113
Views
4
CrossRef citations to date
0
Altmetric
Theme: Nervous System Neoplasms - Review

Current and future directions for Phase II trials in high-grade glioma

, , &
Pages 369-387 | Published online: 09 Jan 2014

References

  • Wen PY, Kesari S. Malignant gliomas in adults. N. Engl. J. Med. 359(5), 492–507 (2008).
  • CBTRUS. Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in Eighteen States in 2002–2006. In: Central Brain Tumor Registry of the United States. (2010).
  • Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360(8), 765–773 (2009).
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068 (2008).
  • Stommel JM, Kimmelman AC, Ying H et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318(5848), 287–290 (2007).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
  • Brown PD, Krishnan S, Sarkaria JN et al.; North Central Cancer Treatment Group Study N0177. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J. Clin. Oncol. 26(34), 5603–5609 (2008).
  • Franceschi E, Cavallo G, Lonardi S et al. Gefitinib in patients with progressive high-grade gliomas: a multicentre Phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br. J. Cancer 96(7), 1047–1051 (2007).
  • Rich JN, Reardon DA, Peery T et al. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol. 22(1), 133–142 (2004).
  • Raizer JJ, Abrey LE, Lassman AB et al.; North American Brain Tumor Consortium. A Phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro-oncology 12(1), 95–103 (2010).
  • van den Bent MJ, Brandes AA, Rampling R et al. Randomized Phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J. Clin. Oncol. 27(8), 1268–1274 (2009).
  • Thiessen B, Stewart C, Tsao M et al. A Phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother. Pharmacol. 65(2), 353–361 (2010).
  • Wen PY, Schiff D, Cloughesy TF et al. A Phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro-oncology 13(4), 437–446 (2011).
  • Raymond E, Brandes AA, Dittrich C et al.; European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J. Clin. Oncol. 26(28), 4659–4665 (2008).
  • Wen PY, Yung WK, Lamborn KR et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin. Cancer Res. 12(16), 4899–4907 (2006).
  • Reardon DA, Dresemann G, Taillibert S et al. Multicentre Phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma. Br. J. Cancer 101(12), 1995–2004 (2009).
  • Wen PY, Lee EQ, Reardon DA, Ligon KL, Alfred Yung WK. Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro-oncology 14(7), 819–829 (2012).
  • Wick W, Weller M, Weiler M, Batchelor T, Yung AW, Platten M. Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro-oncology 13(6), 566–579 (2011).
  • Sathornsumetee S, Reardon DA. Targeting multiple kinases in glioblastoma multiforme. Expert Opin. Investig. Drugs 18(3), 277–292 (2009).
  • Kim YW, Liu TJ, Koul D et al. Identification of novel synergistic targets for rational drug combinations with PI3 kinase inhibitors using siRNA synthetic lethality screening against GBM. Neuro-oncology 13(4), 367–375 (2011).
  • Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26(13), 1932–1940 (2007).
  • O’Reilly KE, Rojo F, She QB et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66(3), 1500–1508 (2006).
  • Kim ES, Herbst RS, Wistuba II et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1(1), 44–53 (2011).
  • Barker A, Sigman C, Kelloff G, Hylton N, Berry D, Esserman L. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin. Pharmacol. Ther. 86(1), 97–100 (2010).
  • Trippa L, Lee EQ, Wen PY et al. Bayesian adaptive randomized trial design for patients with recurrent glioblastoma. J. Clin. Oncol. 30(26), 3258–3263 (2012).
  • Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for high-grade glioma. Nat. Rev. Neurol. 5(11), 610–620 (2009).
  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8(8), 610–622 (2007).
  • Kreisl TN, Kim L, Moore K et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27(5), 740–745 (2009).
  • Friedman HS, Prados MD, Wen PY et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27(28), 4733–4740 (2009).
  • Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for Phase II studies of supratentorial malignant glioma. J. Clin. Oncol. 8(7), 1277–1280 (1990).
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 13(4), 1253–1259 (2007).
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25(30), 4722–4729 (2007).
  • Desjardins A, Reardon DA, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent WHO grade 3 malignant gliomas. Clin. Cancer Res. 14(21), 7068–7073 (2008).
  • Nghiemphu PL, Green RM, Pope WB, Lai A, Cloughesy TF. Safety of anticoagulation use and bevacizumab in patients with glioma. Neuro-oncology 10(3), 355–360 (2008).
  • Norden AD, Young GS, Setayesh K et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10), 779–787 (2008).
  • Reardon DA, Desjardins A, Vredenburgh JJ et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a Phase II study. Br. J. Cancer 101(12), 1986–1994 (2009).
  • Lassen U, Hasselbalch B, Sorensen M et al. A Phase II trial of cetuximab, bevacizumab, and irinotecan for patients with primary glioblastomas and progression after radiation therapy and temozolomide. Presented at: American Society of Clinical Oncology. Chicago, IL, USA, 30 May–3 June 2008 (Abstract 2056).
  • Sathornsumetee S, Desjardins A, Vredenburgh JJ et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro-oncology 12(12), 1300–1310 (2010).
  • Chinot OL, de La Motte Rouge T, Moore N et al. AVAglio: Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv. Ther. 28(4), 334–340 (2011).
  • de Groot JF, Wen PY, Lamborn K et al. Phase II single arm trial of aflibercept in patients with recurrent temozolomide-resistant glioblastoma: NABTC 0601. Presented at: American Society of Clinical Oncology. Chicago, IL, USA, 30 May–3 June 2008 (Abstract 2020).
  • Batchelor T, Sorensen G, di Tomaso E et al. A multidisciplinary Phase II study of AZD2171 (cediranib), an oral pan-VEGF receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. Presented at: 99th Annual Meeting of the American Association for Cancer Research. San Diego, CA, 11–15 April 2008 (Abstract LB-247).
  • Batchelor TT, Sorensen AG, di Tomaso E et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1), 83–95 (2007).
  • Batchelor T, Mulholland P, Neyns B et al. The efficacy of cediranib as monotherapy and in combination with lomustine compared to lomustine alone in patients with recurrent glioblastoma: a Phase III randomized study (abstract OT-25). Neuro-oncology 12(Suppl. 4), iv69–iv78 (2010).
  • Zuniga RM, Torcuator R, Jain R et al. Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J. Neurooncol. 91(3), 329–336 (2009).
  • van den Bent MJ, Vogelbaum MA, Wen PY, Macdonald DR, Chang SM. End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s Criteria. J. Clin. Oncol. 27(18), 2905–2908 (2009).
  • Henson JW, Ulmer S, Harris GJ. Brain tumor imaging in clinical trials. AJNR. Am. J. Neuroradiol. 29(3), 419–424 (2008).
  • Sorensen AG, Batchelor TT, Wen PY, Zhang WT, Jain RK. Response criteria for glioma. Nat. Clin. Pract. Oncol. 5(11), 634–644 (2008).
  • Wen PY, Macdonald DR, Reardon DA et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010).
  • Quant EC, Norden AD, Drappatz J et al. Role of a second chemotherapy in recurrent malignant glioma patients who progress on bevacizumab. Neuro-oncology 11(5), 550–555 (2009).
  • Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8(8), 592–603 (2008).
  • Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10(8), 858–864 (2004).
  • Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res. 66(18), 9054–9064 (2006).
  • Rempel SA, Dudas S, Ge S, Gutiérrez JA. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin. Cancer Res. 6(1), 102–111 (2000).
  • Rubin JB, Kung AL, Klein RS et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl Acad. Sci. USA 100(23), 13513–13518 (2003).
  • Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120(3), 694–705 (2010).
  • Ehtesham M, Winston JA, Kabos P, Thompson RC. CXCR4 expression mediates glioma cell invasiveness. Oncogene 25(19), 2801–2806 (2006).
  • Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10(1), 9–22 (2010).
  • Reardon DA, Fink KL, Mikkelsen T et al. Randomized Phase II study of cilengitide, an integrin-targeting arginine–glycine–aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol. 26(34), 5610–5617 (2008).
  • Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17(11), 3520–3526 (2011).
  • Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
  • Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: hiding in plain sight. Immunol. Rev. 213, 48–65 (2006).
  • Fadul CE, Fisher JL, Hampton TH et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J. Immunother. 34(4), 382–389 (2011).
  • Liau LM, Prins RM, Kiertscher SM et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11(15), 5515–5525 (2005).
  • Sampson JH, Aldape KD, Archer GE et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-oncology 13(3), 324–333 (2011).
  • Sampson JH, Heimberger AB, Archer GE et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28(31), 4722–4729 (2010).
  • Wheeler CJ, Black KL, Liu G et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res. 68(14), 5955–5964 (2008).
  • Yu JS, Wheeler CJ, Zeltzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 61(3), 842–847 (2001).
  • Yu P, Lee Y, Liu W et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat. Immunol. 5(2), 141–149 (2004).
  • De Vleeschouwer S, Fieuws S, Rutkowski S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin. Cancer Res. 14(10), 3098–3104 (2008).
  • Rutkowski S, De Vleeschouwer S, Kaempgen E et al. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br. J. Cancer 91(9), 1656–1662 (2004).
  • Yamanaka R, Honma J, Tsuchiya N, Yajima N, Kobayashi T, Tanaka R. Tumor lysate and IL-18 loaded dendritic cells elicits Th1 response, tumor-specific CD8+ cytotoxic T cells in patients with malignant glioma. J. Neurooncol. 72(2), 107–113 (2005).
  • Yamanaka R, Yajima N, Abe T et al. Dendritic cell-based glioma immunotherapy (review). Int. J. Oncol. 23(1), 5–15 (2003).
  • Okada H, Kalinski P, Ueda R et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29(3), 330–336 (2011).
  • Choi BD, Archer GE, Mitchell DA et al. EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol. 19(4), 713–723 (2009).
  • Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66(6), 3294–3302 (2006).
  • Avril T, Vauleon E, Tanguy-Royer S, Mosser J, Quillien V. Mechanisms of immunomodulation in human glioblastoma. Immunotherapy 3(4 Suppl.), 42–44 (2011).
  • Waziri A. Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg. Clin. N. Am. 21(1), 31–42 (2010).
  • Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. J. Neuroimmunol. 100(1–2), 216–232 (1999).
  • Kempuraj D, Devi RS, Madhappan B et al. T lymphocyte subsets and immunoglobulins in intracranial tumor patients before and after treatment, and based on histological type of tumors. Int. J. Immunopathol. Pharmacol. 17(1), 57–64 (2004).
  • Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin. Dev. Immunol. 2011, 732413 (2011).
  • Gomez GG, Kruse CA. Cellular and functional characterization of immunoresistant human glioma cell clones selected with alloreactive cytotoxic T lymphocytes reveals their up-regulated synthesis of biologically active TGF-beta. J. Immunother. 30(3), 261–273 (2007).
  • Galli R, Binda E, Orfanelli U et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64(19), 7011–7021 (2004).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18), 5821–5828 (2003).
  • Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66(16), 7843–7848 (2006).
  • Rich JN. Cancer stem cells in radiation resistance. Cancer Res. 67(19), 8980–8984 (2007).
  • Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer 5, 67 (2006).
  • Hadjipanayis CG, Van Meir EG. Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol. Med. 15(11), 519–530 (2009).
  • Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8(2), 97–106 (2011).
  • Kanamori M, Kawaguchi T, Nigro JM et al. Contribution of Notch signaling activation to human glioblastoma multiforme. J. Neurosurg. 106(3), 417–427 (2007).
  • Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia 8(12), 1072–1082 (2006).
  • Fan X, Matsui W, Khaki L et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66(15), 7445–7452 (2006).
  • Wang J, Wakeman TP, Lathia JD et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 28(1), 17–28 (2010).
  • Hovinga KE, Wang R, Shimizu F et al. Effect of Notch inhbition on radiation in an explant model of glioblastoma multiforme. J. Clin. Oncol. 27(Suppl.), e22080 (2009) (Meeting Abstracts).
  • Fan X, Khaki L, Zhu TS et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28(1), 5–16 (2010).
  • Krop I, Demuth T, Guthrie T et al. Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J. Clin. Oncol. 30(19), 2307–2313 (2012).
  • LoRusso PM, Rudin CM, Reddy JC et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin. Cancer Res. 17(8), 2502–2511 (2011).
  • Rudin CM, Hann CL, Laterra J et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361(12), 1173–1178 (2009).
  • Von Hoff DD, LoRusso PM, Rudin CM et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361(12), 1164–1172 (2009).
  • Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J. Gen. Physiol. 8(6), 519–530 (1927).
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930), 1029–1033 (2009).
  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897), 1807–1812 (2008).
  • Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am. J Pathol. 174(4), 1149–1153 (2009).
  • Alexander BM, Mehta MP. Role of isocitrate dehydrogenase in glioma. Expert Rev. Neurother. 11(10), 1399–1409 (2011).
  • Reitman ZJ, Jin G, Karoly ED et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc. Natl Acad. Sci. USA 108(8), 3270–3275 (2011).
  • Lu C, Ward PS, Kapoor GS et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390), 474–478 (2012).
  • Turcan S, Rohle D, Goenka A et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390), 479–483 (2012).
  • Wolf A, Agnihotri S, Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 1(7), 552–562 (2010).
  • Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med. 16(9), 387–397 (2010).
  • Andronesi OC, Kim GS, Gerstner E et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl. Med. 4(116), 116ra4 (2012).
  • Elkhaled A, Jalbert LE, Phillips JJ et al. Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci. Transl. Med. 4(116), 116ra5 (2012).
  • Matsumoto K, Obara N, Ema M et al. Antitumor effects of 2-oxoglutarate through inhibition of angiogenesis in a murine tumor model. Cancer Sci. 100(9), 1639–1647 (2009).
  • Seltzer MJ, Bennett BD, Joshi AD et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 70(22), 8981–8987 (2010).
  • Zhao S, Lin Y, Xu W et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324(5924), 261–265 (2009).
  • Michelakis ED, Sutendra G, Dromparis P et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2(31), 31ra34 (2010).
  • Kennedy RD, D’Andrea AD. DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J. Clin. Oncol. 24(23), 3799–3808 (2006).
  • Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 396(6712), 643–649 (1998).
  • Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 411(6835), 366–374 (2001).
  • Bryant HE, Schultz N, Thomas HD et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035), 913–917 (2005).
  • Farmer H, McCabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035), 917–921 (2005).
  • McCabe N, Turner NC, Lord CJ et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66(16), 8109–8115 (2006).
  • McEllin B, Camacho CV, Mukherjee B et al. PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res. 70(13), 5457–5464 (2010).
  • Mendes-Pereira AM, Martin SA, Brough R et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1(6–7), 315–322 (2009).
  • Karran P, Marinus MG. Mismatch correction at O6-methylguanine residues in E. coli DNA. Nature 296(5860), 868–869 (1982).
  • Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat. Rev. Cancer 4(4), 296–307 (2004).
  • Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352(10), 997–1003 (2005).
  • Hunter C, Smith R, Cahill DP et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 66(8), 3987–3991 (2006).
  • Quinn JA, Desjardins A, Weingart J et al. Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J. Clin. Oncol. 23(28), 7178–7187 (2005).
  • Quinn JA, Jiang SX, Reardon DA et al. Phase 1 trial of temozolomide plus irinotecan plus O6-benzylguanine in adults with recurrent malignant glioma. Cancer 115(13), 2964–2970 (2009).
  • Quinn JA, Jiang SX, Reardon DA et al. Phase II trial of temozolomide plus O6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J. Clin. Oncol. 27(8), 1262–1267 (2009).
  • Quinn JA, Jiang SX, Reardon DA et al. Phase I trial of temozolomide plus O6-benzylguanine 5-day regimen with recurrent malignant glioma. Neuro-oncology 11(5), 556–561 (2009).
  • Ranson M, Middleton MR, Bridgewater J et al. Lomeguatrib, a potent inhibitor of O6-alkylguanine-DNA-alkyltransferase: Phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 12(5), 1577–1584 (2006).
  • Liu L, Gerson SL. Targeted modulation of MGMT: clinical implications. Clin. Cancer Res. 12(2), 328–331 (2006).
  • Miknyoczki SJ, Jones-Bolin S, Pritchard S et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol. Cancer Ther. 2(4), 371–382 (2003).
  • Cheng CL, Johnson SP, Keir ST et al. Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft. Mol. Cancer Ther. 4(9), 1364–1368 (2005).
  • Miknyoczki S, Chang H, Grobelny J et al. The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol. Cancer Ther. 6(8), 2290–2302 (2007).
  • Walker MD, Alexander E Jr, Hunt WE et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J. Neurosurg. 49(3), 333–343 (1978).
  • Williams JR, Zhang Y, Zhou H et al. A quantitative overview of radiosensitivity of human tumor cells across histological type and TP53 status. Int. J. Radiat. Biol. 84(4), 253–264 (2008).
  • Williams JR, Zhang Y, Zhou H et al. Genotype-dependent radiosensitivity: clonogenic survival, apoptosis and cell-cycle redistribution. Int. J. Radiat. Biol. 84(2), 151–164 (2008).
  • Williams JR, Zhang Y, Russell J, Koch C, Little JB. Human tumor cells segregate into radiosensitivity groups that associate with ATM and TP53 status. Acta Oncol. 46(5), 628–638 (2007).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120), 756–760 (2006).
  • Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Lippincott Williams & Wilkins, PA, USA (2006).
  • Dungey FA, Löser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential. Int. J. Radiat. Oncol. Biol. Phys. 72(4), 1188–1197 (2008).
  • Hochegger H, Dejsuphong D, Fukushima T et al. Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J. 25(6), 1305–1314 (2006).
  • Wang M, Wu W, Wu W et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34(21), 6170–6182 (2006).
  • Winkler F, Kozin SV, Tong RT et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6), 553–563 (2004).
  • Sheehan J, Cifarelli CP, Dassoulas K, Olson C, Rainey J, Han S. Trans-sodium crocetinate enhancing survival and glioma response on magnetic resonance imaging to radiation and temozolomide. J. Neurosurg. 113(2), 234–239 (2010).
  • Sheehan J, Ionescu A, Pouratian N et al. Use of trans sodium crocetinate for sensitizing glioblastoma multiforme to radiation: laboratory investigation. J. Neurosurg. 108(5), 972–978 (2008).
  • Thoms J, Bristow RG. DNA repair targeting and radiotherapy: a focus on the therapeutic ratio. Semin. Radiat. Oncol. 20(4), 217–222 (2010).
  • Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A. Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J. Biol. Chem. 282(29), 21206–21212 (2007).
  • Mukherjee B, McEllin B, Camacho CV et al. EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res. 69(10), 4252–4259 (2009).
  • Toulany M, Rodemann HP. Membrane receptor signaling and control of DNA repair after exposure to ionizing radiation. Nuklearmedizin 49(Suppl. 1), S26–S30 (2010).
  • Chakravarti A, Zhai G, Suzuki Y et al. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J. Clin. Oncol. 22(10), 1926–1933 (2004).
  • Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A. Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J. Biol. Chem. 282(29), 21206–21212 (2007).
  • Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF, Valerie K. Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol. Ther. 8(8), 730–738 (2009).
  • Mukherjee B, Choy H, Nirodi C, Burma S. Targeting nonhomologous end-joining through epidermal growth factor receptor inhibition: rationale and strategies for radiosensitization. Semin. Radiat. Oncol. 20(4), 250–257 (2010).
  • Matsuoka S, Ballif BA, Smogorzewska A et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828), 1160–1166 (2007).
  • Camphausen K, Tofilon PJ. Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J. Clin. Oncol. 25(26), 4051–4056 (2007).
  • Singh D, Chan JM, Zoppoli P et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337(6099), 1231–1235 (2012).
  • Benarroch EE. Blood–brain barrier: recent developments and clinical correlations. Neurology 78(16), 1268–1276 (2012).
  • Kurzrock R, Gabrail N, Chandhasin C et al. Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol. Cancer Ther. 11(2), 308–316 (2012).
  • Bodmer S, Strommer K, Frei K et al. Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J. Immunol. 143(10), 3222–3229 (1989).
  • Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A. Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J. Immunol. 148(5), 1404–1410 (1992).
  • Gabrilovich D, Ishida T, Oyama T et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11), 4150–4166 (1998).
  • Gabrilovich DI, Chen HL, Girgis KR et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2(10), 1096–1103 (1996).
  • Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5(10), 2963–2970 (1999).
  • Grossman SA, Ye X, Lesser G et al.; NABTT CNS Consortium. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin. Cancer Res. 17(16), 5473–5480 (2011).
  • Fecci PE, Ochiai H, Mitchell DA et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin. Cancer Res. 13(7), 2158–2167 (2007).
  • Brahmer JR, Tykodi SS, Chow LQ et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366(26), 2455–2465 (2012).
  • Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 24(2), 207–212 (2012).
  • Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J. Gene Med. 14(6), 405–415 (2012).
  • Gilham DE, Debets R, Pule M, Hawkins RE, Abken H. CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol. Med. 18(7), 377–384 (2012).
  • Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol. Immunother. 61(7), 953–962 (2012).
  • Bullain SS, Sahin A, Szentirmai O et al. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J. Neurooncol. 94(3), 373–382 (2009).
  • Morgan RA, Johnson LA, Davis JL et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum. Gene Ther. 23(10), 1043–1053 (2012).
  • Ahmed N, Salsman VS, Kew Y et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin. Cancer Res. 16(2), 474–485 (2010).
  • Brown CE, Starr R, Aguilar B et al. Stem-like tumor-initiating cells isolated from IL13Ra2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells. Clin. Cancer Res. 18(8), 2199–2209 (2012).
  • Crough T, Beagley L, Smith C, Jones L, Walker DG, Khanna R. Ex vivo functional analysis, expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme. Immunol. Cell Biol. 90(9), 872–880 (2012).
  • Ghazi A, Ashoori A, Hanley PJ et al. Generation of polyclonal CMV-specific T cells for the adoptive immunotherapy of glioblastoma. J. Immunother. 35(2), 159–168 (2012).
  • Lee EQ, Norden AD, Drappatz J, Wen PY. Application of targeted therapy to malignant gliomas and response to treatment. Curr. Signal Transd. T. 8, 1–11 (2013).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.