192
Views
38
CrossRef citations to date
0
Altmetric
Drug Profile

Glatiramer acetate for treatment of relapsing–remitting multiple sclerosis

Pages 371-384 | Published online: 09 Jan 2014

References

  • Koutsouraki E, Costa V, Baloyannis S. Epidemiology of multiple sclerosis in Europe: a review. Int. Rev. Psychiatry22(1), 2–13 (2010).
  • Ascherio A, Munger KL, Simon KC. Vitamin D and multiple sclerosis. Lancet Neurol.9(6), 599–612 (2010).
  • Ascherio A, Munger KL. Epstein–Barr virus infection and multiple sclerosis: a review. J. Neuroimmune Pharmacol.5(3), 271–277 (2010).
  • Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part 2: Noninfectious factors. Ann. Neurol.61(6), 504–513 (2007).
  • Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part 1: The role of infection. Ann. Neurol.61(4), 288–299 (2007).
  • Di Pauli F, Reindl M, Ehling R et al. Smoking is a risk factor for early conversion to clinically definite multiple sclerosis. Mult. Scler.14(8), 1026–1030 (2008).
  • Munger KL, Delorenze GN, Levin LI et al. A prospective study of Chlamydia pneumoniae infection and risk of MS in two US cohorts. Neurology62(10), 1799–1803 (2004).
  • Simon KC, Munger KL, Kraft P, Hunter DJ, De Jager PL, Ascherio A. Genetic predictors of 25-hydroxyvitamin D levels and risk of multiple sclerosis. J. Neurol.258(9), 1676–1682 (2011).
  • Simon KC, Munger KL, Xing Y, Ascherio A. Polymorphisms in vitamin D metabolism related genes and risk of multiple sclerosis. Mult. Scler.16(2), 133–138 (2010).
  • Clifford DB, De Luca A, Simpson DM, Arendt G, Giovannoni G, Nath A. Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol.9(4), 438–446 (2010).
  • Le Page E, Leray E, Edan G. Long-term safety profile of mitoxantrone in a French cohort of 802 multiple sclerosis patients: a 5-year prospective study. Mult. Scler.17(7), 867–875 (2011).
  • Brassat D, Recher C, Waubant E et al. Therapy-related acute myeloblastic leukemia after mitoxantrone treatment in a patient with MS. Neurology59(6), 954–955 (2002).
  • Edan G, Miller D, Clanet M et al. Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J. Neurol. Neurosurg. Psychiatry62(2), 112–118 (1997).
  • Johnson KP, Brooks BR, Cohen JA et al. Copolymer 1 reduces relapse rate and improves disability in relapsing–remitting multiple sclerosis: results of a Phase 3 multicenter, double-blind placebo-controlled trial. The Copolymer 1 multiple sclerosis study group. Neurology45(7), 1268–1276 (1995).
  • Jacobs LD, Cookfair DL, Rudick RA et al. Intramuscular interferon β-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol.39(3), 285–294 (1996).
  • Kappos L, Radue EW, O’Connor P et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med.362(5), 387–401 (2010).
  • Gold R, Rieckmann P, Chang P, Abdalla J. The long-term safety and tolerability of high-dose interferon β-1a in relapsing–remitting multiple sclerosis: 4-year data from the PRISMS study. Eur. J. Neurol.12(8), 649–656 (2005).
  • Coyle PK. The role of natalizumab in the treatment of multiple sclerosis. Am. J. Manag. Care16(Suppl. 6), S164–S170 (2010).
  • The IFNβ Multiple Sclerosis Study Group. Interferon β-1b is effective in relapsing–remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology43(4), 655–661 (1993).
  • Conway D, Cohen JA. Emerging oral therapies in multiple sclerosis. Curr. Neurol. Neurosci. Rep.10(5), 381–388 (2010).
  • Buttmann M. Treating multiple sclerosis with monoclonal antibodies: a 2010 update. Expert Rev. Neurother.10(5), 791–809 (2010).
  • Sela M. Poly(α-amino acids) – from a better understanding of immune phenomena to a drug against multiple sclerosis. Acta Polym.49, 523–525 (1998).
  • Teitelbaum D, Webb C, Bree M, Meshorer A, Arnon R, Sela M. Suppression of experimental allergic encephalomyelitis in rhesus monkeys by a synthetic copolymer. Clin. Immunol. Immunopathol.3, 256–262 (1974).
  • Bornstein MB, Miller A, Slagle S et al. A pilot trial of Cop 1 in exacerbating–remitting multiple sclerosis. N. Engl. J. Med.317(7), 408–414 (1987).
  • Bornstein MB, Miller AI, Teitelbaum D, Arnon R, Sela M. Multiple sclerosis: trial of a synthetic polypeptide. Ann. Neurol.11(3), 317–319 (1982).
  • Bornstein MB, Miller AE, Teitelbaum D, Arnon R, Sela M. Treatment of multiple sclerosis with a synthetic polypeptide: preliminary results. Trans. Am. Neurol. Assoc.105, 348–350 (1980).
  • Varkony H, Weinstein V, Klinger E et al. The glatiramoid class of immunomodulator drugs. Expert Opin. Pharmacother.10(4), 657–668 (2009).
  • Johnson KP. Glatiramer acetate and the glatiramoid class of immunomodulator drugs in multiple sclerosis: an update. Expert Opin. Drug Metab. Toxicol.6(5), 643–660 (2010).
  • Copaxone®, prescribing information. Teva Pharmaceuticals Inc., PA, USA (2009).
  • Kala M, Rhodes SN, Piao WH, Shi FD, Campagnolo DI, Vollmer TL. B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Expert Neurol.221(1), 136–145 (2010).
  • Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R. Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc. Natl Acad. Sci. USA100(24), 14157–14162 (2003).
  • Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela M, Arnon R. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc. Natl Acad. Sci. USA97(21), 11472–11477 (2000).
  • Aharoni R, Teitelbaum D, Sela M, Arnon R. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA94(20), 10821–10826 (1997).
  • Brenner T, Arnon R, Sela M et al. Humoral and cellular immune responses to Copolymer 1 in multiple sclerosis patients treated with Copaxone. J. Neuroimmunol.115(1–2), 152–160 (2001).
  • Ragheb S, Abramczyk S, Lisak D, Lisak R. Long-term therapy with glatiramer acetate in multiple sclerosis: effect on T-cells. Mult. Scler.7(1), 43–47 (2001).
  • Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J. Clin. Invest.105(7), 967–976 (2000).
  • Teitelbaum D, Brenner T, Abramsky O, Aharoni R, Sela M, Arnon R. Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult. Scler.9(6), 592–599 (2003).
  • Farina C, Vargas V, Heydari N, Kumpfel T, Meinl E, Hohlfeld R. Treatment with glatiramer acetate induces specific IgG4 antibodies in multiple sclerosis patients. J. Neuroimmunol.123(1–2), 188–192 (2002).
  • Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc. Natl Acad. Sci. USA101(Suppl. 2), 14593–14598 (2004).
  • Blanchette F, Neuhaus O. Glatiramer acetate: evidence for a dual mechanism of action. J. Neurol.255(Suppl. 1), 26–36 (2008).
  • Neuhaus O, Farina C, Wekerle H, Hohlfeld R. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology56(6), 702–708 (2001).
  • Racke MK, Lovett-Racke AE, Karandikar NJ. The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology74(Suppl. 1), S25–S30 (2010).
  • Weber MS, Hohlfeld R, Zamvil SS. Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics4(4), 647–653 (2007).
  • Ziemssen T, Schrempf W. Glatiramer acetate: mechanisms of action in multiple sclerosis. Int. Rev. Neurobiol.79, 537–570 (2007).
  • Fridkis-Hareli M, Teitelbaum D, Gurevich E et al. Direct binding of myelin basic protein and synthetic copolymer 1 to Class 2 major histocompatibility complex molecules on living antigen-presenting cells – specificity and promiscuity. Proc. Natl Acad. Sci. USA91(11), 4872–4876 (1994).
  • Wolinsky JS. Glatiramer acetate for the treatment of multiple sclerosis. Expert Opin. Pharmacother.5(4), 875–891 (2004).
  • Aharoni R, Teitelbaum D, Arnon R, Sela M. Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc. Natl Acad. Sci. USA96(2), 634–639 (1999).
  • Jee Y, Liu R, Bai XF, Campagnolo DI, Shi FD, Vollmer TL. Do Th2 cells mediate the effects of glatiramer acetate in experimental autoimmune encephalomyelitis? Int. Immunol.18(4), 537–544 (2006).
  • Gran B, Tranquill LR, Chen M et al. Mechanisms of immunomodulation by glatiramer acetate. Neurology55(11), 1704–1714 (2000).
  • Aharoni R, Teitelbaum D, Sela M, Arnon R. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J. Neuroimmunol.91(1–2), 135–146 (1998).
  • Chen M, Gran B, Costello K, Johnson K, Martin R, Dhib-Jalbut S. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult. Scler.7(4), 209–219 (2001).
  • Miller A, Shapiro S, Gershtein R et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J. Neuroimmunol.92(1–2), 113–121 (1998).
  • Aharoni R, Eilam R, Domev H, Labunskay G, Sela M, Arnon R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc. Natl Acad. Sci. USA102(52), 19045–19050 (2005).
  • Azoulay D, Vachapova V, Shihman B, Miler A, Karni A. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J. Neuroimmunol.167(1–2), 215–218 (2005).
  • Chen M, Valenzuela RM, Dhib-Jalbut S. Glatiramer acetate-reactive T cells produce brain-derived neurotrophic factor. J. Neurol. Sci.215(1–2), 37–44 (2003).
  • Liu J, Johnson TV, Lin J et al. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur. J. Immunol.37(11), 3143–3154 (2007).
  • Aharoni R, Herschkovitz A, Eilam R et al. Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA105(32), 11358–11363 (2008).
  • Ford C, Goodman AD, Johnson K et al. Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15 year analysis of the US prospective open-label study of glatiramer acetate. Mult. Scler.16(3), 342–350 (2010).
  • Awasthi A, Murugaiyan G, Kuchroo VK. Interplay between effector Th17 and regulatory T cells. J. Clin. Immunol.28(6), 660–670 (2008).
  • Aharoni R, Eilam R, Stock A et al. Glatiramer acetate reduces Th-17 inflammation and induces regulatory T-cells in the CNS of mice with relapsing–remitting or chronic EAE. J. Neuroimmunol.225(1–2), 100–111 (2010).
  • Begum-Haque S, Sharma A, Kasper IR et al. Downregulation of IL-17 and IL-6 in the central nervous system by glatiramer acetate in experimental autoimmune encephalomyelitis. J. Neuroimmunol.204(1–2), 58–65 (2008).
  • Hong J, Li N, Zhang X, Zheng B, Zhang JZ. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc. Natl Acad. Sci. USA102(18), 6449–6454 (2005).
  • Jee Y, Piao WH, Liu R et al. CD4(+)CD25(+) regulatory T cells contribute to the therapeutic effects of glatiramer acetate in experimental autoimmune encephalomyelitis. Clin. Immunol.125(1), 34–42 (2007).
  • Saresella M, Marventano I, Longhi R et al. CD4+CD25+FoxP3+PD1- regulatory T cells in acute and stable relapsing–remitting multiple sclerosis and their modulation by therapy. FASEB J.22(10), 3500–3508 (2008).
  • Haas J, Korporal M, Balint B, Fritzsching B, Schwarz A, Wildemann B. Glatiramer acetate improves regulatory T-cell function by expansion of naive CD4(+)CD25(+)FOXP3(+)CD31(+) T-cells in patients with multiple sclerosis. J. Neuroimmunol.216(1–2), 113–117 (2009).
  • Putheti P, Soderstrom M, Link H, Huang YM. Effect of glatiramer acetate (Copaxone) on CD4+CD25high T regulatory cells and their IL-10 production in multiple sclerosis. J. Neuroimmunol.144(1–2), 125–131 (2003).
  • Karandikar NJ, Crawford MP, Yan X et al. Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J. Clin. Invest.109(5), 641–649 (2002).
  • Tennakoon DK, Mehta RS, Ortega SB, Bhoj V, Racke MK, Karandikar NJ. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J. Immunol.176(11), 7119–7129 (2006).
  • Kim HJ, Ifergan I, Antel JP et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J. Immunol.172(11), 7144–7153 (2004).
  • Weber MS, Prod’homme T, Youssef S et al. Type 2 monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat. Med.13(8), 935–943 (2007).
  • Weber MS, Starck M, Wagenpfeil S, Meinl E, Hohlfeld R, Farina C. Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain127(Pt 6), 1370–1378 (2004).
  • Vieira PL, Heystek HC, Wormmeester J, Wierenga EA, Kapsenberg ML. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J. Immunol.170(9), 4483–4488 (2003).
  • Begum-Haque S, Sharma A, Christy M et al. Increased expression of B cell-associated regulatory cytokines by glatiramer acetate in mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol.219(1–2), 47–53 (2010).
  • Schori H, Kipnis J, Yoles E et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma. Proc. Natl Acad. Sci. USA98(6), 3398–3403 (2001).
  • Kipnis J, Yoles E, Porat Z et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc. Natl Acad. Sci. USA97(13), 7446–7451 (2000).
  • Benner EJ, Mosley RL, Destache CJ et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc. Natl Acad. Sci. USA101(25), 9435–9440 (2004).
  • Angelov DN, Waibel S, Guntinas-Lichius O et al. Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA100(8), 4790–4795 (2003).
  • Ben-Zeev B, Aharoni R, Nissenkorn A, Arnon R. Glatiramer acetate (GA, Copolymer-1) an hypothetical treatment option for Rett syndrome. Med. Hypotheses76(2), 190–193 (2010).
  • Aharoni R, Yussim A, Sela M, Arnon R. Combined treatment of glatiramer acetate and low doses of immunosuppressive drugs is effective in the prevention of graft rejection. Int. Immunopharmacol.5(1), 23–32 (2005).
  • Aharoni R, Teitelbaum D, Arnon R, Sela M. Copolymer 1 inhibits manifestations of graft rejection. Transplantation72(4), 598–605 (2001).
  • Aharoni R, Sonego H, Brenner O, Eilam R, Arnon R. The therapeutic effect of glatiramer acetate in a murine model of inflammatory bowel disease is mediated by anti-inflammatory T-cells. Immunol. Lett.112(2), 110–119 (2007).
  • Aharoni R, Kayhan B, Brenner O, Domev H, Labunskay G, Arnon R. Immunomodulatory therapeutic effect of glatiramer acetate on several murine models of inflammatory bowel disease. J. Pharmacol. Exp. Ther.318(1), 68–78 (2006).
  • Aharoni R, Kayhan B, Arnon R. Therapeutic effect of the immunomodulator glatiramer acetate on trinitrobenzene sulfonic acid-induced experimental colitis. Inflamm. Bowel Dis.11(2), 106–115 (2005).
  • Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging – measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian glatiramer acetate study group. Ann. Neurol.49(3), 290–297 (2001).
  • Mikol DD, Barkhof F, Chang P et al. Comparison of subcutaneous interferon β-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer acetate in relapsing MS disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol.7(10), 903–914 (2008).
  • O’Connor P, Filippi M, Arnason B et al. 250 microg or 500 microg interferon β-1b versus 20 mg glatiramer acetate in relapsing–remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol.8(10), 889–897 (2009).
  • Poser CM, Paty DW, Scheinberg L et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol.13(3), 227–231 (1983).
  • Polman CH, Reingold SC, Edan G et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol.58(6), 840–846 (2005).
  • Kieseier BC, Stuve O. A critical appraisal of treatment decisions in multiple sclerosis – old versus new. Nat. Rev. Neurol.7, 255–262 (2011).
  • Rovaris M, Comi G, Rocca MA et al. Long-term follow-up of patients treated with glatiramer acetate: a multicentre, multinational extension of the European/Canadian double-blind, placebo-controlled, MRI-monitored trial. Mult. Scler.13(4), 502–508 (2007).
  • Johnson KP, Brooks BR, Ford CC et al. Glatiramer acetate (Copaxone): comparison of continuous versus delayed therapy in a six-year organized multiple sclerosis trial. Mult. Scler.9(6), 585–591 (2003).
  • Johnson KP, Ford CC, Lisak RP, Wolinsky JS. Neurologic consequence of delaying glatiramer acetate therapy for multiple sclerosis: 8-year data. Acta Neurol. Scand.111(1), 42–47 (2005).
  • Ford CC, Johnson KP, Lisak RP, Panitch HS, Shifronis G, Wolinsky JS. A prospective open-label study of glatiramer acetate: over a decade of continuous use in multiple sclerosis patients. Mult. Scler.12(3), 309–320 (2006).
  • Wolinsky JS, Comi G, Filippi M, Ladkani D, Kadosh S, Shifroni G. Copaxone’s effect on MRI-monitored disease in relapsing MS is reproducible and sustained. Neurology59(8), 1284–1286 (2002).
  • Cadavid D, Wolansky LJ, Skurnick J et al. Efficacy of treatment of MS with IFNβ-1b or glatiramer acetate by monthly brain MRI in the BECOME study. Neurology72(23), 1976–1983 (2009).
  • Lublin F, Baier M, Cutter G et al. A trial to assess the safety of combining therapy with interferon-1a and glatiramer acetate in patients with relapsing MS. Neurology56, Abstract A148 (2001).
  • Ytterberg C, Johansson S, Andersson M et al. Combination therapy with interferon-β and glatiramer acetate in multiple sclerosis. Acta Neurol. Scand.116(2), 96–99 (2007).
  • Goodman AD, Rossman H, Bar-Or A et al. GLANCE: results of a Phase 2, randomized, double-blind, placebo-controlled study. Neurology72(9), 806–812 (2009).
  • Vollmer T, Panitch H, Bar-Or A et al. Glatiramer acetate after induction therapy with mitoxantrone in relapsing multiple sclerosis. Mult. Scler.14(5), 663–670 (2008).
  • Arnold DL, Campagnolo D, Panitch H et al. Glatiramer acetate after mitoxantrone induction improves MRI markers of lesion volume and permanent tissue injury in MS. J. Neurol.255(10), 1473–1478 (2008).
  • Khoury SJ, Healy BC, Kivisakk P et al. A randomized controlled double-masked trial of albuterol add-on therapy in patients with multiple sclerosis. Arch. Neurol.67(9), 1055–1061 (2010).
  • Freedman M, Wolinsky JS, Frangin G et al. Oral teriflunomide or placebo added to glatiramer acetate for 6 months in patients with relapsing multiple sclerosis: safety and efficacy results. Neurology74 (2010) (Abstract A293).
  • Comi G, Martinelli V, Rodegher M et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet374(9700), 1503–1511 (2009).
  • Martinelli V, Comi G, Rodegher M et al. Results from the 5 year prospective follow-up of patients receiving glatiramer acetate in the precise study on delaying conversion to CDMS. Presented at: The 63rd Annual Meeting of the American Academy of Neurology. Honolulu, HI, USA, 9–16 April 2011 (Abstract PD6.006).
  • De Stefano N, Narayanan S, Francis GS et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch. Neurol.58(1), 65–70 (2001).
  • Wolinsky JS, Narayana PA, O’Connor P et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann. Neurol.61(1), 14–24 (2007).
  • Wolinsky JS, Shochat T, Weiss S, Ladkani D. Glatiramer acetate treatment in PPMS: why males appear to respond favorably. J. Neurol. Sci.286(1–2), 92–98 (2009).
  • Hauser SL, Johnston SC. Balancing risk and reward: the question of natalizumab. Ann. Neurol.66(3), A7–A8 (2009).
  • Berger JR, Houff S. Opportunistic infections and other risks with newer multiple sclerosis therapies. Ann. Neurol.65(4), 367–377 (2009).
  • Cohen JA, Barkhof F, Comi G et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med.362(5), 402–415 (2010).
  • Anderson G, Meyer D, Herrman CE et al. Tolerability and safety of novel half milliliter formulation of glatiramer acetate for subcutaneous injection: an open-label, multicenter, randomized comparative study. J. Neurol.257(11), 1917–1923 (2010).
  • Jolly H, Simpson K, Bishop B et al. Impact of warm compresses on local injection-site reactions with self-administered glatiramer acetate. J. Neurosci. Nurs.40(4), 232–239 (2008).
  • Glenski S, Conner J. 29 gauge needles improve patient satisfaction over 27 gauge needles for daily glatiramer acetate injections. Drug Healthcare Patient Safety1, 81–86 (2009).
  • Pardo G, Boutwell C, Conner J, Denney D, Oleen-Burkey M. Effect of oral antihistamine on local injection site reactions with self-administered glatiramer acetate. J. Neurosci. Nurs.42(1), 40–46 (2010).
  • Mancardi GL, Murialdo A, Drago F et al. Localized lipoatrophy after prolonged treatment with copolymer 1. J. Neurol.247(3), 220–221 (2000).
  • Edgar CM, Brunet DG, Fenton P, McBride EV, Green P. Lipoatrophy in patients with multiple sclerosis on glatiramer acetate. Can. J. Neurol. Sci.31(1), 58–63 (2004).
  • Aharoni R, Brenner O, Cohen A, Arnon R. The therapeutic effect of TV-5010 in a murine model of inflammatory bowel disease – Dextran induced colitis. Int. Immunopharmacol.8(11), 1578–1588 (2008).
  • De Stefano N, Filippi M, Confavreux C et al. The results of two multicenter, open-label studies assessing efficacy, tolerability and safety of protiramer, a high molecular weight synthetic copolymeric mixture, in patients with relapsing–remitting multiple sclerosis. Mult. Scler.15(2), 238–243 (2009).
  • Comi G, Cohen JA, Arnold DL, Wynn D, Filippi M. Phase 3 dose-comparison study of glatiramer acetate for multiple sclerosis. Ann. Neurol.69(1), 75–82 (2011).
  • Comi G, Abramsky O, Arbizu T et al. Oral laquinimod in patients with relapsing–remitting multiple sclerosis: 36 week double-blind active extension of the multi-centre, randomized, double-blind, parallel-group placebo-controlled study. Mult. Scler.16(11), 1360–1366 (2010).
  • Comi G, Pulizzi A, Rovaris M et al. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing–remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled Phase 2b study. Lancet371(9630), 2085–2092 (2008).
  • Claussen MC, Korn T. Immune mechanisms of new therapeutic strategies in MS – teriflunomide. Clin. Immunol.142(1), 49–56 (2011).
  • Gold R. Oral therapies for multiple sclerosis: a review of agents in Phase 3 developmenet or recently approved. CNS Drugs25(1), 37–52 (2011).
  • Coles AJ, Compston DA, Selmaj KW et al. Alemtuzumab vs. interferon β-1a in early multiple sclerosis. N. Engl. J. Med.359(17), 1786–1801 (2008).
  • Klotz L, Meuth SG, Wiendl H. Immune mechanisms of new therapeutic strategies in multiple sclerosis – a focus on alemtuzumab. Clin. Immunol.142(1), 25–30 (2011).
  • Berger JR. Natalizumab and progressive multifocal leucoencephalopathy. Ann. Rheum. Dis.65(Suppl. 3), iii48–iii53 (2006).
  • Correale J, Farez MF. The impact of parasite infections on the course of multiple sclerosis. J. Neuroimmunol.233(1–2), 6–11 (2011).
  • Correale J, Farez M. Helminth antigens modulate immune responses in cells from multiple sclerosis patients through TLR2-dependent mechanisms. J. Immunol.183(9), 5999–6012 (2009).
  • Correale J, Farez M, Razzitte G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann. Neurol.64(2), 187–199 (2008).
  • Polman CH, Bertolotto A, Deisenhammer F et al. Recommendations for clinical use of data on neutralising antibodies to interferon-β therapy in multiple sclerosis. Lancet Neurol.9(7), 740–750 (2010).
  • Smith B, Carson S, Fu R et al.Drug Class Review on Disease-Modifying Drugs for Multiple Sclerosis. Final Update 1 Report. Oregon Health & Science University, OR, USA (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.