111
Views
8
CrossRef citations to date
0
Altmetric
Theme: Epilepsy - Review

The impact of positron emission tomography imaging on the clinical management of patients with epilepsy

Pages 719-732 | Published online: 09 Jan 2014

References

  • Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114(1), 89–98 (1975).
  • Phelps ME, Hoffman EJ, Coleman RE et al. Tomographic images of blood pool and perfusion in brain and heart. J. Nucl. Med. 17(7), 603–612 (1976).
  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (18F)2-fluoro-2-deoxy-d-glucose: validation of method. Ann. Neurol. 6(5), 371–388 (1979).
  • Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am. J. Physiol. 238(1), E69–E82 (1980).
  • Kuhl DE, Engel J Jr, Phelps ME, Selin C. Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann. Neurol. 8(4), 348–360 (1980).
  • Phelps ME. Positron computed tomography studies of cerebral glucose metabolism in man: theory and application in nuclear medicine. Semin. Nucl. Med. 11(1), 32–49 (1981).
  • Engel J Jr, Kuhl DE, Phelps ME, Mazziotta JC. Interictal cerebral glucose metabolism in partial epilepsy and its relation to EEG changes. Ann. Neurol. 12(6), 510–517 (1982).
  • Szelies B, Herholz K, Heiss WD et al. Hypometabolic cortical lesions in tuberous sclerosis with epilepsy: demonstration by positron emission tomography. J. Comput. Assist. Tomogr. 7(6), 946–953 (1983).
  • Theodore WH, Newmark ME, Sato S et al. [18F]fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann. Neurol. 14(4), 429–437 (1983).
  • Engel J Jr, Kuhl DE, Phelps ME, Crandall PH. Comparative localization of epileptic foci in partial epilepsy by PCT and EEG. Ann. Neurol. 12(6), 529–537 (1982).
  • Engel J Jr, Kuhl DE, Phelps ME, Rausch R, Nuwer M. Local cerebral metabolism during partial seizures. Neurology 33(4), 400–413 (1983).
  • Kilpatrick C, O’Brien T, Matkovic Z, Cook M, Kaye A. Preoperative evaluation for temporal lobe surgery. J. Clin. Neurosci. 10(5), 535–539 (2003).
  • Casse R, Rowe CC, Newton M, Berlangieri SU, Scott AM. Positron emission tomography and epilepsy. Mol. Imaging Biol. 4(5), 338–351 (2002).
  • DellaBadia J Jr, Bell WL, Keyes JW Jr, Mathews VP, Glazier SS. Assessment and cost comparison of sleep-deprived EEG, MRI and PET in the prediction of surgical treatment for epilepsy. Seizure 11(5), 303–309 (2002).
  • Uijl SG, Leijten FS, Arends JB, Parra J, van Huffelen AC, Moons KG. The added value of [18F]-fluoro-d-deoxyglucose positron emission tomography in screening for temporal lobe epilepsy surgery. Epilepsia 48(11), 2121–2129 (2007).
  • Labate A, Gambardella A, Aguglia U et al. Temporal lobe abnormalities on brain MRI in healthy volunteers: a prospective case–control study. Neurology 74(7), 553–557 (2010).
  • Struck AF, Hall LT, Floberg JM, Perlman SB, Dulli DA. Surgical decision making in temporal lobe epilepsy: a comparison of [(18)F]FDG-PET, MRI, and EEG. Epilepsy Behav. 22(2), 293–297 (2011).
  • Carne RP, O’Brien TJ, Kilpatrick CJ et al. MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 127(Pt 10), 2276–2285 (2004).
  • Carne RP, O’Brien TJ, Kilpatrick CJ et al. ‘MRI-negative PET-positive’ temporal lobe epilepsy (TLE) and mesial TLE differ with quantitative MRI and PET: a case control study. BMC Neurol. 7, 16 (2007).
  • Immonen A, Jutila L, Muraja-Murro A et al. Long-term epilepsy surgery outcomes in patients with MRI-negative temporal lobe epilepsy. Epilepsia 51(11), 2260–2269 (2010).
  • Newberg AB, Alavi A, Berlin J, Mozley PD, O’Connor M, Sperling M. Ipsilateral and contralateral thalamic hypometabolism as a predictor of outcome after temporal lobectomy for seizures. J. Nucl. Med. 41(12), 1964–1968 (2000).
  • Choi JY, Kim SJ, Hong SB et al. Extratemporal hypometabolism on FDG-PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur. J. Nucl. Med. Mol. Imaging 30(4), 581–587 (2003).
  • Swartz BE, Halgren E, Delgado-Escueta AV et al. Neuroimaging in patients with seizures of probable frontal lobe origin. Epilepsia 30(5), 547–558 (1989).
  • Henry TR, Sutherling WW, Engel J Jr et al. Interictal cerebral metabolism in partial epilepsies of neocortical origin. Epilepsy Res. 10(2-3), 174–182 (1991).
  • da Silva EA, Chugani DC, Muzik O, Chugani HT. Identification of frontal lobe epileptic foci in children using positron emission tomography. Epilepsia 38(11), 1198–1208 (1997).
  • Schlaug G, Antke C, Holthausen H et al. Ictal motor signs and interictal regional cerebral hypometabolism. Neurology 49(2), 341–350 (1997).
  • Juhász C, Chugani HT. Positron emission tomography: glucose metabolism in extratemporal lobe epilepsy. In: Neuroimaging in Epilepsy. Chugani HT (Ed.). Oxford University Press, NY, USA, 141–155 (2011).
  • Salamon N, Kung J, Shaw SJ et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 71(20), 1594–1601 (2008).
  • Lerner JT, Salamon N, Hauptman JS et al. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 50(6), 1310–1335 (2009).
  • Mathern GW. Challenges in the surgical treatment of epilepsy patients with cortical dysplasia. Epilepsia (50 Suppl. 9), 45–50 (2009).
  • Palmini A, Najm I, Avanzini G et al. Terminology and classification of the cortical dysplasias. Neurology 62(6 Suppl. 3), S2–S8 (2004).
  • Kim YH, Kang HC, Kim DS et al. Neuroimaging in identifying focal cortical dysplasia and prognostic factors in pediatric and adolescent epilepsy surgery. Epilepsia 52(4), 722–727 (2011).
  • Seo JH, Holland K, Rose D et al. Multimodality imaging in the surgical treatment of children with nonlesional epilepsy. Neurology 76(1), 41–48 (2011).
  • Kumar A, Juhász C, Asano E, Sood S, Muzik O, Chugani HT. Objective detection of epileptic foci by 18F-FDG-PET in children undergoing epilepsy surgery. J. Nucl. Med. 51(12), 1901–1907 (2010).
  • Chassoux F, Rodrigo S, Semah F et al. FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology 75(24), 2168–2175 (2010).
  • Juhász C, Chugani DC, Muzik O et al. Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy. Neurology 55(6), 825–835 (2000).
  • Juhász C, Chugani DC, Muzik O et al. Is epileptogenic cortex truly hypometabolic on interictal positron emission tomography? Ann. Neurol. 48(1), 88–96 (2000).
  • Alkonyi B, Juhász C, Muzik O et al. Quantitative brain surface mapping of an electrophysiologic/metabolic mismatch in human neocortical epilepsy. Epilepsy Res. 87(1), 77–87 (2009).
  • Prince DA, Wilder BJ. Control mechanisms in cortical epileptogenic foci. ‘Surround’ inhibition. Arch. Neurol. 16(2), 194–202 (1967).
  • Collins RC. Use of cortical circuits during focal penicillin seizures: an autoradiographic study with [14C]deoxyglucose. Brain Res. 150(3), 487–501 (1978).
  • Bruehl C, Witte OW. Cellular activity underlying altered brain metabolism during focal epileptic activity. Ann. Neurol. 38(3), 414–420 (1995).
  • Witte OW, Bruehl C, Schlaug G et al. Dynamic changes of focal hypometabolism in relation to epileptic activity. J. Neurol. Sci. 124(2), 188–197 (1994).
  • Nelissen N, Van Paesschen W, Baete K et al. Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 32(2), 684–695 (2006).
  • Chugani HT, Shields WD, Shewmon DA, Olson DM, Phelps ME, Peacock WJ. Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann. Neurol. 27(4), 406–413 (1990).
  • Chugani HT, Conti JR. Etiologic classification of infantile spasms in 140 cases: role of positron emission tomography. J. Child Neurol. 11(1), 44–48 (1996).
  • Chugani HT, Asano E, Sood S. Infantile spasms: who are the ideal surgical candidates? Epilepsia 51(Suppl. 1), 94–96 (2010).
  • Asarnow RF, LoPresti C, Guthrie D et al. Developmental outcomes in children receiving resection surgery for medically intractable infantile spasms. Dev. Med. Child Neurol. 39(7), 430–440 (1997).
  • Jonas R, Asarnow RF, LoPresti C et al. Surgery for symptomatic infant-onset epileptic encephalopathy with and without infantile spasms. Neurology 64(4), 746–750 (2005).
  • Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widén L. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 2(8616), 863–866 (1988).
  • Henry TR, Frey KA, Sackellares JC et al. In vivo cerebral metabolism and central benzodiazepine-receptor binding in temporal lobe epilepsy. Neurology 43(10), 1998–2006 (1993).
  • Savic I, Ingvar M, Stone-Elander S. Comparison of 11C -flumazenil and 18F-FDG as PET markers of epileptic foci. J Neurol Neurosurg Psychiatry 56, 615–621 (1993).
  • Koepp MJ, Richardson MP, Brooks DJ et al. Cerebral benzodiazepine receptors in hippocampal sclerosis. An objective in vivo analysis. Brain 119(Pt 5), 1677–1687 (1996).
  • Szelies B, Weber-Luxenburger G, Pawlik G et al. MRI-guided flumazenil- and FDG-PET in temporal lobe epilepsy. Neuroimage 3(2), 109–118 (1996).
  • Ryvlin P, Bouvard S, Le Bars D et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 121(Pt 11), 2067–2081 (1998).
  • Juhász C, Nagy F, Muzik O, Watson C, Shah J, Chugani HT. [11C]Flumazenil PET in patients with epilepsy with dual pathology. Epilepsia 40(5), 566–574 (1999).
  • Lamusuo S, Pitkänen A, Jutila L et al. [11C]Flumazenil binding in the medial temporal lobe in patients with temporal lobe epilepsy: correlation with hippocampal MR volumetry, T2 relaxometry, and neuropathology. Neurology 54(12), 2252–2260 (2000).
  • Szelies B, Weber-Luxenburger G, Mielke R et al. Interictal hippocampal benzodiazepine receptors in temporal lobe epilepsy: comparison with coregistered hippocampal metabolism and volumetry. Eur. J. Neurol. 7(4), 393–400 (2000).
  • Koepp MJ, Hammers A, Labbé C, Woermann FG, Brooks DJ, Duncan JS. 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI. Neurology 54(2), 332–339 (2000).
  • Hammers A, Koepp MJ, Hurlemann R et al. Abnormalities of grey and white matter [11C]flumazenil binding in temporal lobe epilepsy with normal MRI. Brain 125(Pt 10), 2257–2271 (2002).
  • Ryvlin P, Bouvard S, Le Bars D, Mauguière F. Transient and falsely lateralizing flumazenil-PET asymmetries in temporal lobe epilepsy. Neurology 53(8), 1882–1885 (1999).
  • Bouvard S, Costes N, Bonnefoi F et al. Seizure-related short-term plasticity of benzodiazepine receptors in partial epilepsy: a [11C]flumazenil-PET study. Brain 128(Pt 6), 1330–1343 (2005).
  • Savic I, Thorell JO, Roland P. [11C]flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia 36(12), 1225–1232 (1995).
  • Muzik O, da Silva EA, Juhasz C et al. Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy. Neurology 54(1), 171–179 (2000).
  • Hammers A, Koepp MJ, Richardson MP, Hurlemann R, Brooks DJ, Duncan JS. Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain 126(Pt 6), 1300–1318 (2003).
  • Hammers A, Koepp MJ, Brooks DJ, Duncan JS. Periventricular white matter flumazenil binding and postoperative outcome in hippocampal sclerosis. Epilepsia 46(6), 944–948 (2005).
  • Koepp MJ. [11C]Flumazenil positron emission tomography. In: Neuroimaging in Epilepsy. Chugani HT (Ed.). Oxford University Press, NY, USA, 174–185 (2011).
  • Juhász C, Chugani DC, Muzik O et al. Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome. Neurology 56(12), 1650–1658 (2001).
  • Juhász C, Asano E, Shah A et al. Focal decreases of cortical GABAA receptor binding remote from the primary seizure focus: what do they indicate? Epilepsia 50(2), 240–250 (2009).
  • Savic I, Svanborg E, Thorell JO. Cortical benzodiazepine receptor changes are related to frequency of partial seizures: a positron emission tomography study. Epilepsia 37(3), 236–244 (1996).
  • Savic I, Blomqvist G, Halldin C, Litton JE, Gulyas B. Regional increases in [11C]flumazenil binding after epilepsy surgery. Acta Neurol. Scand. 97(5), 279–286 (1998).
  • Gründer G, Siessmeier T, Lange-Asschenfeldt C et al. [18F]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors. Eur. J. Nucl. Med. 28(10), 1463–1470 (2001).
  • Levêque P, Sanabria-Bohorquez S, Bol A et al. Quantification of human brain benzodiazepine receptors using [18F]fluoroethylflumazenil: a first report in volunteers and epileptic patients. Eur. J. Nucl. Med. Mol. Imaging 30(12), 1630–1636 (2003).
  • Massaweh G, Schirrmacher E, la Fougere C et al. Improved work-up procedure for the production of [18F]flumazenil and first results of its use with a high-resolution research tomograph in human stroke. Nucl. Med. Biol. 36(7), 721–727 (2009).
  • la Fougère C, Grant S, Kostikov A et al. Where in-vivo imaging meets cytoarchitectonics: the relationship between cortical thickness and neuronal density measured with high-resolution [18F]flumazenil-PET. Neuroimage 56(3), 951–960 (2011).
  • Diksic M, Tohyama Y, Takada A. Brain net unidirectional uptake of alpha-[14C]methyl-l-tryptophan (alpha-MTrp) and its correlation with regional serotonin synthesis, tryptophan incorporation into proteins, and permeability surface area products of tryptophan and alpha-MTrp. Neurochem. Res. 25(12), 1537–1546 (2000).
  • Trottier S, Evrard B, Vignal JP, Scarabin JM, Chauvel P. The serotonergic innervation of the cerebral cortex in man and its changes in focal cortical dysplasia. Epilepsy Res. 25(2), 79–106 (1996).
  • Chugani DC, Chugani HT, Muzik O et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-l-tryptophan positron emission tomography. Ann. Neurol. 44(6), 858–866 (1998).
  • Asano E, Chugani DC, Muzik O et al. Multimodality imaging for improved detection of epileptogenic foci in tuberous sclerosis complex. Neurology 54(10), 1976–1984 (2000).
  • Fedi M, Reutens DC, Andermann F et al. alpha-[11C]-Methyl-l-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency. Epilepsy Res. 52(3), 203–213 (2003).
  • Kagawa K, Chugani DC, Asano E et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]methyl-l-tryptophan positron emission tomography (PET). J. Child Neurol. 20(5), 429–438 (2005).
  • Fedi M, Reutens D, Okazawa H et al. Localizing value of alpha-methyl-l-tryptophan PET in intractable epilepsy of neocortical origin. Neurology 57(9), 1629–1636 (2001).
  • Juhász C, Chugani DC, Muzik O et al. Alpha-methyl-l-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology 60(6), 960–968 (2003).
  • Wakamoto H, Chugani DC, Juhász C, Muzik O, Kupsky WJ, Chugani HT. Alpha-methyl-l-tryptophan positron emission tomography in epilepsy with cortical developmental malformations. Pediatr. Neurol. 39(3), 181–188 (2008).
  • Alkonyi B, Mittal S, Zitron I et al. Increased tryptophan transport in epileptogenic dysembryoplastic neuroepithelial tumors. J. Neurooncol. 107(2), 365–372 (2012).
  • Chugani HT, Kumar A, Kupsky W, Asano E, Sood S, Juhász C. Clinical and histopathologic correlates of 11C-alpha-methyl-l-tryptophan (AMT) PET abnormalities in children with intractable epilepsy. Epilepsia 52(9), 1692–1698 (2011).
  • Chugani DC, Muzik O. Alpha[C-11]methyl-l-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J. Cereb. Blood Flow Metab. 20(1), 2–9 (2000).
  • Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev. Mol. Med. 8(20), 1–27 (2006).
  • Ravizza T, Boer K, Redeker S et al. The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol. Dis. 24(1), 128–143 (2006).
  • Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav. Immun. 22(6), 797–803 (2008).
  • Shu HF, Zhang CQ, Yin Q, An N, Liu SY, Yang H. Expression of the interleukin 6 system in cortical lesions from patients with tuberous sclerosis complex and focal cortical dysplasia type IIb. J. Neuropathol. Exp. Neurol. 69(8), 838–849 (2010).
  • Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat. Rev. Neurol. 7(1), 31–40 (2011).
  • Banati RB, Goerres GW, Myers R et al. [11C]®-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology 53(9), 2199–2203 (1999).
  • Kumar A, Chugani HT, Luat A, Asano E, Sood S. Epilepsy surgery in a case of encephalitis: use of 11C-PK11195 positron emission tomography. Pediatr. Neurol. 38(6), 439–442 (2008).
  • Boer K, Spliet WG, van Rijen PC, Redeker S, Troost D, Aronica E. Evidence of activated microglia in focal cortical dysplasia. J. Neuroimmunol. 173(1-2), 188–195 (2006).
  • Choi J, Nordli DR Jr, Alden TD et al. Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J. Neuroinflammation 6, 38 (2009).
  • Butler T, Ichise M, Teich AF et al. Imaging inflammation in a patient with epilepsy due to focal cortical dysplasia. J. Neuroimaging doi:10.1111/j.1552-6569.2010.00572.x (2011) (Epub ahead of print).
  • Bien CG, Scheffer IE. Autoantibodies and epilepsy. Epilepsia 52(Suppl. 3), 18–22 (2011).
  • Buck JR, McKinley ET, Hight MR et al. Quantitative, preclinical PET of translocator protein expression in glioma using 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline. J. Nucl. Med. 52(1), 107–114 (2011).
  • Takano A, Gulyás B, Varrone A et al. Biodistribution and radiation dosimetry of the 18 kDa translocator protein (TSPO) radioligand [18F]FEDAA1106: a human whole-body PET study. Eur. J. Nucl. Med. Mol. Imaging 38(11), 2058–2065 (2011).
  • Wada Y, Nakamura M, Hasegawa H, Yamaguchi N. Role of serotonin receptor subtype in seizures kindled from the feline hippocampus. Neurosci. Lett. 141(1), 21–24 (1992).
  • Gariboldi M, Tutka P, Samanin R, Vezzani A. Stimulation of 5-HT1A receptors in the dorsal hippocampus and inhibition of limbic seizures induced by kainic acid in rats. Br. J. Pharmacol. 119(5), 813–818 (1996).
  • Toczek MT, Carson RE, Lang L et al. PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology 60(5), 749–756 (2003).
  • Savic I, Lindström P, Gulyás B, Halldin C, Andrée B, Farde L. Limbic reductions of 5-HT1A receptor binding in human temporal lobe epilepsy. Neurology 62(8), 1343–1351 (2004).
  • Merlet I, Ostrowsky K, Costes N et al. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an [18F]MPPF-PET study. Brain 127(Pt 4), 900–913 (2004).
  • Didelot A, Ryvlin P, Lothe A, Merlet I, Hammers A, Mauguière F. PET imaging of brain 5-HT1A receptors in the preoperative evaluation of temporal lobe epilepsy. Brain 131(Pt 10), 2751–2764 (2008).
  • Liew CJ, Lim YM, Bonwetsch R et al. 18F-FCWAY and 18F-FDG-PET in MRI-negative temporal lobe epilepsy. Epilepsia 50(2), 234–239 (2009).
  • Theodore WH, Hasler G, Giovacchini G et al. Reduced hippocampal 5HT1A PET receptor binding and depression in temporal lobe epilepsy. Epilepsia 48(8), 1526–1530 (2007).
  • Lothe A, Didelot A, Hammers A et al. Comorbidity between temporal lobe epilepsy and depression: a [18F]MPPF PET study. Brain 131(Pt 10), 2765–2782 (2008).
  • Theodore WH, Wiggs EA, Martinez AR et al. Serotonin 1A receptors, depression, and memory in temporal lobe epilepsy. Epilepsia 53(1), 129–133 (2012).
  • Knowlton RC, Elgavish RA, Limdi N et al. Functional imaging: I. Relative predictive value of intracranial electroencephalography. Ann. Neurol. 64(1), 25–34 (2008).
  • O’Brien TJ, Miles K, Ware R, Cook MJ, Binns DS, Hicks RJ. The cost-effective use of 18F-FDG-PET in the presurgical evaluation of medically refractory focal epilepsy. J. Nucl. Med. 49(6), 931–937 (2008).
  • Lee SK, Lee SY, Kim KK, Hong KS, Lee DS, Chung CK. Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann. Neurol. 58(4), 525–532 (2005).
  • Kim JT, Bai SJ, Choi KO et al. Comparison of various imaging modalities in localization of epileptogenic lesion using epilepsy surgery outcome in pediatric patients. Seizure 18(7), 504–510 (2009).
  • Goffin K, Van Paesschen W, Dupont P et al. Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI. Eur. J. Nucl. Med. Mol. Imaging 37(6), 1148–1155 (2010).
  • Baete K, Nuyts J, Van Laere K et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neuroimage 23(1), 305–317 (2004).
  • Blümcke I, Thom M, Aronica E et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52(1), 158–174 (2011).
  • Pitkänen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 10(2), 173–186 (2011).
  • Laufs H, Richardson MP, Salek-Haddadi A et al. Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology 77(9), 904–910 (2011).
  • Fedi M, Berkovic SF, Marini C, Mulligan R, Tochon-Danguy H, Reutens DC. A GABAA receptor mutation causing generalized epilepsy reduces benzodiazepine receptor binding. Neuroimage 32(3), 995–1000 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.