130
Views
17
CrossRef citations to date
0
Altmetric
Theme: Scizophrenia - Review

Modeling resilience to schizophrenia in genetically modified mice: a novel approach to drug discovery

, , , &
Pages 785-799 | Published online: 09 Jan 2014

References

  • Insel TR. Rethinking schizophrenia. Nature 468(7321), 187–193 (2010).
  • Karam CS, Ballon JS, Bivens NM et al. Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends Pharmacol. Sci. 31(8), 381–390 (2010).
  • Lupski JR. Schizophrenia: incriminating genomic evidence. Nature 455(7210), 178–179 (2008).
  • Owen MJ, Craddock N, O’Donovan MC. Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. Arch. Gen. Psychiatr. 67(7), 667–673 (2010).
  • Meyer-Lindenberg A. From maps to mechanisms through neuroimaging of schizophrenia. Nature 468(7321), 194–202 (2010).
  • Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull. 35(3), 528–548 (2009).
  • Oliveira JM. Nature and cause of mitochondrial dysfunction in Huntington’s disease: focusing on huntingtin and the striatum. J. Neurochem. 114(1), 1–12 (2010).
  • Bossy-Wetzel E, Petrilli A, Knott AB. Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci. 31(12), 609–616 (2008).
  • Rosenstock TR, Duarte AI, Rego AC. Mitochondrial-associated metabolic changes and neurodegeneration in Huntington’s disease – from clinical features to the bench. Curr. Drug Targets 11(10), 1218–1236 (2010).
  • Lutha SS, Cicchetti D. The construct of resilience: implications for interventions and social policies. Dev. Psychopathol. 12(4), 857–885 (2000).
  • Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat. Rev. Neurosci. 10(6), 446–457 (2009).
  • Cicchetti D, Rogosch FA. Adaptive coping under conditions of extreme stress: multilevel influences on the determinants of resilience in maltreated children. New Dir. Child Adolesc. Dev. 2009(124), 47–59 (2009).
  • Rutter M, Moffitt TE, Caspi A. Gene–environment interplay and psychopathology: multiple varieties but real effects. J. Child Psychol. Psychiatr. 47(3–4), 226–261 (2006).
  • Caspi A, Sugden K, Moffitt TE et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631), 386–389 (2003).
  • Suomi SJ. Risk, resilience, and gene–environment interplay in primates. J. Can. Acad. Child Adolesc. Psychiatr. 20(4), 289–297 (2011).
  • Benedetti F, Poletti S, Radaelli D et al. Temporal lobe grey matter volume in schizophrenia is associated with a genetic polymorphism influencing glycogen synthase kinase 3-β activity. Genes Brain Behav. 9(4), 365–371 (2010).
  • Schmidt MV, Trümbach D, Weber P et al. Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus. J. Neurosci. 30(50), 16949–16958 (2010).
  • Liberzon I, Knox D. Expanding our understanding of neurobiological mechanisms of resilience by using animal models. Neuropsychopharmacology 37(2), 317–318 (2012).
  • Rasetti R, Weinberger DR. Intermediate phenotypes in psychiatric disorders. Curr. Opin. Genet. Dev. 21(3), 340–348 (2011).
  • Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 12(11), 623–637 (2011).
  • Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatr. 160(4), 636–645 (2003).
  • Gershon ES, Alliey-Rodriguez N, Liu C. After GWAS: searching for genetic risk for schizophrenia and bipolar disorder. Am. J. Psychiatr. 168(3), 253–256 (2011).
  • Karayiorgou M, Simon TJ, Gogos JA. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat. Rev. Neurosci. 11(6), 402–416 (2010).
  • Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatr. 10(1), 40–68; image 5 (2005).
  • Carter CJ. Schizophrenia susceptibility genes converge on interlinked pathways related to glutamatergic transmission and long-term potentiation, oxidative stress and oligodendrocyte viability. Schizophr. Res. 86(1–3), 1–14 (2006).
  • Lee FH, Fadel MP, Preston-Maher K et al. Disc1 point mutations in mice affect development of the cerebral cortex. J. Neurosci. 31(9), 3197–3206 (2011).
  • Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464(7289), 763–767 (2010).
  • Kato T, Kasai A, Mizuno M et al. Phenotypic characterization of transgenic mice overexpressing neuregulin-1. PLoS ONE 5(12), e14185 (2010).
  • Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13(10), 1161–1169 (2010).
  • Schwab SG, Wildenauer DB. Update on key previously proposed candidate genes for schizophrenia. Curr. Opin. Psychiatr. 22(2), 147–153 (2009).
  • Petronis A, Gottesman II, Kan P et al. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr. Bull. 29(1), 169–178 (2003).
  • Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am. J. Psychiatr. 162(12), 2233–2245 (2005).
  • Meyer-Lindenberg A. Neuroimaging and the question of neurodegeneration in schizophrenia. Prog. Neurobiol. 95(4), 514–516 (2011).
  • Lewis DA, Hashimoto T. Deciphering the disease process of schizophrenia: the contribution of cortical GABA neurons. Int. Rev. Neurobiol. 78, 109–131 (2007).
  • Jaaro-Peled H, Ayhan Y, Pletnikov MV, Sawa A. Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models. Schizophr. Bull. 36(2), 301–313 (2010).
  • Volk DW, Lewis DA. Prefrontal cortical circuits in schizophrenia. Curr. Top. Behav. Neurosci. 4, 485–508 (2010).
  • Brown AS, Patterson PH. The Origins of Schizophrenia. Columbia University Press, NY, USA (2012).
  • Piontkewitz Y, Assaf Y, Weiner I. Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia. Biol. Psychiatr. 66(11), 1038–1046 (2009).
  • Piontkewitz Y, Arad M, Weiner I. Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat. Biol. Psychiatr. 70(9), 842–851 (2011).
  • Lodge DJ, Grace AA. Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia. Neurotox. Res. 14(2–3), 97–104 (2008).
  • Walker EF, Diforio D. Schizophrenia: a neural diathesis-stress model. Psychol. Rev. 104(4), 667–685 (1997).
  • Jones SR, Fernyhough C. A new look at the neural diathesis–stress model of schizophrenia: the primacy of social-evaluative and uncontrollable situations. Schizophr. Bull. 33(5), 1171–1177 (2007).
  • van Os J, Kenis G, Rutten BP. The environment and schizophrenia. Nature 468(7321), 203–212 (2010).
  • Potvin S, Stip E, Roy J. Schizophrenia and addiction: an evaluation of the self-medication hypothesis. L’Enceéphale 29(3), 193–203 (2003).
  • Bayer TA, Falkai P, Maier W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the ‘two hit hypothesis’. J. Psychiatr. Res. 33(6), 543–548 (1999).
  • Lieberman JA, Bymaster FP, Meltzer HY et al. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol. Rev. 60(3), 358–403 (2008).
  • Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M. Baseline and amphetamine-stimulated dopamine activity are related in drug-naïve schizophrenic subjects. Biol. Psychiatr. 65(12), 1091–1093 (2009).
  • Kellendonk C, Simpson EH, Polan HJ et al. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49(4), 603–615 (2006).
  • Simpson EH, Kellendonk C, Kandel E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 65(5), 585–596 (2010).
  • Guillin O, Abi-Dargham A, Laruelle M. Neurobiology of dopamine in schizophrenia. Int. Rev. Neurobiol. 78, 1–39 (2007).
  • Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37(1), 4–15 (2012).
  • Shim G, Kang DH, Chung YS, Yoo SY, Shin NY, Kwon JS. Social functioning deficits in young people at risk for schizophrenia. Aust. NZ J. Psychiatr. 42(8), 678–685 (2008).
  • Patil ST, Zhang L, Martenyi F et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat. Med. 13(9), 1102–1107 (2007).
  • Moore H. The role of rodent models in the discovery of new treatments for schizophrenia: updating our strategy. Schizophr. Bull. 36(6), 1066–1072 (2010).
  • Geyer MA. Developing translational animal models for symptoms of schizophrenia or bipolar mania. Neurotox. Res. 14(1), 71–78 (2008).
  • Papaleo F, Lipska BK, Weinberger DR. Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 62(3), 1204–1220 (2012).
  • Dow LE, Lowe SW. Life in the fast lane: mammalian disease models in the genomics era. Cell 148(6), 1099–1109 (2012).
  • Arguello PA, Markx S, Gogos JA, Karayiorgou M. Development of animal models for schizophrenia. Dis. Model. Mech. 3(1–2), 22–26 (2010).
  • Bitanihirwe BK, Lim MP, Kelley JF, Kaneko T, Woo TU. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatr. 9, 71 (2009).
  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98(4), 427–436 (1999).
  • Belforte JE, Zsiros V, Sklar ER et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 13(1), 76–83 (2010).
  • Enna SJ, Williams M. Challenges in the search for drugs to treat central nervous system disorders. J. Pharmacol. Exp. Ther. 329(2), 404–411 (2009).
  • Skarnes WC, Rosen B, West AP et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351), 337–342 (2011).
  • Dow LE, Premsrirut PK, Zuber J et al. A pipeline for the generation of shRNA transgenic mice. Nat. Protoc. 7(2), 374–393 (2012).
  • Arguello PA, Gogos JA. Modeling madness in mice: one piece at a time. Neuron 52(1), 179–196 (2006).
  • Kegeles LS, Abi-Dargham A, Frankle WG et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch. Gen. Psychiatr. 67(3), 231–239 (2010).
  • Nordström AL, Farde L, Wiesel FA et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol. Psychiatr. 33(4), 227–235 (1993).
  • Weiner I, Arad M. Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. Behav. Brain Res. 204(2), 369–386 (2009).
  • Schmidt-Hansen M, Le Pelley M. The positive symptoms of acute schizophrenia and latent inhibition in humans and animals: underpinned by the same process(es)? Cogn. Neuropsychiatr. doi:10.1080/13546805.2012.667202 (2012) (Epub ahead of print).
  • Gaisler-Salomon I, Weiner I. Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology 166(4), 333–342 (2003).
  • Gaisler-Salomon I, Diamant L, Rubin C, Weiner I. Abnormally persistent latent inhibition induced by MK801 is reversed by risperidone and by positive modulators of NMDA receptor function: differential efficacy depending on the stage of the task at which they are administered. Psychopharmacology 196(2), 255–267 (2008).
  • Lipina T, Labrie V, Weiner I, Roder J. Modulators of the glycine site on NMDA receptors, d-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology 179(1), 54–67 (2005).
  • Labrie V, Lipina T, Roder JC. Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology 200(2), 217–230 (2008).
  • Swerdlow NR, Geyer MA, Braff DL. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156(2–3), 194–215 (2001).
  • Ralph RJ, Varty GB, Kelly MA et al. The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J. Neurosci. 19(11), 4627–4633 (1999).
  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156(2–3), 117–154 (2001).
  • Brody SA, Conquet F, Geyer MA. Effect of antipsychotic treatment on the prepulse inhibition deficit of mGluR5 knockout mice. Psychopharmacology 172(2), 187–195 (2004).
  • Ouagazzal AM, Jenck F, Moreau JL. Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: a model for detecting antipsychotic activity? Psychopharmacology 156(2–3), 273–283 (2001).
  • Hagan JJ, Jones DN. Predicting drug efficacy for cognitive deficits in schizophrenia. Schizophr. Bull. 31(4), 830–853 (2005).
  • Keefe RS, Eesley CE, Poe MP. Defining a cognitive function decrement in schizophrenia. Biol. Psychiatr. 57(6), 688–691 (2005).
  • Keefe RS, Sweeney JA, Gu H et al. Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: a randomized, double-blind 52-week comparison. Am. J. Psychiatr. 164(7), 1061–1071 (2007).
  • Black MD, Stevens RJ, Rogacki N et al. AVE1625, a cannabinoid CB1 receptor antagonist, as a co-treatment with antipsychotics for schizophrenia: improvement in cognitive function and reduction of antipsychotic-side effects in rodents. Psychopharmacology 215(1), 149–163 (2011).
  • Moore TL, Killiany RJ, Herndon JG, Rosene DL, Moss MB. A non-human primate test of abstraction and set shifting: an automated adaptation of the Wisconsin Card Sorting Test. J. Neurosci. Methods 146(2), 165–173 (2005).
  • Dias R, Robbins TW, Roberts AC. Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav. Neurosci. 110(5), 872–886 (1996).
  • Birrell JM, Brown VJ. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20(11), 4320–4324 (2000).
  • Dias R, Aggleton JP. Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching- and matching-to-place in the T-maze in the rat: differential involvement of the prelimbic–infralimbic and anterior cingulate cortices in providing behavioural flexibility. Eur. J. Neurosci. 12(12), 4457–4466 (2000).
  • Arguello PA, Gogos JA. Cognition in mouse models of schizophrenia susceptibility genes. Schizophr. Bull. 36(2), 289–300 (2010).
  • Coyle JT, Tsai G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology 174(1), 32–38 (2004).
  • Martina M, Gorfinkel Y, Halman S et al. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J. Physiol. 557(Pt 2), 489–500 (2004).
  • Tsai G, Ralph-Williams RJ, Martina M et al. Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc. Natl Acad. Sci. USA 101(22), 8485–8490 (2004).
  • Singer P, Boison D, Möhler H, Feldon J, Yee BK. Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons. Behav. Neurosci. 121(5), 815–825 (2007).
  • Yee BK, Balic E, Singer P et al. Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J. Neurosci. 26(12), 3169–3181 (2006).
  • Singer P, Boison D, Möhler H, Feldon J, Yee BK. Modulation of sensorimotor gating in prepulse inhibition by conditional brain glycine transporter 1 deletion in mice. Eur. Neuropsychopharmacol. 21(5), 401–413 (2011).
  • Kinney GG, Sur C, Burno M et al. The glycine transporter type 1 inhibitor N-[3-(4’-fluorophenyl)-3-(4’-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J. Neurosci. 23(20), 7586–7591 (2003).
  • Möhler H, Boison D, Singer P, Feldon J, Pauly-Evers M, Yee BK. Glycine transporter 1 as a potential therapeutic target for schizophrenia-related symptoms: evidence from genetically modified mouse models and pharmacological inhibition. Biochem. Pharmacol. 81(9), 1065–1077 (2011).
  • Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-d-aspartate receptor function by glycine transport. Proc. Natl Acad. Sci. USA 95(26), 15730–15734 (1998).
  • Atkinson BN, Bell SC, De Vivo M et al. ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol. Pharmacol. 60(6), 1414–1420 (2001).
  • Brown A, Carlyle I, Clark J et al. Discovery and SAR of org 24598 – a selective glycine uptake inhibitor. Bioorg. Med. Chem. Lett. 11(15), 2007–2009 (2001).
  • Harsing LG Jr, Gacsalyi I, Szabo G et al. The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol. Biochem. Behav. 74(4), 811–825 (2003).
  • Depoortère R, Dargazanli G, Estenne-Bouhtou G et al. Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30(11), 1963–1985 (2005).
  • Pinard E, Alanine A, Alberati D et al. Selective GlyT1 inhibitors: discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia. J. Med. Chem. 53(12), 4603–4614 (2010).
  • Sasaki M, Konno R, Nishio M, Niwa A, Yasumura Y, Enami J. A single-base-pair substitution abolishes d-amino-acid oxidase activity in the mouse. Biochim. Biophys. Acta 1139(4), 315–318 (1992).
  • Hashimoto A, Konno R, Yano H et al. Mice lacking d-amino acid oxidase activity exhibit marked reduction of methamphetamine-induced stereotypy. Eur. J. Pharmacol. 586(1–3), 221–225 (2008).
  • Labrie V, Wong AH, Roder JC. Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 62(3), 1484–1503 (2012).
  • Panizzutti R, Rausch M, Zurbrügg S, Baumann D, Beckmann N, Rudin M. The pharmacological stimulation of NMDA receptors via co-agonist site: an fMRI study in the rat brain. Neurosci. Lett. 380(1–2), 111–115 (2005).
  • Konno R, Yasumura Y. Mouse mutant deficient in d-amino acid oxidase activity. Genetics 103(2), 277–285 (1983).
  • Wake K, Yamazaki H, Hanzawa S et al. Exaggerated responses to chronic nociceptive stimuli and enhancement of N-methyl-d-aspartate receptor-mediated synaptic transmission in mutant mice lacking d-amino-acid oxidase. Neurosci. Lett. 297(1), 25–28 (2001).
  • Labrie V, Wang W, Barger SW, Baker GB, Roder JC. Genetic loss of d-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice. Genes Brain Behav. 9(1), 11–25 (2010).
  • Hashimoto A, Yoshikawa M, Niwa A, Konno R. Mice lacking d-amino acid oxidase activity display marked attenuation of stereotypy and ataxia induced by MK-801. Brain Res. 1033(2), 210–215 (2005).
  • Zhang M, Ballard ME, Basso AM et al. Behavioral characterization of a mutant mouse strain lacking d-amino acid oxidase activity. Behav. Brain Res. 217(1), 81–87 (2011).
  • Almond SL, Fradley RL, Armstrong EJ et al. Behavioral and biochemical characterization of a mutant mouse strain lacking D-amino acid oxidase activity and its implications for schizophrenia. Mol. Cell. Neurosci. 32(4), 324–334 (2006).
  • Labrie V, Duffy S, Wang W, Barger SW, Baker GB, Roder JC. Genetic inactivation of d-amino acid oxidase enhances extinction and reversal learning in mice. Learn. Mem. 16(1), 28–37 (2009).
  • Maekawa M, Watanabe M, Yamaguchi S, Konno R, Hori Y. Spatial learning and long-term potentiation of mutant mice lacking d-amino-acid oxidase. Neurosci. Res. 53(1), 34–38 (2005).
  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT. d-serine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatr. 44(11), 1081–1089 (1998).
  • Heresco-Levy U, Javitt DC, Ebstein R et al. d-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol. Psychiatr. 57(6), 577–585 (2005).
  • Gottlieb JD, Cather C, Shanahan M, Creedon T, Macklin EA, Goff DC. d-cycloserine facilitation of cognitive behavioral therapy for delusions in schizophrenia. Schizophr. Res. 131(1–3), 69–74 (2011).
  • Buchanan RW, Javitt DC, Marder SR et al. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am. J. Psychiatr. 164(10), 1593–1602 (2007).
  • Chung SP, Sogabe K, Park HK et al. Potential cytotoxic effect of hydroxypyruvate produced from d-serine by astroglial d-amino acid oxidase. J. Biochem. 148(6), 743–753 (2010).
  • Park HK, Shishido Y, Ichise-Shishido S et al. Potential role for astroglial d-amino acid oxidase in extracellular d-serine metabolism and cytotoxicity. J. Biochem. 139(2), 295–304 (2006).
  • Brandish PE, Chiu CS, Schneeweis J et al. A cell-based ultra-high-throughput screening assay for identifying inhibitors of d-amino acid oxidase. J. Biomol. Screen. 11(5), 481–487 (2006).
  • Verrall L, Burnet PW, Betts JF, Harrison PJ. The neurobiology of d-amino acid oxidase and its involvement in schizophrenia. Mol. Psychiatr. 15(2), 122–137 (2010).
  • Yagi K, Nagatsu T, Ozawa T. Inhibitory action of chlorpromazine on the oxidation of d-amino-acid in the diencephalon part of the brain. Nature 177(4515), 891–892 (1956).
  • Iwana S, Kawazoe T, Park HK et al. Chlorpromazine oligomer is a potentially active substance that inhibits human d-amino acid oxidase, product of a susceptibility gene for schizophrenia. J. Enzyme Inhib. Med. Chem. 23(6), 901–911 (2008).
  • Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17(8), 2921–2927 (1997).
  • Razoux F, Garcia R, Léna I. Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Neuropsychopharmacology 32(3), 719–727 (2007).
  • Takahata R, Moghaddam B. Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28(6), 1117–1124 (2003).
  • Moghaddam B. Bringing order to the glutamate chaos in schizophrenia. Neuron 40(5), 881–884 (2003).
  • Karlsson RM, Tanaka K, Heilig M, Holmes A. Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol. Psychiatr. 64(9), 810–814 (2008).
  • Yizhar O, Fenno LE, Prigge M et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363), 171–178 (2011).
  • Théberge J, Bartha R, Drost DJ et al. Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am. J. Psychiatr. 159(11), 1944–1946 (2002).
  • Tibbo P, Hanstock C, Valiakalayil A, Allen P. 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am. J. Psychiatr. 161(6), 1116–1118 (2004).
  • Zoccali R, Muscatello MR, Bruno A et al. The effect of lamotrigine augmentation of clozapine in a sample of treatment-resistant schizophrenic patients: a double-blind, placebo-controlled study. Schizophr. Res. 93(1–3), 109–116 (2007).
  • Gaisler-Salomon I, Miller GM, Chuhma N et al. Glutaminase-deficient mice display hippocampal hypoactivity, insensitivity to pro-psychotic drugs and potentiated latent inhibition: relevance to schizophrenia. Neuropsychopharmacology 34(10), 2305–2322 (2009).
  • Masson J, Darmon M, Conjard A et al. Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J. Neurosci. 26(17), 4660–4671 (2006).
  • Cavazzuti M, Porro CA, Biral GP, Benassi C, Barbieri GC. Ketamine effects on local cerebral blood flow and metabolism in the rat. J. Cereb. Blood Flow Metab. 7(6), 806–811 (1987).
  • Gaisler-Salomon I, Wang Y, Chuhma N et al. Synaptic underpinnings of altered hippocampal function in glutaminase-deficient mice during maturation. Hippocampus 22(5), 1027–1039 (2012).
  • Schobel SA, Lewandowski NM, Corcoran CM et al. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch. Gen. Psychiatr. 66(9), 938–946 (2009).
  • Flores C, Manitt C, Rodaros D et al. Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Mol. Psychiatr. 10(6), 606–612 (2005).
  • Manitt C, Mimee A, Eng C et al. The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. J. Neurosci. 31(23), 8381–8394 (2011).
  • Yetnikoff L, Eng C, Benning S, Flores C. Netrin-1 receptor in the ventral tegmental area is required for sensitization to amphetamine. Eur. J. Neurosci. 31(7), 1292–1302 (2010).
  • Srour M, Rivière JB, Pham JM et al. Mutations in DCC cause congenital mirror movements. Science 328(5978), 592 (2010).
  • Bibb JA. Decoding dopamine signaling. Cell 122(2), 153–155 (2005).
  • Beaulieu JM, Sotnikova TD, Yao WD et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl Acad. Sci. USA 101(14), 5099–5104 (2004).
  • Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122(2), 261–273 (2005).
  • Svenningsson P, Tzavara ET, Carruthers R et al. Diverse psychotomimetics act through a common signaling pathway. Science 302(5649), 1412–1415 (2003).
  • Allen JA, Yost JM, Setola V et al. Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl Acad. Sci. USA 108(45), 18488–18493 (2011).
  • Mallon AM, Blake A, Hancock JM. EuroPhenome and EMPReSS: online mouse phenotyping resource. Nucleic Acids Res. 36(Database issue), D715–D718 (2008).
  • Dempster EL, Pidsley R, Schalkwyk LC et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum. Mol. Genet. 20(24), 4786–4796 (2011).
  • Ramboz S, Oosting R, Amara DA et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc. Natl Acad. Sci. USA 95(24), 14476–14481 (1998).
  • Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306(5697), 879–881 (2004).
  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566), 606–612 (1996).
  • Gellman C, Mingote S, Wang Y, Gaisler-Salomon I, Rayport S. Genetic pharmacotherapy. In: Drug Discovery and Development – Present and Future. Kapetanovic I (Ed.). InTech, Rijeka, Croatia, 125–150 (2011).
  • Abbott A. Novartis to shut brain research facility. Nature 480(7376), 161–162 (2011).
  • Chiamulera C, Epping-Jordan MP, Zocchi A et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat. Neurosci. 4(9), 873–874 (2001).
  • Heurteaux C, Lucas G, Guy N et al. Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat. Neurosci. 9(9), 1134–1141 (2006).
  • Zhang Y, Kurup P, Xu J et al. Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer’s disease mouse model. Proc. Natl Acad. Sci. USA 107(44), 19014–19019 (2010).
  • Oliveira TG, Chan RB, Tian H et al. Phospholipase d2 ablation ameliorates Alzheimer’s disease-linked synaptic dysfunction and cognitive deficits. J. Neurosci. 30(49), 16419–16428 (2010).
  • Tang YP, Shimizu E, Dube GR et al. Genetic enhancement of learning and memory in mice. Nature 401(6748), 63–69 (1999).
  • Cao X, Cui Z, Feng R et al. Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur. J. Neurosci. 25(6), 1815–1822 (2007).
  • Gaisler-Salomon I, Wang Y, Mckinney S et al. Adult-onset glutamate receptor expression deficits in the hippocampus of glutaminase-deficient mice. Biol. Psychiatr. 67, S71 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.