158
Views
16
CrossRef citations to date
0
Altmetric
Theme: Mood Disorders - Review

The relationship between oxidative stress and post-translational modification of the dopamine transporter in bipolar disorder

&
Pages 849-859 | Published online: 09 Jan 2014

References

  • Kupfer DJ. The increasing medical burden in bipolar disorder. JAMA 293(20), 2528–2530 (2005).
  • Manji HK, Lenox RH. The nature of bipolar disorder. J. Clin. Psychiatry 61(Suppl. 13), 42–57 (2000).
  • Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349(9063), 1436–1442 (1997).
  • Valtonen H, Suominen K, Mantere O, Leppämäki S, Arvilommi P, Isometsä ET. Suicidal ideation and attempts in bipolar I and II disorders. J. Clin. Psychiatry 66(11), 1456–1462 (2005).
  • Rao JS, Kellom M, Reese EA, Rapoport SI, Kim HW. Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients. J. Affect. Disord. 136(1–2), 63–71 (2012).
  • Berns GS, Nemeroff CB. The neurobiology of bipolar disorder. Am. J. Med. Genet. C. Semin. Med. Genet. 123C(1), 76–84 (2003).
  • Salvadore G, Quiroz JA, Machado-Vieira R, Henter ID, Manji HK, Zarate CA Jr. The neurobiology of the switch process in bipolar disorder: a review. J. Clin. Psychiatry 71(11), 1488–1501 (2010).
  • Andreazza AC, Kauer-Sant’anna M, Frey BN et al. Oxidative stress markers in bipolar disorder: a meta-analysis. J. Affect. Disord. 111(2–3), 135–144 (2008).
  • Ranjekar PK, Hinge A, Hegde MV et al. Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res. 121(2), 109–122 (2003).
  • Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J. Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem. Res. 35(9), 1295–1301 (2010).
  • Wang JF, Shao L, Sun X, Young LT. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord. 11(5), 523–529 (2009).
  • Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch. Gen. Psychiatry 67(4), 360–368 (2010).
  • Kuloglu M, Ustundag B, Atmaca M, Canatan H, Tezcan AE, Cinkilinc N. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem. Funct. 20(2), 171–175 (2002).
  • Machado-Vieira R, Andreazza AC, Viale CI et al. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci. Lett. 421(1), 33–36 (2007).
  • Sun X, Wang JF, Tseng M, Young LT. Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J. Psychiatry Neurosci. 31(3), 189–196 (2006).
  • Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch. Gen. Psychiatry 61(3), 300–308 (2004).
  • Deicken RF, Weiner MW, Fein G. Decreased temporal lobe phosphomonoesters in bipolar disorder. J. Affect. Disord. 33(3), 195–199 (1995).
  • Kato T, Takahashi S, Shioiri T, Inubushi T. Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J. Affect. Disord. 27(1), 53–59 (1993).
  • Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog. Neurobiol. 72(2), 111–127 (2004).
  • Dringen R. Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62(6), 649–671 (2000).
  • Benes FM, Matzilevich D, Burke RE, Walsh J. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol. Psychiatry 11(3), 241–251 (2006).
  • Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol. 14(1), 123–130 (2011).
  • Abdalla DS, Monteiro HP, Oliveira JA, Bechara EJ. Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic-depressive patients. Clin. Chem. 32(5), 805–807 (1986).
  • Ben-Shachar D. Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J. Neurochem. 83(6), 1241–1251 (2002).
  • Maker HS, Weiss C, Silides DJ, Cohen G. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J. Neurochem. 36(2), 589–593 (1981).
  • Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14(4), 633–643 (1978).
  • Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol. Pharmacol. 14(4), 644–653 (1978).
  • Tse DC, McCreery RL, Adams RN. Potential oxidative pathways of brain catecholamines. J. Med. Chem. 19(1), 37–40 (1976).
  • Fornstedt B, Bergh I, Rosengren E, Carlsson A. An improved HPLC-electrochemical detection method for measuring brain levels of 5-S-cysteinyldopamine, 5-S-cysteinyl-3,4-dihydroxyphenylalanine, and 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid. J. Neurochem. 54(2), 578–586 (1990).
  • Halliwell B. Reactive oxygen species and the central nervous system. J. Neurochem. 59(5), 1609–1623 (1992).
  • Berman SB, Zigmond MJ, Hastings TG. Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J. Neurochem. 67(2), 593–600 (1996).
  • Giros B, el Mestikawy S, Godinot N et al. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol. Pharmacol. 42(3), 383–390 (1992).
  • Wang JB, Moriwaki A, Uhl GR. Dopamine transporter cysteine mutants: second extracellular loop cysteines are required for transporter expression. J. Neurochem. 64(3), 1416–1419 (1995).
  • Messiha FS, Agallianos D, Clower C. Dopamine excretion in affective states and following Li2Co3 therapy. Nature 225(5235), 868–869 (1970).
  • Berk M, Dodd S, Kauer-Sant’anna M et al. Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr. Scand. Suppl. (434), 41–49 (2007).
  • Silverstone T, Cookson J. Examining the dopamine hypotheses of schizophrenia and of mania using the prolactin response to antipsychotic drugs. Neuropharmacology 22(4), 539–541 (1983).
  • Brook NM, Cookson IB. Bromocriptine-induced mania? Br. Med. J. 1(6115), 790 (1978).
  • Anand A, Verhoeff P, Seneca N et al. Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am. J. Psychiatry 157(7), 1108–1114 (2000).
  • Jacobs D, Silverstone T. Dextroamphetamine-induced arousal in human subjects as a model for mania. Psychol. Med. 16(2), 323–329 (1986).
  • Frey BN, Valvassori SS, Réus GZ et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J. Psychiatry Neurosci. 31(5), 326–332 (2006).
  • Silverstone T, Fincham J, Wells B, Kyriakides M. The effect of the dopamine receptor blocking drug pimozide on the stimulant and anorectic actions of dextroamphetamine in man. Neuropharmacology 19(12), 1235–1237 (1980).
  • Jonsson G, Fuxe K, Hökfelt T. On the catecholamine innervation of the hypothalamus, with special reference to the median eminence. Brain Res. 40(2), 271–281 (1972).
  • Anggård E, Jönsson LE, Hogmark AL, Gunne LM. Amphetamine metabolism in amphetamine psychosis. Clin. Pharmacol. Ther. 14(5), 870–880 (1973).
  • Nurnberger JI Jr, Gershon ES, Simmons S et al. Behavioral, biochemical and neuroendocrine responses to amphetamine in normal twins and ‘well-state’ bipolar patients. Psychoneuroendocrinology 7(2–3), 163–176 (1982).
  • Tan H, Young LT, Shao L, Che Y, Honer WG, Wang JF. Mood stabilizer lithium inhibits amphetamine-increased 4-hydroxynonenal-protein adducts in rat frontal cortex. Int. J. Neuropsychopharmacol. 1–11 (2011).
  • Hjerde E, Dahl SG, Sylte I. Atypical and typical antipsychotic drug interactions with the dopamine D2 receptor. Eur. J. Med. Chem. 40(2), 185–194 (2005).
  • Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: a new hypothesis. Am. J. Psychiatry 158(3), 360–369 (2001).
  • Stahl SM. Dopamine system stabilizers, aripiprazole, and the next generation of antipsychotics, part 2: illustrating their mechanism of action. J. Clin. Psychiatry 62(12), 923–924 (2001).
  • Stahl S. Describing an atypical antipsychotic: receptor binding and its role in pathophysiology. J. Clin. Psychiatry 5(Suppl. 3), 9–13 (2003).
  • Hjerde E, Dahl SG, Sylte I. Atypical and typical antipsychotic drug interactions with the dopamine D2 receptor. Eur. J. Med. Chem. 40(2), 185–194 (2005).
  • Cipriani A, Rendell J, Geddes JR. Olanzapine in the long-term treatment of bipolar disorder: a systematic review and meta-analysis. J. Psychopharmacol. 24(12), 1729–1738 (2010).
  • Jaber M, Jones S, Giros B, Caron MG. The dopamine transporter: a crucial component regulating dopamine transmission. Mov. Disord. 12(5), 629–633 (1997).
  • Ralph-Williams RJ, Paulus MP, Zhuang X, Hen R, Geyer MA. Valproate attenuates hyperactive and perseverative behaviors in mutant mice with a dysregulated dopamine system. Biol. Psychiatry 53(4), 352–359 (2003).
  • Heikkila RE, Manzino L. Behavioral properties of GBR 12909, GBR 13069 and GBR 13098: specific inhibitors of dopamine uptake. Eur. J. Pharmacol. 103(3–4), 241–248 (1984).
  • Zhuang X, Oosting RS, Jones SR et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc. Natl Acad. Sci. USA 98(4), 1982–1987 (2001).
  • Perry W, Minassian A, Paulus MP et al. A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch. Gen. Psychiatry 66(10), 1072–1080 (2009).
  • Waldman ID, Robinson BF, Feigon SA. Linkage disequilibrium between the dopamine transporter gene (DAT1) and bipolar disorder: extending the transmission disequilibrium test (TDT) to examine genetic heterogeneity. Genet. Epidemiol. 14(6), 699–704 (1997).
  • Kelsoe JR, Sadovnick AD, Kristbjarnarson H et al. Possible locus for bipolar disorder near the dopamine transporter on chromosome 5. Am. J. Med. Genet. 67(6), 533–540 (1996).
  • Grünhage F, Schulze TG, Müller DJ et al. Systematic screening for DNA sequence variation in the coding region of the human dopamine transporter gene (DAT1). Mol. Psychiatry 5(3), 275–282 (2000).
  • Greenwood TA, Alexander M, Keck PE et al. Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am. J. Med. Genet. 105(2), 145–151 (2001).
  • Stringer S, Wray NR, Kahn RS, Derks EM. Underestimated effect sizes in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. PLoS ONE 6(11), e27964 (2011).
  • Weeks K, Dwyer D, Aamodt E. Antipsychotic drugs activate the C. elegans Akt pathway via the DAF-2 insulin/IGF-1 receptor. ACS Chem. Neurosci. 1(6), 463–473 (2010).
  • Carvelli L, Morón JA, Kahlig KM et al. PI 3-kinase regulation of dopamine uptake. J. Neurochem. 81(4), 859–869 (2002).
  • Emdadul Haque M, Asanuma M, Higashi Y, Miyazaki I, Tanaka K, Ogawa N. Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells. Biochim. Biophys. Acta 1619(1), 39–52 (2003).
  • Lai CT, Yu PH. Dopamine- and L-beta-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem. Pharmacol. 53(3), 363–372 (1997).
  • Offen D, Ziv I, Sternin H, Melamed E, Hochman A. Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp. Neurol. 141(1), 32–39 (1996).
  • Asanuma M, Miyazaki I, Diaz-Corrales FJ, Ogawa N. Quinone formation as dopaminergic neuron-specific oxidative stress in the pathogenesis of sporadic Parkinson’s disease and neurotoxin-induced parkinsonism. Acta Med. Okayama 58(5), 221–233 (2004).
  • Hastings TG, Lewis DA, Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc. Natl. Acad. Sci. USA 93(5), 1956–1961 (1996).
  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions. J. Biol. Chem. 267(1), 166–172 (1992).
  • Fazeli G, Oli RG, Schupp N, Stopper H. The role of the dopamine transporter in dopamine-induced DNA damage. Brain Pathol. 21(3), 237–248 (2011).
  • Jayanthi S, Ladenheim B, Cadet JL. Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann. NY Acad. Sci. 844, 92–102 (1998).
  • Miyazaki I, Asanuma M, Diaz-Corrales FJ et al. Methamphetamine-induced dopaminergic neurotoxicity is regulated by quinone-formation-related molecules. FASEB J. 20(3), 571–573 (2006).
  • Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J. Neurochem. 73(3), 1127–1137 (1999).
  • Mosca L, Lendaro E, d’Erme M, Marcellini S, Moretti S, Rosei MA. 5-S-cysteinyldopamine effect on the human dopaminergic neuroblastoma cell line SH-SY5Y. Neurochem. Int. 49(3), 262–269 (2006).
  • Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Rep. 41(1), 11–22 (2008).
  • Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52(3–5), 159–164 (2001).
  • Valvassori SS, Rezin GT, Ferreira CL et al. Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J. Psychiatr. Res. 44(14), 903–909 (2010).
  • Shimada S, Kitayama S, Lin CL et al. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254(5031), 576–578 (1991).
  • Berman SB, Zigmond MJ, Hastings TG. Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J. Neurochem. 67(2), 593–600 (1996).
  • Boudanova E, Navaroli DM, Melikian HE. Amphetamine-induced decreases in dopamine transporter surface expression are protein kinase C-independent. Neuropharmacology 54(3), 605–612 (2008).
  • Fleckenstein AE, Metzger RR, Beyeler ML, Gibb JW, Hanson GR. Oxygen radicals diminish dopamine transporter function in rat striatum. Eur. J. Pharmacol. 334(1), 111–114 (1997).
  • Fleckenstein AE, Metzger RR, Gibb JW, Hanson GR. A rapid and reversible change in dopamine transporters induced by methamphetamine. Eur. J. Pharmacol. 323(2–3), R9–R10 (1997).
  • Sandoval V, Riddle EL, Ugarte YV, Hanson GR, Fleckenstein AE. Methamphetamine-induced rapid and reversible changes in dopamine transporter function: an in vitro model. J. Neurosci. 21(4), 1413–1419 (2001).
  • Kokoshka JM, Vaughan RA, Hanson GR, Fleckenstein AE. Nature of methamphetamine-induced rapid and reversible changes in dopamine transporters. Eur. J. Pharmacol. 361(2–3), 269–275 (1998).
  • Huang CL, Huang NK, Shyue SK, Chern Y. Hydrogen peroxide induces loss of dopamine transporter activity: a calcium-dependent oxidative mechanism. J. Neurochem. 86(5), 1247–1259 (2003).
  • Park SU, Ferrer JV, Javitch JA, Kuhn DM. Peroxynitrite inactivates the human dopamine transporter by modification of cysteine 342: potential mechanism of neurotoxicity in dopamine neurons. J. Neurosci. 22(11), 4399–4405 (2002).
  • Chen N, Ferrer JV, Javitch JA, Justice JB Jr. Transport-dependent accessibility of a cytoplasmic loop cysteine in the human dopamine transporter. J. Biol. Chem. 275(3), 1608–1614 (2000).
  • Hastings TG, Zigmond MJ. Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione. J. Neurochem. 63(3), 1126–1132 (1994).
  • Whitehead RE, Ferrer JV, Javitch JA, Justice JB. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J. Neurochem. 76(4), 1242–1251 (2001).
  • LaVoie MJ, Hastings TG. Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J. Neurochem. 73(6), 2546–2554 (1999).
  • Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6(8), 662–680 (2007).
  • Halliwell B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97(6), 1634–1658 (2006).
  • Tirmenstein MA, Hu CX, Scicchitano MS et al. Effects of 6-hydroxydopamine on mitochondrial function and glutathione status in SH-SY5Y human neuroblastoma cells. Toxicol. In Vitro 19(4), 471–479 (2005).
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11(1), 81–128 (1991).
  • Shin BC, Huggins JW, Carraway KL. Effects of pH, concentration and aging on the malonaldehyde reaction with proteins. Lipids 7(4), 229–233 (1972).
  • Fleuranceau-Morel P, Barrier L, Fauconneau B, Piriou A, Huguet F. Origin of 4-hydroxynonenal incubation-induced inhibition of dopamine transporter and Na+/K+ adenosine triphosphate in rat striatal synaptosomes. Neurosci. Lett. 277(2), 91–94 (1999).
  • Maragos WF, Zhu J, Chesnut MD, Dwoskin LP. Mitochondrial toxin inhibition of [(3)H]dopamine uptake into rat striatal synaptosomes. Biochem. Pharmacol. 63(8), 1499–1505 (2002).
  • Wang JF. Defects of mitochondrial electron transport chain in bipolar disorder: implications for mood-stabilizing treatment. Can. J. Psychiatry 52(12), 753–762 (2007).
  • Quiroz JA, Gray NA, Kato T, Manji HK. Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33(11), 2551–2565 (2008).
  • Hurd YL, Weiss F, Koob GF, And NE, Ungerstedt U. Cocaine reinforcement and extracellular dopamine overflow in rat nucleus accumbens: an in vivo microdialysis study. Brain Res. 498(1), 199–203 (1989).
  • Bachmann RF, Schloesser RJ, Gould TD, Manji HK. Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol. Neurobiol. 32(2), 173–202 (2005).
  • Chuang DM. The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann. NY Acad. Sci. 1053, 195–204 (2005).
  • Allagui MS, Nciri R, Rouhaud MF et al. Long-term exposure to low lithium concentrations stimulates proliferation, modifies stress protein expression pattern and enhances resistance to oxidative stress in SH-SY5Y cells. Neurochem. Res. 34(3), 453–462 (2009).
  • Cui J, Shao L, Young LT, Wang JF. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 144(4), 1447–1453 (2007).
  • Manji HK, Moore GJ, Chen G. Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry 46(7), 929–940 (1999).
  • Nonaka S, Hough CJ, Chuang DM. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-d-aspartate receptor-mediated calcium influx. Proc. Natl Acad. Sci. USA 95(5), 2642–2647 (1998).
  • Jornada LK, Moretti M, Valvassori SS et al. Effects of mood stabilizers on hippocampus and amygdala BDNF levels in an animal model of mania induced by ouabain. J. Psychiatr. Res. 44(8), 506–510 (2010).
  • Jornada LK, Valvassori SS, Steckert AV et al. Lithium and valproate modulate antioxidant enzymes and prevent ouabain-induced oxidative damage in an animal model of mania. J. Psychiatr. Res. 45(2), 162–168 (2011).
  • Bhalla P, Garg ML, Dhawan DK. Protective role of lithium during aluminium-induced neurotoxicity. Neurochem. Int. 56(2), 256–262 (2010).
  • Chuang DM, Chen RW, Chalecka-Franaszek E et al. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. 4(2), 129–136 (2002).
  • Li R, el-Mallakh RS, Harrison L, Changaris DG, Levy RS. Lithium prevents ouabain-induced behavioral changes. Toward an animal model for manic depression. Mol. Chem. Neuropathol. 31(1), 65–72 (1997).
  • Schäfer M, Goodenough S, Moosmann B, Behl C. Inhibition of glycogen synthase kinase 3 beta is involved in the resistance to oxidative stress in neuronal HT22 cells. Brain Res. 1005(1–2), 84–89 (2004).
  • Aghdam SY, Barger SW. Glycogen synthase kinase-3 in neurodegeneration and neuroprotection: lessons from lithium. Curr. Alzheimer Res. 4(1), 21–31 (2007).
  • Shao L, Cui J, Young LT, Wang JF. The effect of mood stabilizer lithium on expression and activity of glutathione s-transferase isoenzymes. Neuroscience 151(2), 518–524 (2008).
  • Friedman E, Gershon S. Effect of lithium on brain dopamine. Nature 243(5409), 520–521 (1973).
  • Ferrie L, Young AH, McQuade R. Effect of lithium and lithium withdrawal on potassium-evoked dopamine release and tyrosine hydroxylase expression in the rat. Int. J. Neuropsychopharmacol. 9(6), 729–735 (2006).
  • Dunigan CD, Shamoo AE. Li+ stimulates ATP-regulated dopamine uptake in PC12 cells. Neuroscience 65(1), 1–4 (1995).
  • Carli M, Morissette M, Hébert C, Di Paolo T, Reader TA. Effects of a chronic lithium treatment on central dopamine neurotransporters. Biochem. Pharmacol. 54(3), 391–397 (1997).
  • Dean O, Giorlando F, Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J. Psychiatry Neurosci. 36(2), 78–86 (2011).
  • Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 6(6), 593–597 (1989).
  • Berk M, Copolov DL, Dean O et al. N-acetyl cysteine for depressive symptoms in bipolar disorder – a double-blind randomized placebo-controlled trial. Biol. Psychiatry 64(6), 468–475 (2008).
  • Gitlin MJ, Swendsen J, Heller TL, Hammen C. Relapse and impairment in bipolar disorder. Am. J. Psychiatry 152(11), 1635–1640 (1995).
  • Müller-Oerlinghausen B, Berghöfer A, Bauer M. Bipolar disorder. Lancet 359(9302), 241–247 (2002).
  • Sarantidis D, Waters B. Predictors of lithium prophylaxis effectiveness. Prog. Neuropsychopharmacol. 5(5–6), 507–510 (1981).
  • Abou-Saleh MT, Coppen A. Who responds to prophylactic lithium? J. Affect. Disord. 10(2), 115–125 (1986).
  • Lyoo IK, Kim MJ, Stoll AL et al. Frontal lobe gray matter density decreases in bipolar I disorder. Biol. Psychiatry 55(6), 648–651 (2004).
  • Gelenberg AJ, Hopkins HS. Antipsychotics in bipolar disorder. J. Clin. Psychiatry 57(Suppl. 9), 49–52 (1996).
  • Chou JC, Zito JM, Vitrai J, Craig TJ, Allingham BH, Czobor P. Neuroleptics in acute mania: a pharmacoepidemiologic study. Ann. Pharmacother. 30(12), 1396–1398 (1996).
  • Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 11(6), 851–876 (2008).
  • Bowden CL. Clinical correlates of therapeutic response in bipolar disorder. J. Affect. Disord. 67(1–3), 257–265 (2001).
  • Nikolaus S, Antke C, Müller HW. In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders. Behav. Brain Res. 204(1), 32–66 (2009).
  • Buchsbaum MS, Wu J, DeLisi LE et al. Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J. Affect. Disord. 10(2), 137–152 (1986).
  • Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol. Psychiatry 49(9), 741–752 (2001).
  • Drevets WC, Ongür D, Price JL. Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol. Psychiatry 3(3), 220–226, 190 (1998).
  • Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A. Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J. Comp. Neurol. 432(1), 119–136 (2001).
  • Nohesara S, Ghadirivasfi M, Mostafavi S et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J. Psychiatr. Res. 45(11), 1432–1438 (2011).
  • Shumay E, Fowler JS, Volkow ND. Genomic features of the human dopamine transporter gene and its potential epigenetic states: implications for phenotypic diversity. PLoS ONE 5(6), e11067 (2010).
  • Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH. Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19(6), 1271–1283 (1997).
  • Cordeiro ML, Gundersen CB, Umbach JA. Lithium ions modulate the expression of VMAT2 in rat brain. Brain Res. 953(1–2), 189–194 (2002).
  • López-Larson MP, DelBello MP, Zimmerman ME, Schwiers ML, Strakowski SM. Regional prefrontal gray and white matter abnormalities in bipolar disorder. Biol. Psychiatry 52(2), 93–100 (2002).
  • Nugent AC, Milham MP, Bain EE et al. Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry. Neuroimage 30(2), 485–497 (2006).
  • Almeida JR, Akkal D, Hassel S et al. Reduced gray matter volume in ventral prefrontal cortex but not amygdala in bipolar disorder: significant effects of gender and trait anxiety. Psychiatry Res. 171(1), 54–68 (2009).
  • Kim HW, Rapoport SI, Rao JS. Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients. Neurobiol. Dis. 37(3), 596–603 (2010).
  • Yamaguchi T, Kuraishi Y, Minami M, Nakai S, Hirai Y, Satoh M. Methamphetamine-induced expression of interleukin-1 beta mRNA in the rat hypothalamus. Neurosci. Lett. 128(1), 90–92 (1991).
  • Gonçalves J, Baptista S, Martins T et al. Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur. J. Neurosci. 31(2), 315–326 (2010).
  • Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol. Psychiatry 15(4), 384–392 (2010).
  • Palomino A, Vallejo-Illarramendi A, González-Pinto A et al. Decreased levels of plasma BDNF in first-episode schizophrenia and bipolar disorder patients. Schizophr. Res. 86(1–3), 321–322 (2006).
  • Fumagalli F, Racagni G, Colombo E, Riva MA. BDNF gene expression is reduced in the frontal cortex of dopamine transporter knockout mice. Mol. Psychiatry 8(11), 898–899 (2003).
  • Goldman-Rakic PS. Dopamine-mediated mechanisms of the prefrontal cortex. Semin. Neurosci. 4, 149–159 (1992).
  • Daban C, Martinez-Aran A, Torrent C et al. Specificity of cognitive deficits in bipolar disorder versus schizophrenia. A systematic review. Psychother. Psychosom. 75(2), 72–84 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.