234
Views
25
CrossRef citations to date
0
Altmetric
Theme: Scizophrenia - Review

d-serine and schizophrenia: an update

, , , , &
Pages 801-812 | Published online: 09 Jan 2014

References

  • Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. 20, 140–144 (1963).
  • van Rossum JM. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch. Int. Pharmacodyn. Ther. 160(2), 492–494 (1966).
  • Baumeister AA, Francis JL. Historical development of the dopamine hypothesis of schizophrenia. J. Hist. Neurosci. 11(3), 265–277 (2002).
  • Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148(11), 1474–1486 (1991).
  • Seeman P. All psychotic roads lead to increased dopamine D2High receptors: a perspective. Clin. Schizophr. Relat. Psychoses 1, 351–355 (2008).
  • Seeman P, Schwarz J, Chen JF et al. Psychosis pathways converge via D2high dopamine receptors. Synapse 60(4), 319–346 (2006).
  • Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr. Bull. 35(3), 549–562 (2009).
  • Coyle JT, Tsai G, Goff D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann. NY Acad. Sci. 1003, 318–327 (2003).
  • Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am. J. Psychiatry 158(9), 1367–1377 (2001).
  • Gordon JA. Testing the glutamate hypothesis of schizophrenia. Nat. Neurosci. 13(1), 2–4 (2010).
  • Krystal JH, Perry EB Jr, Gueorguieva R et al. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch. Gen. Psychiatry 62(9), 985–994 (2005).
  • Labrie V, Lipina T, Roder JC. Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology 200(2), 217–230 (2008).
  • Guillermain Y, Micallef J, Possamaï C, Blin O, Hasbroucq T. N-methyl-d-aspartate receptors and information processing: human choice reaction time under a subanaesthetic dose of ketamine. Neurosci. Lett. 303(1), 29–32 (2001).
  • Krystal JH, Karper LP, Seibyl JP et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51(3), 199–214 (1994).
  • Malhotra AK, Pinals DA, Weingartner H et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14(5), 301–307 (1996).
  • Dai H, Carey RJ. The NMDA antagonist MK-801 can impair attention to exteroceptive stimuli. Behav. Brain Res. 62(2), 149–156 (1994).
  • Egerton A, Reid L, McGregor S, Cochran SM, Morris BJ, Pratt JA. Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats. Psychopharmacology 198(1), 37–49 (2008).
  • Laurent V, Podhorna J. Subchronic phencyclidine treatment impairs performance of C57BL/6 mice in the attentional set-shifting task. Behav. Pharmacol. 15(2), 141–148 (2004).
  • Willmore CB, Bespalov AY, Beardsley PM. Competitive and noncompetitive NMDA antagonist effects in rats trained to discriminate lever-press counts. Pharmacol. Biochem. Behav. 69(3–4), 493–502 (2001).
  • Schell MJ, Brady RO Jr, Molliver ME, Snyder SH. d-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J. Neurosci. 17(5), 1604–1615 (1997).
  • Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K. Functional comparison of d-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J. Neurochem. 65(1), 454–458 (1995).
  • Stevens ER, Gustafson EC, Miller RF. Glycine transport accounts for the differential role of glycine vs. d-serine at NMDA receptor coagonist sites in the salamander retina. Eur. J. Neurosci. 31(5), 808–816 (2010).
  • Fossat P, Turpin FR, Sacchi S et al. Glial d-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb. Cortex 22(3), 595–606 (2012).
  • Panatier A, Theodosis DT, Mothet JP et al. Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125(4), 775–784 (2006).
  • Bauer D, Hamacher K, Bröer S et al. Preferred stereoselective brain uptake of d-serine – a modulator of glutamatergic neurotransmission. Nucl. Med. Biol. 32(8), 793–797 (2005).
  • Fuchs SA, Berger R, de Koning TJ. d-serine: the right or wrong isoform? Brain Res. 1401, 104–117 (2011).
  • Fuchs SA, Berger R, Klomp LW, de Koning TJ. d-amino acids in the central nervous system in health and disease. Mol. Genet. Metab. 85(3), 168–180 (2005).
  • Labrie V, Roder JC. The involvement of the NMDA receptor d-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci. Biobehav. Rev. 34(3), 351–372 (2010).
  • Labrie V, Wong AH, Roder JC. Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 62(3), 1484–1503 (2012).
  • Antflick JE, Baker GB, Hampson DR. The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice. Amino Acids 39(1), 145–153 (2010).
  • Snell K, Fell DA. Metabolic control analysis of mammalian serine metabolism. Adv. Enzyme Regul. 30, 13–32 (1990).
  • Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc. Natl Acad. Sci. USA 96(23), 13409–13414 (1999).
  • Ding X, Ma N, Nagahama M, Yamada K, Semba R. Localization of d-serine and serine racemase in neurons and neuroglias in mouse brain. Neurol. Sci. 32(2), 263–267 (2011).
  • Xia M, Liu Y, Figueroa DJ et al. Characterization and localization of a human serine racemase. Brain Res. Mol. Brain Res. 125(1–2), 96–104 (2004).
  • Helboe L, Egebjerg J, Møller M, Thomsen C. Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. Eur. J. Neurosci. 18(8), 2227–2238 (2003).
  • Fukasawa Y, Segawa H, Kim JY et al. Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral d- and l-amino acids. J. Biol. Chem. 275(13), 9690–9698 (2000).
  • Nakauchi J, Matsuo H, Kim DK et al. Cloning and characterization of a human brain Na(+)-independent transporter for small neutral amino acids that transports d-serine with high affinity. Neurosci. Lett. 287(3), 231–235 (2000).
  • Rutter AR, Fradley RL, Garrett EM et al. Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating d-serine reuptake in the mouse CNS. Eur. J. Neurosci. 25(6), 1757–1766 (2007).
  • Shao Z, Kamboj A, Anderson CM. Functional and immunocytochemical characterization of d-serine transporters in cortical neuron and astrocyte cultures. J. Neurosci. Res. 87(11), 2520–2530 (2009).
  • Javitt DC, Balla A, Sershen H. A novel alanine-insensitive d-serine transporter in rat brain synaptosomal membranes. Brain Res. 941(1–2), 146–149 (2002).
  • Moreno S, Nardacci R, Cimini A, Cerù MP. Immunocytochemical localization of d-amino acid oxidase in rat brain. J. Neurocytol. 28(3), 169–185 (1999).
  • D’Aniello A, D’Onofrio G, Pischetola M et al. Biological role of d-amino acid oxidase and d-aspartate oxidase. Effects of d-amino acids. J. Biol. Chem. 268(36), 26941–26949 (1993).
  • Mustafa AK, Kumar M, Selvakumar B et al. Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of d-serine formation. Proc. Natl Acad. Sci. USA 104(8), 2950–2955 (2007).
  • Shoji K, Mariotto S, Ciampa AR, Suzuki H. Mutual regulation between serine and nitric oxide metabolism in human glioblastoma cells. Neurosci. Lett. 394(3), 163–167 (2006).
  • Shoji K, Mariotto S, Ciampa AR, Suzuki H. Regulation of serine racemase activity by d-serine and nitric oxide in human glioblastoma cells. Neurosci. Lett. 392(1–2), 75–78 (2006).
  • Balan L, Foltyn VN, Zehl M et al. Feedback inactivation of d-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proc. Natl Acad. Sci. USA 106(18), 7589–7594 (2009).
  • Neill JC, Barnes S, Cook S et al. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol. Ther. 128(3), 419–432 (2010).
  • Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol. Biochem. Behav. 100(4), 665–677 (2012).
  • Kantrowitz JT, Javitt DC. N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res. Bull. 83(3–4), 108–121 (2010).
  • Wedzony K, Fijal K, Mackowiak M, Chocyk A, Zajaczkowski W. Impact of postnatal blockade of N-methyl-d-aspartate receptors on rat behavior: a search for a new developmental model of schizophrenia. Neuroscience 153(4), 1370–1379 (2008).
  • Kretschmer BD, Koch M. Role of the strychnine-insensitive glycine binding site in the nucleus accumbens and anterodorsal striatum in sensorimotor gating: a behavioral and microdialysis study. Psychopharmacology 130(2), 131–138 (1997).
  • Swerdlow NR, Braff DL, Taaid N, Geyer MA. Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch. Gen. Psychiatry 51(2), 139–154 (1994).
  • Bado P, Madeira C, Vargas-Lopes C et al. Effects of low-dose d-serine on recognition and working memory in mice. Psychopharmacology 218(3), 461–470 (2011).
  • Hashimoto K, Fujita Y, Ishima T, Chaki S, Iyo M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and d-serine. Eur. Neuropsychopharmacol. 18(6), 414–421 (2008).
  • Kanahara N, Shimizu E, Ohgake S et al. Glycine and d-serine, but not d-cycloserine, attenuate prepulse inhibition deficits induced by NMDA receptor antagonist MK-801. Psychopharmacology 198(3), 363–374 (2008).
  • Karasawa J, Hashimoto K, Chaki S. d-serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behav. Brain Res. 186(1), 78–83 (2008).
  • Nilsson M, Carlsson A, Carlsson ML. Glycine and d-serine decrease MK-801-induced hyperactivity in mice. J. Neural Transm. 104(11–12), 1195–1205 (1997).
  • Horio M, Kohno M, Fujita Y et al. Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem. Int. 59(6), 853–859 (2011).
  • Labrie V, Fukumura R, Rastogi A et al. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum. Mol. Genet. 18(17), 3227–3243 (2009).
  • Basu AC, Tsai GE, Ma CL et al. Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol. Psychiatry 14(7), 719–727 (2009).
  • DeVito LM, Balu DT, Kanter BR et al. Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes Brain Behav. 10(2), 210–222 (2011).
  • Balu DT, Basu AC, Corradi JP, Cacace AM, Coyle JT. The NMDA receptor co-agonists, d-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiol. Dis. 45(2), 671–682 (2012).
  • Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol. Psychiatry 45(1), 17–25 (1999).
  • Lewis DA, González-Burgos G. Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 33(1), 141–165 (2008).
  • Buckley PF, Pillai A, Evans D, Stirewalt E, Mahadik S. Brain derived neurotropic factor in first-episode psychosis. Schizophr. Res. 91(1–3), 1–5 (2007).
  • Palomino A, Vallejo-Illarramendi A, González-Pinto A et al. Decreased levels of plasma BDNF in first-episode schizophrenia and bipolar disorder patients. Schizophr. Res. 86(1–3), 321–322 (2006).
  • Otte DM, Bilkei-Gorzó A, Filiou MD et al. Behavioral changes in G72/G30 transgenic mice. Eur. Neuropsychopharmacol. 19(5), 339–348 (2009).
  • Nguyen AD, Shenton ME, Levitt JJ. Olfactory dysfunction in schizophrenia: a review of neuroanatomy and psychophysiological measurements. Harv. Rev. Psychiatry 18(5), 279–292 (2010).
  • Günther W, Günther R, Eich FX, Eben E. Psychomotor disturbances in psychiatric patients as a possible basis for new attempts at differential diagnosis and therapy. II. Cross validation study on schizophrenic patients: persistence of a ‘psychotic motor syndrome’ as possible evidence of an independent biological marker syndrome for schizophrenia. Eur. Arch. Psychiatry Neurol. Sci. 235(5), 301–308 (1986).
  • Malhotra AK, Pinals DA, Adler CM et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17(3), 141–150 (1997).
  • Otte DM, Sommersberg B, Kudin A et al. N-Acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice. Neuropsychopharmacology 36(11), 2233–2243 (2011).
  • Berk M, Copolov D, Dean O et al. N-acetyl cysteine as a glutathione precursor for schizophrenia – a double-blind, randomized, placebo-controlled trial. Biol. Psychiatry 64(5), 361–368 (2008).
  • Sparey T, Abeywickrema P, Almond S et al. The discovery of fused pyrrole carboxylic acids as novel, potent d-amino acid oxidase (DAO) inhibitors. Bioorg. Med. Chem. Lett. 18(11), 3386–3391 (2008).
  • Smith SM, Uslaner JM, Yao L et al. The behavioral and neurochemical effects of a novel d-amino acid oxidase inhibitor compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and d-serine. J. Pharmacol. Exp. Ther. 328(3), 921–930 (2009).
  • Adage T, Trillat AC, Quattropani A et al. In vitro and in vivo pharmacological profile of AS057278, a selective d-amino acid oxidase inhibitor with potential anti-psychotic properties. Eur. Neuropsychopharmacol. 18(3), 200–214 (2008).
  • Strick CA, Li C, Scott L et al. Modulation of NMDA receptor function by inhibition of d-amino acid oxidase in rodent brain. Neuropharmacology 61(5–6), 1001–1015 (2011).
  • Duplantier AJ, Becker SL, Bohanon MJ et al. Discovery, SAR, and pharmacokinetics of a novel 3-hydroxyquinolin-2(1H) – one series of potent d-amino acid oxidase (DAAO) inhibitors. J. Med. Chem. 52(11), 3576–3585 (2009).
  • Ferraris D, Duvall B, Ko YS et al. Synthesis and biological evaluation of d-amino acid oxidase inhibitors. J. Med. Chem. 51(12), 3357–3359 (2008).
  • Almond SL, Fradley RL, Armstrong EJ et al. Behavioral and biochemical characterization of a mutant mouse strain lacking d-amino acid oxidase activity and its implications for schizophrenia. Mol. Cell. Neurosci. 32(4), 324–334 (2006).
  • Hashimoto A, Nishikawa T, Konno R et al. Free d-serine, d-aspartate and d-alanine in central nervous system and serum in mutant mice lacking d-amino acid oxidase. Neurosci. Lett. 152(1–2), 33–36 (1993).
  • Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K. Determination of free d-aspartic acid, d-serine and d-alanine in the brain of mutant mice lacking d-amino acid oxidase activity. J. Chromatogr. B Biomed. Sci. Appl. 757(1), 119–125 (2001).
  • Hamase K, Konno R, Morikawa A, Zaitsu K. Sensitive determination of d-amino acids in mammals and the effect of d-amino-acid oxidase activity on their amounts. Biol. Pharm. Bull. 28(9), 1578–1584 (2005).
  • Xie X, Dumas T, Tang L et al. Lack of the alanine–serine–cysteine transporter 1 causes tremors, seizures, and early postnatal death in mice. Brain Res. 1052(2), 212–221 (2005).
  • Hashimoto K, Fujita Y, Horio M et al. Co-administration of a d-amino acid oxidase inhibitor potentiates the efficacy of d-serine in attenuating prepulse inhibition deficits after administration of dizocilpine. Biol. Psychiatry 65(12), 1103–1106 (2009).
  • Frattini LF, Piubelli L, Sacchi S, Molla G, Pollegioni L. Is rat an appropriate animal model to study the involvement of d-serine catabolism in schizophrenia? Insights from characterization of d-amino acid oxidase. FEBS J. 278(22), 4362–4373 (2011).
  • Bendikov I, Nadri C, Amar S et al. A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr. Res. 90(1–3), 41–51 (2007).
  • Hashimoto K, Shimizu E, Komatsu N et al. No changes in serum epidermal growth factor levels in patients with schizophrenia. Psychiatry Res. 135(3), 257–260 (2005).
  • Fuchs SA, De Barse MM, Scheepers FE et al. Cerebrospinal fluid d-serine and glycine concentrations are unaltered and unaffected by olanzapine therapy in male schizophrenic patients. Eur. Neuropsychopharmacol. 18(5), 333–338 (2008).
  • Baruah S, Waziri R, Hegwood TS, Mallis LM. Plasma serine in schizophrenics and controls measured by gas chromatography-mass spectrometry. Psychiatry Res. 37(3), 261–270 (1991).
  • Ohnuma T, Sakai Y, Maeshima H et al. Changes in plasma glycine, l-serine, and d-serine levels in patients with schizophrenia as their clinical symptoms improve: results from the Juntendo University Schizophrenia Projects (JUSP). Prog. Neuropsychopharmacol. Biol. Psychiatry 32(8), 1905–1912 (2008).
  • Hashimoto K, Fukushima T, Shimizu E et al. Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch. Gen. Psychiatry 60(6), 572–576 (2003).
  • Yamada K, Ohnishi T, Hashimoto K et al. Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and d-serine levels. Biol. Psychiatry 57(12), 1493–1503 (2005).
  • Steffek AE, Haroutunian V, Meador-Woodruff JH. Serine racemase protein expression in cortex and hippocampus in schizophrenia. Neuroreport 17(11), 1181–1185 (2006).
  • Verrall L, Walker M, Rawlings N et al. d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur. J. Neurosci. 26(6), 1657–1669 (2007).
  • Kapoor R, Lim KS, Cheng A, Garrick T, Kapoor V. Preliminary evidence for a link between schizophrenia and NMDA-glycine site receptor ligand metabolic enzymes, d-amino acid oxidase (DAAO) and kynurenine aminotransferase-1 (KAT-1). Brain Res. 1106(1), 205–210 (2006).
  • Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R. Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr. Res. 101(1–3), 76–83 (2008).
  • Burnet PW, Hutchinson L, von Hesling M et al. Expression of d-serine and glycine transporters in the prefrontal cortex and cerebellum in schizophrenia. Schizophr. Res. 102(1–3), 283–294 (2008).
  • Habl G, Zink M, Petroianu G et al. Increased d-amino acid oxidase expression in the bilateral hippocampal CA4 of schizophrenic patients: a post-mortem study. J. Neural Transm. 116(12), 1657–1665 (2009).
  • Ono K, Shishido Y, Park HK et al. Potential pathophysiological role of d-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J. Neural Transm. 116(10), 1335–1347 (2009).
  • Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10(1), 40–68; image 5 (2005).
  • Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT. Neurobiology of schizophrenia. Neuron 52(1), 139–153 (2006).
  • Shinkai T, De Luca V, Hwang R et al. Association analyses of the DAOA/G30 and d-amino-acid oxidase genes in schizophrenia: further evidence for a role in schizophrenia. Neuromolecular Med. 9(2), 169–177 (2007).
  • Chumakov I, Blumenfeld M, Guerassimenko O et al. Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc. Natl Acad. Sci. USA 99(21), 13675–13680 (2002).
  • Fallin MD, Lasseter VK, Avramopoulos D et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am. J. Hum. Genet. 77(6), 918–936 (2005).
  • Korostishevsky M, Kaganovich M, Cholostoy A et al. Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol. Psychiatry 56(3), 169–176 (2004).
  • Opgen-Rhein C, Lencz T, Burdick KE et al. Genetic variation in the DAOA gene complex: impact on susceptibility for schizophrenia and on cognitive performance. Schizophr. Res. 103(1–3), 169–177 (2008).
  • Schumacher J, Jamra RA, Freudenberg J et al. Examination of G72 and d-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol. Psychiatry 9(2), 203–207 (2004).
  • Shi J, Gershon ES, Liu C. Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr. Res. 104(1–3), 96–107 (2008).
  • Sacchi S, Bernasconi M, Martineau M et al. pLG72 modulates intracellular d-serine levels through its interaction with d-amino acid oxidase: effect on schizophrenia susceptibility. J. Biol. Chem. 283(32), 22244–22256 (2008).
  • Kvajo M, Dhilla A, Swor DE, Karayiorgou M, Gogos JA. Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol. Psychiatry 13(7), 685–696 (2008).
  • Goldberg TE, Straub RE, Callicott JH et al. The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 31(9), 2022–2032 (2006).
  • Jansen A, Krach S, Krug A et al. A putative high risk diplotype of the G72 gene is in healthy individuals associated with better performance in working memory functions and altered brain activity in the medial temporal lobe. Neuroimage 45(3), 1002–1008 (2009).
  • Hall J, Whalley HC, Moorhead TW et al. Genetic variation in the DAOA (G72) gene modulates hippocampal function in subjects at high risk of schizophrenia. Biol. Psychiatry 64(5), 428–433 (2008).
  • Millan MJ, Agid Y, Brüne M et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 11(2), 141–168 (2012).
  • Benzel I, Kew JN, Viknaraja R et al. Investigation of G72 (DAOA) expression in the human brain. BMC Psychiatry 8, 94 (2008).
  • Corvin A, McGhee KA, Murphy K et al. Evidence for association and epistasis at the DAOA/G30 and d-amino acid oxidase loci in an Irish schizophrenia sample. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B(7), 949–953 (2007).
  • Liu X, He G, Wang X et al. Association of DAAO with schizophrenia in the Chinese population. Neurosci. Lett. 369(3), 228–233 (2004).
  • Wood LS, Pickering EH, Dechairo BM. Significant support for DAO as a schizophrenia susceptibility locus: examination of five genes putatively associated with schizophrenia. Biol. Psychiatry 61(10), 1195–1199 (2007).
  • Allen NC, Bagade S, McQueen MB et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat. Genet. 40(7), 827–834 (2008).
  • Ohnuma T, Shibata N, Maeshima H et al. Association analysis of glycine- and serine-related genes in a Japanese population of patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 33(3), 511–518 (2009).
  • Liu YL, Fann CS, Liu CM et al. No association of G72 and d-amino acid oxidase genes with schizophrenia. Schizophr. Res. 87(1–3), 15–20 (2006).
  • Verrall L, Burnet PW, Betts JF, Harrison PJ. The neurobiology of d-amino acid oxidase and its involvement in schizophrenia. Mol. Psychiatry 15(2), 122–137 (2010).
  • Jönsson EG, Saetre P, Vares M et al. DTNBP1, NRG1, DAOA, DAO and GRM3 polymorphisms and schizophrenia: an association study. Neuropsychobiology 59(3), 142–150 (2009).
  • Vilella E, Costas J, Sanjuan J et al. Association of schizophrenia with DTNBP1 but not with DAO, DAOA, NRG1 and RGS4 nor their genetic interaction. J. Psychiatr. Res. 42(4), 278–288 (2008).
  • Roussos P, Giakoumaki SG, Adamaki E et al. The association of schizophrenia risk d-amino acid oxidase polymorphisms with sensorimotor gating, working memory and personality in healthy males. Neuropsychopharmacology 36(8), 1677–1688 (2011).
  • Goltsov AY, Loseva JG, Andreeva TV et al. Polymorphism in the 5′-promoter region of serine racemase gene in schizophrenia. Mol. Psychiatry 11(4), 325–326 (2006).
  • Morita Y, Ujike H, Tanaka Y et al. A genetic variant of the serine racemase gene is associated with schizophrenia. Biol. Psychiatry 61(10), 1200–1203 (2007).
  • Strohmaier J, Georgi A, Schirmbeck F et al. No association between the serine racemase gene (SRR) and schizophrenia in a German case–control sample. Psychiatr. Genet. 17(2), 125 (2007).
  • Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry 52(12), 998–1007 (1995).
  • de Bartolomeis A, Sarappa C, Magara S, Iasevoli F. Targeting glutamate system for novel antipsychotic approaches: relevance for residual psychotic symptoms and treatment resistant schizophrenia. Eur. J. Pharmacol. 682(1–3), 1–11 (2012).
  • Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 26(4–6), 365–384 (2006).
  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT. d-Serine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 44(11), 1081–1089 (1998).
  • Heresco-Levy U, Javitt DC, Ebstein R et al. d-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol. Psychiatry 57(6), 577–585 (2005).
  • Lane HY, Chang YC, Liu YC, Chiu CC, Tsai GE. Sarcosine or d-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch. Gen. Psychiatry 62(11), 1196–1204 (2005).
  • Lane HY, Lin CH, Huang YJ, Liao CH, Chang YC, Tsai GE. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and d-serine add-on treatment for schizophrenia. Int. J. Neuropsychopharmacol. 13(4), 451–460 (2010).
  • Tsai GE, Lane HY, Vandenberg CM, Liu YC, Tsai P, Jann MW. Disposition of d-serine in healthy adults. J. Clin. Pharmacol. 48(4), 524–527 (2008).
  • Carone FA, Nakamura S, Goldman B. Urinary loss of glucose, phosphate, and protein by diffusion into proximal straight tubules injured by d-serine and maleic acid. Lab. Invest. 52(6), 605–610 (1985).
  • Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-d-aspartate receptor function by glycine transport. Proc. Natl Acad. Sci. USA 95(26), 15730–15734 (1998).
  • Tsai GE, Yang P, Chang YC, Chong MY. d-Alanine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 59(3), 230–234 (2006).
  • Lane HY, Liu YC, Huang CL et al. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol. Psychiatry 63(1), 9–12 (2008).
  • Tsai G, Lane HY, Yang P, Chong MY, Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 55(5), 452–456 (2004).
  • Issaq HJ, Veenstra TD. Is sarcosine a biomarker for prostate cancer? J. Sep. Sci. 34(24), 3619–3621 (2011).
  • Sreekumar A, Poisson LM, Rajendiran TM et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231), 910–914 (2009).
  • Kantrowitz JT, Malhotra AK, Cornblatt B et al. High dose d-serine in the treatment of schizophrenia. Schizophr. Res. 121(1–3), 125–130 (2010).
  • Singh SP, Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 25(10), 859–885 (2011).
  • Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT. d-serine added to clozapine for the treatment of schizophrenia. Am. J. Psychiatry 156(11), 1822–1825 (1999).
  • Goff DC, Tsai G, Manoach DS, Flood J, Darby DG, Coyle JT. d-Cycloserine added to clozapine for patients with schizophrenia. Am. J. Psychiatry 153(12), 1628–1630 (1996).
  • Lane HY, Huang CL, Wu PL et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol. Psychiatry 60(6), 645–649 (2006).
  • Arvanov VL, Liang X, Schwartz J, Grossman S, Wang RY. Clozapine and haloperidol modulate N-methyl-d-aspartate- and non-N-methyl-d-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. J. Pharmacol. Exp. Ther. 283(1), 226–234 (1997).
  • Bressan RA, Erlandsson K, Stone JM et al. Impact of schizophrenia and chronic antipsychotic treatment on [123I]CNS-1261 binding to N-methyl-d-aspartate receptors in vivo. Biol. Psychiatry 58(1), 41–46 (2005).
  • Gaisler-Salomon I, Weiner I. Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology 166(4), 333–342 (2003).
  • Kargieman L, Santana N, Mengod G, Celada P, Artigas F. NMDA antagonist and antipsychotic actions in cortico-subcortical circuits. Neurotox. Res. 14(2–3), 129–140 (2008).
  • Schwieler L, Linderholm KR, Nilsson-Todd LK, Erhardt S, Engberg G. Clozapine interacts with the glycine site of the NMDA receptor: electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci. 83(5–6), 170–175 (2008).
  • Lipina T, Labrie V, Weiner I, Roder J. Modulators of the glycine site on NMDA receptors, d-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology 179(1), 54–67 (2005).
  • Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M. Clozapine, but not haloperidol, enhances glial d-serine and l-glutamate release in rat frontal cortex and primary cultured astrocytes. Br. J. Pharmacol. 165(5), 1543–1555 (2012).
  • Evins AE, Amico E, Posever TA, Toker R, Goff DC. d-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr. Res. 56(1–2), 19–23 (2002).
  • Goff DC, Henderson DC, Evins AE, Amico E. A placebo-controlled crossover trial of d-cycloserine added to clozapine in patients with schizophrenia. Biol. Psychiatry 45(4), 512–514 (1999).
  • Iwasa S, Tabara H, Song Z, Nakabayashi M, Yokoyama Y, Fukushima T. Inhibition of d-amino acid oxidase activity by antipsychotic drugs evaluated by a fluorometric assay using d-kynurenine as substrate. Yakugaku Zasshi 131(7), 1111–1116 (2011).
  • Abou El-Magd RM, Park HK, Kawazoe T et al. The effect of risperidone on d-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J. Psychopharmacol. 24, 1055–1067 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.