56
Views
8
CrossRef citations to date
0
Altmetric
Perspective

Need for a paradigm shift in therapeutic approaches to CNS injury

, , &
Pages 409-420 | Published online: 09 Jan 2014

References

  • Kelley KW, Johnson RW, Dantzer R. Immunology discovers physiology. Vet Immunol. Immunopathol.43(1–3), 157–165 (1994).
  • Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience39(1), 151–170 (1990).
  • Sievers J, Parwaresch R, Wottge HU. Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia12(4), 245–258 (1994).
  • Kitamura T, Miyake T, Fujita S. Genesis of resting microglia in the gray matter of mouse hippocampus. J. Comp. Neurol.226(3), 421–433 (1984).
  • Schelper RL, Adrian EK Jr. Non-specific esterase activity in reactive cells in injured nervous tissue labeled with 3H-thymidine or 125iododeoxyuridine injected before injury. J. Comp. Neurol.194(4), 829–844 (1980).
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science308(5726), 1314–1318 (2005).
  • Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci.8(1), 57–69 (2007).
  • Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol. Cell Neurosci.29(3), 381–393 (2005).
  • Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci.10(11), 1387–1394 (2007).
  • Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron60(3), 430–440 (2008).
  • McDonald JW, Sadowsky C. Spinal-cord injury. Lancet359(9304), 417–425 (2002).
  • Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat. Med.17(7), 796–808 (2011).
  • Larner AJ, Doran M. Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1 gene. J. Neurol.253(2), 139–158 (2006).
  • Obulesu M, Venu R, Somashekhar R. Tau mediated neurodegeneration: an insight into Alzheimer’s disease pathology. Neurochem. Res.36(8), 1329–1335 (2011).
  • Gurney ME, Liu R, Althaus JS, Hall ED, Becker DA. Mutant CuZn superoxide dismutase in motor neuron disease. J. Inherit. Metab. Dis.21(5), 587–597 (1998).
  • Morrison BM, Morrison JH. Amyotrophic lateral sclerosis associated with mutations in superoxide dismutase: a putative mechanism of degeneration. Brain Res. Rev.29(1), 121–135 (1999).
  • Siddique T, Nijhawan D, Hentati A. Familial amyotrophic lateral sclerosis. J. Neural. Transm. Suppl.49, 219–233 (1997).
  • Cluskey S, Ramsden DB. Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol. Pathol.54(6), 386–392 (2001).
  • Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science314(5796), 130–133 (2006).
  • Valdmanis PN, Daoud H, Dion PA, Rouleau GA. Recent advances in the genetics of amyotrophic lateral sclerosis. Curr. Neurol. Neurosci. Rep.9(3), 198–205 (2009).
  • Stewart H, Rutherford NJ, Briemberg H et al. Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p. Acta Neuropathol.123(3), 409–417 (2012).
  • Kurtzke JF, Hyllested K. Multiple sclerosis in the Faroe Islands and the lack of protection by exposure in infancy. Neuroepidemiology11(2), 90–99 (1992).
  • Orton SM, Herrera BM, Yee IM et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol.5(11), 932–936 (2006).
  • Wallin MT, Page WF, Kurtzke JF. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann. Neurol.55(1), 65–71 (2004).
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N. Engl. J. Med.343(13), 938–952 (2000).
  • Weinshenker BG, Bass B, Rice GP et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain112(Pt 1), 133–146 (1989).
  • Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J. Neurotrauma.23(3–4), 264–280 (2006).
  • Silver J, Miller JH. Regeneration beyond the glial scar. Nat. Rev. Neurosci.5(2), 146–156 (2004).
  • Fitch MT, Doller C, Combs CK, Landreth GE, Silver J. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci.19(19), 8182–8198 (1999).
  • Leal-Filho MB. Spinal cord injury: from inflammation to glial scar. Surg. Neurol. Int.2, 112 (2011).
  • Zhang H, Muramatsu T, Murase A, Yuasa S, Uchimura K, Kadomatsu K. N-acetylglucosamine 6-O-sulfotransferase-1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury. Glycobiology16(8), 702–710 (2006).
  • Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat. Med.14(5), 497–500 (2008).
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci.8(7), 499–509 (2007).
  • Abe N, Cavalli V. Nerve injury signaling. Curr. Opin. Neurobiol.18(3), 276–283 (2008).
  • David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science214(4523), 931–933 (1981).
  • Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol.209(2), 294–301 (2008).
  • Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci.7(8), 617–627 (2006).
  • Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M, Parada LF. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc. Natl Acad. Sci. USA102(30), 10694–10699 (2005).
  • Lee JK, Geoffroy CG, Chan AF et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron66(5), 663–670 (2010).
  • Shen Y, Tenney AP, Busch SA et al. PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science326(5952), 592–596 (2009).
  • Zheng B, Atwal J, Ho C et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc. Natl Acad. Sci. USA102(4), 1205–1210 (2005).
  • Lobato RD. Historical vignette of Cajal’s work ‘Degeneration and regeneration of the nervous system’ with a reflection of the author. Neurocirugia (Astur.)19(5), 456–468 (2008).
  • Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J. Neurosci.24(29), 6531–6539 (2004).
  • Hur EM, Yang IH, Kim DH et al. Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proc. Natl Acad. Sci. USA108(12), 5057–5062 (2011).
  • Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J. Regeneration of adult axons in white matter tracts of the central nervous system. Nature390(6661), 680–683 (1997).
  • Davies SJ, Goucher DR, Doller C, Silver J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci.19(14), 5810–5822 (1999).
  • Cai D, Deng K, Mellado W, Lee J, Ratan RR, Filbin MT. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron35(4), 711–719 (2002).
  • Schmidt S, Haase CG, Bezman L et al. Serum autoantibody responses to myelin oligodendrocyte glycoprotein and myelin basic protein in X-linked adrenoleukodystrophy and multiple sclerosis. J. Neuroimmunol.119(1), 88–94 (2001).
  • Karni A, Bakimer-Kleiner R, Abramsky O, Ben-Nun A. Elevated levels of antibody to myelin oligodendrocyte glycoprotein is not specific for patients with multiple sclerosis. Arch. Neurol.56(3), 311–315 (1999).
  • Endo T, Scott DD, Stewart SS, Kundu SK, Marcus DM. Antibodies to glycosphingolipids in patients with multiple sclerosis and SLE. J. Immunol.132(4), 1793–1797 (1984).
  • Freedman MS, Laks J, Dotan N, Altstock RT, Dukler A, Sindic CJ. Anti-α-glucose-based glycan IgM antibodies predict relapse activity in multiple sclerosis after the first neurological event. Mult. Scler.15(4), 422–430 (2009).
  • Schwarz M, Spector L, Gortler M et al. Serum anti-Glc(α1,4)Glc(α) antibodies as a biomarker for relapsing-remitting multiple sclerosis. J. Neurol. Sci.244(1–2), 59–68 (2006).
  • Bornstein NM, Aronovich B, Korczyn AD, Shavit S, Michaelson DM, Chapman J. Antibodies to brain antigens following stroke. Neurology56(4), 529–530 (2001).
  • Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA. Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin. Chem.49(10), 1752–1762 (2003).
  • Davies AL, Hayes KC, Dekaban GA. Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch. Phys. Med. Rehabil.88(11), 1384–1393 (2007).
  • Hayes KC, Hull TC, Delaney GA et al. Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J. Neurotrauma19(6), 753–761 (2002).
  • Stefan J, Prochazka M, Voltnerova M. Studies of immunologic reactions after brain injury. I. Antibodies against brain tissue lipids after experimental injury of the brain in rabbits. Int. Surg.55(5), 316–321 (1971).
  • Skoda D, Kranda K, Bojar M et al. Antibody formation against β-tubulin Class 3 in response to brain trauma. Brain Res. Bull.68(4), 213–216 (2006).
  • Ponomarenko NA, Durova OM, Vorobiev II et al. Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen. Proc. Natl Acad. Sci. USA103(2), 281–286 (2006).
  • Ponomarenko NA, Durova OM, Vorobiev II et al. Catalytic activity of autoantibodies toward myelin basic protein correlates with the scores on the multiple sclerosis expanded disability status scale. Immunol. Lett.103(1), 45–50 (2006).
  • Taguchi H, Planque S, Nishiyama Y et al. Autoantibody-catalyzed hydrolysis of amyloid β peptide. J. Biol. Chem.283(8), 4714–4722 (2008).
  • Lacroix-Desmazes S, Moreau A, Sooryanarayana et al. Catalytic activity of antibodies against factor VIII in patients with hemophilia A. Nat. Med.5(9), 1044–1047 (1999).
  • Wootla B, Christophe OD, Mahendra A et al. Proteolytic antibodies activate factor IX in patients with acquired hemophilia. Blood117(7), 2257–2264 (2011).
  • Wootla B, Dasgupta S, Dimitrov JD et al. Factor VIII hydrolysis mediated by anti-factor VIII autoantibodies in acquired hemophilia. J. Immunol.180(11), 7714–7720 (2008).
  • Lacroix-Desmazes S, Bayry J, Kaveri SV et al. High levels of catalytic antibodies correlate with favorable outcome in sepsis. Proc. Natl Acad. Sci. USA102(11), 4109–4113 (2005).
  • Thiagarajan P, Dannenbring R, Matssura K, Tramontano A, Gololobov G, Paul S. Monoclonal antibody light chain with prothrombinase activity. Biochemistry39, 6459–6465 (2000).
  • Wootla B, Nicoletti A, Patey N et al. Hydrolysis of coagulation factors by circulating IgG is associated with a reduced risk for chronic allograft nephropathy in renal transplanted patients. J. Immunol.180(12), 8455–8460 (2008).
  • Wootla B, Lacroix-Desmazes S, Warrington AE, Bieber AJ, Kaveri SV, Rodriguez M. Autoantibodies with enzymatic properties in human autoimmune diseases. J. Autoimmun.37(2), 144–150 (2011).
  • Wootla B, Denic A, Keegan BM et al. Evidence for the role of B cells and immunoglobulins in the pathogenesis of multiple sclerosis. Neurol. Res. Int.2011, 780712 (2011).
  • Rodriguez M, Lennon VA, Benveniste EN, Merrill JE. Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J. Neuropathol. Exp. Neurol.46(1), 84–95 (1987).
  • Howe CL, Bieber AJ, Warrington AE, Pease LR, Rodriguez M. Antiapoptotic signaling by a remyelination-promoting human antimyelin antibody. Neurobiol. Dis.15(1), 120–131 (2004).
  • Miller DJ, Rodriguez M. A monoclonal autoantibody that promotes central nervous system remyelination in a model of multiple sclerosis is a natural autoantibody encoded by germline immunoglobulin genes. J. Immunol.154(5), 2460–2469 (1995).
  • Warrington AE, Asakura K, Bieber AJ et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc. Natl Acad. Sci. USA97(12), 6820–6825 (2000).
  • Mitsunaga Y, Ciric B, Van Keulen V et al. Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. FASEB J.16(10), 1325–1327 (2002).
  • Warrington AE, Bieber AJ, Van Keulen V, Ciric B, Pease LR, Rodriguez M. Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J. Neuropathol. Exp. Neurol.63(5), 461–473 (2004).
  • Van Keulen VP, Ciric B, Radhakrishnan S et al. Immunomodulation using the recombinant monoclonal human B7-DC cross-linking antibody rHIgM12. Clin. Exp. Immunol.143(2), 314–321 (2006).
  • Xu X, Warrington AE, Wright BR et al. A human IgM signals axon outgrowth: coupling lipid raft to microtubules. J. Neurochem.119(1), 100–112 (2011).
  • Denic A, Macura SI, Warrington AE et al. A single dose of neuron-binding human monoclonal antibody improves spontaneous activity in a murine model of demyelination. PLoS One6(10), e26001 (2011).
  • Casali P, Schettino EW. Structure and function of natural antibodies. Curr. Top Microbiol. Immunol.210, 167–179 (1996).
  • Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol.11(1), 34–46 (2011).
  • Warrington AE, Van Keulen V, Pease LR, Rodriguez M. Naturally occurring antibodies as therapeutics for neurologic disease: can human monoclonal IgMs replace the limited resource IVIg? In: Naturally Occurring Antibodies (NAbs). Lutz HU (Ed.). Landes Bioscience and Springer Science + Business Media, NY, USA (2011).
  • Watzlawik J, Holicky E, Edberg DD et al. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia58(15), 1782–1793 (2010).
  • Popovich PG, Longbrake EE. Can the immune system be harnessed to repair the CNS? Nat. Rev. Neurosci.9(6), 481–493 (2008).
  • Cao Q, He Q, Wang Y et al. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J. Neurosci.30(8), 2989–3001 (2010).
  • Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS study: a randomized controlled trial. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke. JAMA282(21), 2019–2026 (1999).
  • Cudkowicz ME, Katz J, Moore DH et al. Toward more efficient clinical trials for amyotrophic lateral sclerosis. Amyotroph Lateral Scler.11(3), 259–265 (2010).
  • Gurney ME, Fleck TJ, Himes CS, Hall ED. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology50(1), 62–66 (1998).
  • Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst. Rev.1, CD001447 (2007).
  • Coles AJ, Fox E, Vladic A et al. Alemtuzumab versus interferon β-1a in early relapsing-remitting multiple sclerosis: post-hoc and subset analyses of clinical efficacy outcomes. Lancet Neurol.10(4), 338–348 (2011).
  • Fox EJ, Sullivan HC, Gazda SK et al. A single-arm, open-label study of alemtuzumab in treatment-refractory patients with multiple sclerosis. Eur. J. Neurol.19(2), 307–311 (2012).
  • Bielekova B, Richert N, Herman ML et al. Intrathecal effects of daclizumab treatment of multiple sclerosis. Neurology77(21), 1877–1886 (2011).
  • Brown BA, Torabi M. Incidence of infusion-associated reactions with rituximab for treating multiple sclerosis: a retrospective analysis of patients treated at a US centre. Drug Saf.34(2), 117–123 (2011).
  • Mi S, Lee X, Shao Z et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci.7(3), 221–228 (2004).
  • Mi S, Miller RH, Lee X et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci.8(6), 745–751 (2005).
  • Mi S, Hu B, Hahm K et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med.13(10), 1228–1233 (2007).
  • Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M. A recombinant human IgM promotes myelin repair after a single, very low dose. J. Neurosci. Res.85(5), 967–976 (2007).
  • Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu. Rev. Neurosci.30, 235–258 (2007).
  • Steinmetz MP, Horn KP, Tom VJ et al. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. J. Neurosci.25(35), 8066–8076 (2005).
  • Barritt AW, Davies M, Marchand F et al. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J. Neurosci.26(42), 10856–10867 (2006).
  • Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA94(9), 4262–4266 (1997).
  • Grimpe B, Silver J. A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J. Neurosci.24(6), 1393–1397 (2004).
  • Park KK, Liu K, Hu Y et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science322(5903), 963–966 (2008).
  • McDonald JW, Liu XZ, Qu Y et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med.5(12), 1410–1412 (1999).
  • Toda H, Takahashi J, Iwakami N et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci. Lett.316(1), 9–12 (2001).
  • Chen J, Li Y, Wang L et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke32(4), 1005–1011 (2001).
  • Munoz-Elias G, Marcus AJ, Coyne TM, Woodbury D, Black IB. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J. Neurosci.24(19), 4585–4595 (2004).
  • Sykova E, Homola A, Mazanec R et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant.15(8–9), 675–687 (2006).
  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med.8(9), 963–970 (2002).
  • Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci.28, 223–250 (2005).
  • Verdu E, Garcia-Alias G, Fores J, Lopez-Vales R, Navarro X. Olfactory ensheathing cells transplanted in lesioned spinal cord prevent loss of spinal cord parenchyma and promote functional recovery. Glia42(3), 275–286 (2003).
  • Kawada H, Takizawa S, Takanashi T et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation113(5), 701–710 (2006).
  • Erdo F, Buhrle C, Blunk J et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J. Cereb. Blood Flow Metab.23(7), 780–785 (2003).
  • Case LC, Tessier-Lavigne M. Regeneration of the adult central nervous system. Curr. Biol.15(18), R749–R753 (2005).
  • Souan ML, Geffard M, Vieillemaringe J, Lebrun-Grandie P, Orgogozo JM. Anti-acetylcholine antibodies and the pathogenesis of myasthenia gravis. Ann. NY Acad. Sci.505, 423–438 (1987).
  • Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med.202(4), 473–477 (2005).
  • Motomura M, Lang B, Johnston I, Palace J, Vincent A, Newsom-Davis J. Incidence of serum anti-P/O-type and anti-N-type calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. J. Neurol. Sci.147(1), 35–42 (1997).
  • Stich O, Klages E, Bischler P et al. SOX1 antibodies in sera from patients with paraneoplastic neurological syndromes. Acta Neurol. Scand. (2011).
  • Lardone RD, Yuki N, Odaka M, Daniotti JL, Irazoqui FJ, Nores GA. Anti-GM1 IgG antibodies in Guillain-Barre syndrome: fine specificity is associated with disease severity. J. Neurol. Neurosurg. Psychiatry81(6), 629–633 (2010).
  • Pittock SJ, Lucchinetti CF, Lennon VA. Anti-neuronal nuclear autoantibody Type 2: paraneoplastic accompaniments. Ann. Neurol.53(5), 580–587 (2003).
  • Hoffmann LA, Jarius S, Pellkofer HL et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: 22 newly diagnosed patients and review of previous cases. J. Neurol. Neurosurg. Psychiatry79(7), 767–773 (2008).
  • Dalmau J, Graus F, Villarejo A et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain127(Pt 8), 1831–1844 (2004).
  • Pittock SJ, Lucchinetti CF, Parisi JE et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann. Neurol.58(1), 96–107 (2005).
  • Graus F, Dalmau J, Valldeoriola F et al. Immunological characterization of a neuronal antibody (anti-Tr) associated with paraneoplastic cerebellar degeneration and Hodgkin’s disease. J. Neuroimmunol.74(1–2), 55–61 (1997).
  • Peterson K, Rosenblum MK, Kotanides H, Posner JB. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology42(10), 1931–1937 (1992).
  • Graus F, Keime-Guibert F, Rene R et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain124(Pt 6), 1138–1148 (2001).
  • Adamus G, Guy J, Schmied JL, Arendt A, Hargrave PA. Role of anti-recoverin autoantibodies in cancer-associated retinopathy. Invest. Ophthalmol. Vis. Sci.34(9), 2626–2633 (1993).
  • Shiraga S, Adamus G. Mechanism of CAR syndrome: anti-recoverin antibodies are the inducers of retinal cell apoptotic death via the caspase 9- and caspase 3-dependent pathway. J. Neuroimmunol.132(1–2), 72–82 (2002).
  • Honnorat J, Antoine JC, Derrington E, Aguera M, Belin MF. Antibodies to a subpopulation of glial cells and a 66 kDa developmental protein in patients with paraneoplastic neurological syndromes. J. Neurol. Neurosurg. Psychiatry61(3), 270–278 (1996).
  • Eisenbarth GS, Walsh FS, Nirenberg M. Monoclonal antibody to a plasma membrane antigen of neurons. Proc. Natl Acad. Sci. USA76(10), 4913–4917 (1979).
  • Inoko E, Nishiura Y, Tanaka H et al. Developmental stage-dependent expression of an α2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology20(7), 916–928 (2010).
  • Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE. Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J. Neurosci. Res.24(4), 548–557 (1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.