close are we to the clinic?

, , &
Pages 1325-1339 | Published online: 09 Jan 2014

References

  • Poewe W. The natural history of Parkinson’s disease. J. Neurol.253(S7), vii2–vii6 (2006).
  • Arenas E. Towards stem cell replacement therapies for Parkinson’s disease. Biochem. Biophys. Res. Commun.396(1), 152–156 (2010).
  • Arias-Carrión O, Yuan TF. Autologous neural stem cell transplantation: a new treatment option for Parkinson’s disease? Med. Hypotheses73(5), 757–759 (2009).
  • Fahn S, Oakes D, Shoulson I et al. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med.351(24), 2498–2508 (2004).
  • Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders – time for clinical translation? J. Clin. Invest.120(1), 29–40 (2010).
  • Yokochi M. Reevaluation of levodopa therapy for the treatment of advanced Parkinson’s disease. Parkinsonism Relat. Disord.15(Suppl. 1), S25–S30 (2009).
  • Olson L, Seiger A. Brain tissue transplanted to the anterior chamber of the eye. 1. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons reinnervating the rat iris. Z. Zellforsch. Mikrosk. Anat.135(2), 175–194 (1972).
  • Seiger A, Olson L, Farnebo LO. Brain tissue transplanted to the anterior chamber of the eye. 4. Drug-modulated transmitter release in central monoamine nerve terminals lacking normal postsynaptic receptors. Cell Tissue Res.165(2), 157–170 (1976).
  • Hoffer B, Olson L, Seiger A, Bloom F. Formation of a functional adrenergic input to intraocular cerebellar grafts: ingrowth of inhibitory sympathetic fibers. J. Neurobiol.6(6), 565–585 (1975).
  • Freed WJ, Perlow MJ, Karoum F et al. Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical, and histochemical studies. Ann. Neurol.8(5), 510–519 (1980).
  • Björklund A, Stenevi U, Svendgaard N. Growth of transplanted monoaminergic neurones into the adult hippocampus along the perforant path. Nature262(5571), 787–790 (1976).
  • Stenevi U, Björklund A. Transplantation techniques for the study of regeneration in the central nervous system. Prog. Brain Res.48, 101–112 (1978).
  • Stenevi U, Björklund A, Svendgaard NA. Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival. Brain Res.114(1), 1–20 (1976).
  • Wakeman DR, Dodiya HB, Kordower JH. Cell transplantation and gene therapy in Parkinson’s disease. Mt Sinai J. Med.78(1), 126–158 (2011).
  • Dunnett SB, Björklund A, Schmidt RH, Stenevi U, Iversen SD. Intracerebral grafting of neuronal cell suspensions. V. Behavioural recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiol. Scand. Suppl.522, 39–47 (1983).
  • Dunnett SB, Björklund A, Schmidt RH, Stenevi U, Iversen SD. Intracerebral grafting of neuronal cell suspensions. IV. Behavioural recovery in rats with unilateral 6-OHDA lesions following implantation of nigral cell suspensions in different forebrain sites. Acta Physiol. Scand. Suppl.522, 29–37 (1983).
  • Björklund A, Stenevi U, Schmidt RH, Dunnett SB, Gage FH. Intracerebral grafting of neuronal cell suspensions. I. Introduction and general methods of preparation. Acta Physiol. Scand. Suppl.522, 1–7 (1983).
  • Björklund A, Stenevi U, Schmidt RH, Dunnett SB, Gage FH. Intracerebral grafting of neuronal cell suspensions. II. Survival and growth of nigral cell suspensions implanted in different brain sites. Acta Physiol. Scand. Suppl.522, 9–18 (1983).
  • Brundin P, Isacson O, Gage FH, Björklund A. Intrastriatal grafting of dopamine-containing neuronal cell suspensions: effects of mixing with target or non-target cells. Brain Res.389(1–2), 77–84 (1986).
  • Brundin P, Nilsson OG, Strecker RE et al. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp. Brain Res.65(1), 235–240 (1986).
  • Brundin P, Björklund A. Survival, growth and function of dopaminergic neurons grafted to the brain. Prog. Brain Res.71, 293–308 (1987).
  • Freed WJ, Morihisa JM, Spoor E et al. Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature292(5821), 351–352 (1981).
  • Backlund EO, Granberg PO, Hamberger B et al. Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J. Neurosurg.62(2), 169–173 (1985).
  • Madrazo I, Drucker-Colín R, Díaz V et al. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N. Engl. J. Med.316(14), 831–834 (1987).
  • Morihisa JM, Nakamura RK, Freed WJ, Mishkin M, Wyatt RJ. Adrenal medulla grafts survive and exhibit catecholamine-specific fluorescence in the primate brain. Exp. Neurol.84(3), 643–653 (1984).
  • Plunkett RJ, Bankiewicz KS, Cummins AC et al. Long-term evaluation of hemiparkinsonian monkeys after adrenal autografting or cavitation alone. J. Neurosurg.73(6), 918–926 (1990).
  • Goetz CG, Olanow CW, Koller WC et al. Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson’s disease. N. Engl. J. Med.320(6), 337–341 (1989).
  • Vidaltamayo R, Bargas J, Covarrubias L et al. Stem cell therapy for Parkinson’s disease: a road map for a successful future. Stem Cells Dev.19(3), 311–320 (2010).
  • Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med.344(10), 710–719 (2001).
  • Bjorklund LM, Sánchez-Pernaute R, Chung S et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA99(4), 2344–2349 (2002).
  • O’Keeffe FE, Scott SA, Tyers P et al. Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain131(Pt 3), 630–641 (2008).
  • Wernig M, Zhao J-P, Pruszak J et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl Acad. Sci. USA105(15), 5856–5861 (2008).
  • Dezawa M, Kanno H, Hoshino M et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest.113(12), 1701–1710 (2004).
  • Park HJ, Lee PH, Bang OY, Lee G, Ahn YH. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J. Neurochem.107(1), 141–151 (2008).
  • Murrell W, Wetzig A, Donnellan M et al. Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells26(8), 2183–2192 (2008).
  • Yasuhara T, Matsukawa N, Hara K et al. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J. Neurosci.26(48), 12497–12511 (2006).
  • Kim J-H, Auerbach JM, Rodríguez-Gómez JA et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature418(6893), 50–56 (2002).
  • Cai J, Yang M, Poremsky E et al. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev.19(7), 1017–1023 (2010).
  • Levy YS, Bahat-Stroomza M, Barzilay R et al. Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson’s disease. Cytotherapy10(4), 340–352 (2008).
  • Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol. Sci.30(5), 260–267 (2009).
  • Galpern WR, Burns LH, Deacon TW, Dinsmore J, Isacson O. Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson’s disease: functional recovery and graft morphology. Exp. Neurol.140(1), 1–13 (1996).
  • Fink JS, Schumacher JM, Ellias SL et al. Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. Cell Transplant.9(2), 273–278 (2000).
  • Fitzpatrick KM, Raschke J, Emborg ME. Cell-based therapies for Parkinson’s disease: past, present, and future. Antioxid. Redox Signal.11(9), 2189–2208 (2009).
  • Roitberg B, Urbaniak K, Emborg M. Cell transplantation for Parkinson’s disease. Neurol. Res.26(4), 355–362 (2004).
  • Bakay RAE, Raiser CD, Stover NP et al. Implantation of Spheramine in advanced Parkinson’s disease (PD). Front. Biosci.9, 592–602 (2004).
  • Doudet DJ, Cornfeldt ML, Honey CR, Schweikert AW, Allen RC. PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson’s disease. Exp. Neurol.189(2), 361–368 (2004).
  • Stover NP, Bakay RAE, Subramanian T et al. Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch. Neurol.62(12), 1833–1837 (2005).
  • Madrazo I, León V, Torres C et al. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N. Engl. J. Med.318(1), 51 (1988).
  • Nakao N, Itakura T, Uematsu Y, Komai N. Transplantation of cultured sympathetic ganglionic neurons into parkinsonian rat brain: survival and function of graft. Acta Neurochir. (Wien.)133(1–2), 61–67 (1995).
  • Itakura T, Uematsu Y, Nakao N, Nakai E, Nakai K. Transplantation of autologous sympathetic ganglion into the brain with Parkinson’s disease. Long-term follow-up of 35 cases. Stereotact. Funct. Neurosurg.69(1–4 Pt 2), 112–115 (1997).
  • Gonzalez C, Almaraz L, Obeso A, Rigual R. Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol. Rev.74(4), 829–898 (1994).
  • Hao G, Yao Y, Wang J et al. Intrastriatal grafting of glomus cells ameliorates behavioral defects of Parkinsonian rats. Physiol. Behav.77(4–5), 519–525 (2002).
  • Luquin MR, Montoro RJ, Guillén J et al. Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron22(4), 743–750 (1999).
  • Arjona V, Mínguez-Castellanos A, Montoro RJ et al. Autotransplantation of human carotid body cell aggregates for treatment of Parkinson’s disease. Neurosurgery53(2), 321–328; discussion 328–330 (2003).
  • Emsley JG, Mitchell BD, Kempermann G, Macklis JD. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog. Neurobiol.75(5), 321–341 (2005).
  • Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annu. Rev. Neurosci.18, 159–192 (1995).
  • Weiss S, Dunne C, Hewson J et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci.16(23), 7599–7609 (1996).
  • McKay R. Stem cells in the central nervous system. Science276(5309), 66–71 (1997).
  • Gage FH. Mammalian neural stem cells. Science287(5457), 1433–1438 (2000).
  • Arsenijevic Y, Villemure JG, Brunet JF et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp. Neurol.170(1), 48–62 (2001).
  • Meyer AK, Maisel M, Hermann A, Stirl K, Storch A. Restorative approaches in Parkinson’s Disease: which cell type wins the race? J. Neurol. Sci.289(1–2), 93–103 (2010).
  • Svendsen CN, Caldwell MA, Shen J et al. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp. Neurol.148(1), 135–146 (1997).
  • Parish CL, Castelo-Branco G, Rawal N et al. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. J. Clin. Invest.118(1), 149–160 (2008).
  • Studer L, Tabar V, McKay RD. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci.1(4), 290–295 (1998).
  • Jensen P, Pedersen EG, Zimmer J, Widmer HR, Meyer M. Functional effect of FGF2- and FGF8-expanded ventral mesencephalic precursor cells in a rat model of Parkinson’s disease. Brain Res.1218, 13–20 (2008).
  • Papanikolaou T, Lennington JB, Betz A et al.In vitro generation of dopaminergic neurons from adult subventricular zone neural progenitor cells. Stem Cells Dev.17(1), 157–172 (2008).
  • Shim J-W, Park C-H, Bae Y-C et al. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells25(5), 1252–1262 (2007).
  • Kim HJ. Stem cell potential in Parkinson’s disease and molecular factors for the generation of dopamine neurons. Biochim. Biophys. Acta.1812(1), 1–11 (2011).
  • Greco SJ, Rameshwar P. Recent advances and novel approaches in deriving neurons from stem cells. Mol. Biosyst.6(2), 324–328 (2010).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science282(5391), 1145–1147 (1998).
  • Kawasaki H, Mizuseki K, Nishikawa S et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron28(1), 31–40 (2000).
  • Roy NS, Cleren C, Singh SK et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med.12(11), 1259–1268 (2006).
  • Hwang DY, Kim DS, Kim DW. Human ES and iPS cells as cell sources for the treatment of Parkinson’s disease: current state and problems. J. Cell. Biochem.109(2), 292–301 (2010).
  • Carpenter MK, Inokuma MS, Denham J et al. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol.172(2), 383–397 (2001).
  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol.18(6), 675–679 (2000).
  • Perrier AL, Tabar V, Barberi T et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA101(34), 12543–12548 (2004).
  • Cho MS, Hwang DY, Kim DW. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat. Protoc.3(12), 1888–1894 (2008).
  • Tondreau T, Lagneaux L, Dejeneffe M et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation72(7), 319–326 (2004).
  • Blondheim NR, Levy YS, Ben-Zur T et al. Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev.15(2), 141–164 (2006).
  • Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells24(4), 1054–1064 (2006).
  • Minguell JJ, Fierro FA, Epuñan MJ, Erices AA, Sierralta WD. Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neural lineages. Stem Cells Dev.14(4), 408–414 (2005).
  • Li Y, Chen J, Wang L et al. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci. Lett.316(2), 67–70 (2001).
  • Tropel P, Platet N, Platel JC et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells24(12), 2868–2876 (2006).
  • Wislet-Gendebien S, Hans G, Leprince P et al. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells23(3), 392–402 (2005).
  • Cho KJ, Trzaska KA, Greco SJ et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 α. Stem Cells.23(3), 383–391 (2005).
  • Barzilay R, Ben-Zur T, Bulvik S, Melamed E, Offen D. Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells. Stem Cells Dev.18(4), 591–601 (2009).
  • Trzaska KA, Kuzhikandathil EV, Rameshwar P. Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells25(11), 2797–2808 (2007).
  • Trzaska KA, Reddy BY, Munoz JL et al. Loss of RE-1 silencing factor in mesenchymal stem cell-derived dopamine progenitors induces functional maturity. Mol. Cell. Neurosci.39(2), 285–290 (2008).
  • Trzaska KA, King CC, Li KY et al. Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J. Neurochem.110(3), 1058–1069 (2009).
  • Barzilay R, Kan I, Ben-Zur T et al. Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev.17(3), 547–554 (2008).
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Park I-H, Arora N, Huo H et al. Disease-specific induced pluripotent stem cells. Cell134(5), 877–886 (2008).
  • Soldner F, Hockemeyer D, Beard C et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136(5), 964–977 (2009).
  • Krizhanovsky V, Lowe SW. Stem cells: the promises and perils of p53. Nature460(7259), 1085–1086 (2009).
  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med.14(5), 504–506 (2008).
  • Vierbuchen T, Ostermeier A, Pang ZP et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature463(7284), 1035–1041 (2010).
  • Hynes M, Porter JA, Chiang C et al. Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron15(1), 35–44 (1995).
  • Wang MZ, Jin P, Bumcrot DA et al. Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Nat. Med.1(11), 1184–1188 (1995).
  • Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A. FGF and SHH signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell93(5), 755–766 (1998).
  • Moon RT, Brown JD, Torres M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet.13(4), 157–162 (1997).
  • Castelo-Branco G, Wagner J, Rodriguez FJ et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl Acad. Sci. USA100(22), 12747–12752 (2003).
  • McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell62(6), 1073–1085 (1990).
  • Danielian PS, McMahon AP. Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature383(6598), 332–334 (1996).
  • Tio M, Tan KH, Lee W, Wang TT, Udolph G. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS One5(2), e9398 (2010).
  • Smidt MP, Burbach JPH. How to make a mesodiencephalic dopaminergic neuron. Nat. Rev. Neurosci.8(1), 21–32 (2007).
  • Andersson E, Jensen JB, Parmar M, Guillemot F, Björklund A. Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development133(3), 507–516 (2006).
  • Saucedo-Cardenas O, Quintana-Hau JD, Le WD et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci. USA95(7), 4013–4018 (1998).
  • Smits SM, Ponnio T, Conneely OM, Burbach JPH, Smidt MP. Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur. J. Neurosci.18(7), 1731–1738 (2003).
  • Martinat C, Bacci J-J, Leete T et al. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc. Natl Acad. Sci. USA103(8), 2874–2879 (2006).
  • Lee HS, Bae EJ, Yi SH et al. Foxa2 and Nurr1 synergistically yield A9 nigral dopamine neurons exhibiting improved differentiation, function, and cell survival. Stem Cells28(3), 501–512 (2010).
  • Nakatani T, Kumai M, Mizuhara E, Minaki Y, Ono Y. Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev. Biol.339(1), 101–113 (2010).
  • Lindvall O, Rehncrona S, Brundin P et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch. Neurol.46(6), 615–631 (1989).
  • Barker R, Dunnett S. The biology and behaviour of intracerebral adrenal transplants in animals and man. Rev. Neurosci.4(2), 113–146 (1993).
  • Lindvall O, Brundin P, Widner H et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science247(4942), 574–577 (1990).
  • Widner H, Tetrud J, Rehncrona S et al. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med.327(22), 1556–1563 (1992).
  • Freed CR, Breeze RE, Rosenberg NL et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med.327(22), 1549–1555 (1992).
  • Spencer DD, Robbins RJ, Naftolin F et al. Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N. Engl. J. Med.327(22), 1541–1548 (1992).
  • Peschanski M, Defer G, N’Guyen JP et al. Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain117(Pt 3), 487–499 (1994).
  • Wenning GK, Odin P, Morrish P et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann. Neurol.42(1), 95–107 (1997).
  • Hauser RA, Freeman TB, Snow BJ et al. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol.56(2), 179–187 (1999).
  • Brundin P, Pogarell O, Hagell P et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain123(Pt 7), 1380–1390 (2000).
  • Kordower JH, Rosenstein JM, Collier TJ et al. Functional fetal nigral grafts in a patient with Parkinson’s disease: chemoanatomic, ultrastructural, and metabolic studies. J. Comp. Neurol.370(2), 203–230 (1996).
  • Piccini P, Brooks DJ, Björklund A et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat. Neurosci.2(12), 1137–1140 (1999).
  • Piccini P, Lindvall O, Björklund A et al. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann. Neurol.48(5), 689–695 (2000).
  • Brundin P, Barker RA, Parmar M. Neural grafting in Parkinson’s disease Problems and possibilities. Prog. Brain Res.184, 265–294 (2010).
  • Clarkson ED, Zawada WM, Adams FS, Bell KP, Freed CR. Strands of embryonic mesencephalic tissue show greater dopamine neuron survival and better behavioral improvement than cell suspensions after transplantation in parkinsonian rats. Brain Res.806(1), 60–68 (1998).
  • Ma Y, Tang C, Chaly T et al. Dopamine cell implantation in Parkinson’s disease: long-term clinical and 18F-FDOPA PET outcomes. J. Nucl. Med.51(1), 7–15 (2010).
  • Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol.54(3), 403–414 (2003).
  • Freeman TB, Olanow CW, Hauser RA et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann. Neurol.38(3), 379–388 (1995).
  • Olanow CW, Freeman T, Kordower J. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med.345(2), 146; author reply 147 (2001).
  • Ma Y, Feigin A, Dhawan V et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol.52(5), 628–634 (2002).
  • Politis M. Dyskinesias after neural transplantation in Parkinson’s disease: what do we know and what is next? BMC Med.8, 80 (2010).
  • Hagell P, Piccini P, Björklund A et al. Dyskinesias following neural transplantation in Parkinson’s disease. Nat. Neurosci.5(7), 627–628 (2002).
  • Hagell P, Cenci MA. Dyskinesias and dopamine cell replacement in Parkinson’s disease: a clinical perspective. Brain Res. Bull.68(1–2), 4–15 (2005).
  • Piccini P, Pavese N, Hagell P et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain128(Pt 12), 2977–2986 (2005).
  • Politis M, Wu K, Loane C et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci. Transl. Med.2(38), 38ra46 (2010).
  • Mendez I, Viñuela A, Astradsson A et al. Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat. Med.14(5), 507–509 (2008).
  • Li JY, Englund E, Holton JL et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med.14(5), 501–503 (2008).
  • Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB. Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov. Disord.23(16), 2303–2306 (2008).
  • Li JY, Englund E, Widner H et al. Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov. Disord.25(8), 1091–1096 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.