532
Views
123
CrossRef citations to date
0
Altmetric
Review

Molecular subgroups of medulloblastoma

, , &
Pages 871-884 | Published online: 09 Jan 2014

References

  • Thompson MC, Fuller C, Hogg TL et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24(12), 1924–1931 (2006).
  • Kool M, Koster J, Bunt J et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3(8), e3088 (2008).
  • Northcott PA, Korshunov A, Witt H et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29(11), 1408–1414 (2011).
  • Cho YJ, Tsherniak A, Tamayo P et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29(11), 1424–1430 (2011).
  • Markant SL, Wechsler-Reya RJ. Personalized mice: modelling the molecular heterogeneity of medulloblastoma. Neuropathol. Appl. Neurobiol. 38(3), 228–240 (2012).
  • Wu X, Northcott PA, Croul S, Taylor MD. Mouse models of medulloblastoma. Chin. J. Cancer 30(7), 442–449 (2011).
  • Ellison DW, Dalton J, Kocak M et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 121(3), 381–396 (2011).
  • Schwalbe EC, Lindsey JC, Straughton D et al. Rapid diagnosis of medulloblastoma molecular subgroups. Clin. Cancer Res. 17(7), 1883–1894 (2011).
  • Remke M, Hielscher T, Korshunov A et al. FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J. Clin. Oncol. 29(29), 3852–3861 (2011).
  • Taylor MD, Northcott PA, Korshunov A et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123(4), 465–472 (2012).
  • Ellison DW, Onilude OE, Lindsey JC et al.; United Kingdom Children’s Cancer Study Group Brain Tumour Committee. b-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 23(31), 7951–7957 (2005).
  • Gajjar A, Chintagumpala M, Ashley D et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 7(10), 813–820 (2006).
  • Remke M, Hielscher T, Northcott PA et al. Adult medulloblastoma comprises three major molecular variants. J. Clin. Oncol. 29(19), 2717–2723 (2011).
  • Clifford SC, Lusher ME, Lindsey JC et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5(22), 2666–2670 (2006).
  • Pfister S, Remke M, Benner A et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J. Clin. Oncol. 27(10), 1627–1636 (2009).
  • Ellison DW, Kocak M, Dalton J et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 29(11), 1400–1407 (2011).
  • Ramaswamy V, Northcott PA, Taylor MD. FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. Cancer Genet. 204(11), 577–588 (2011).
  • Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870), 436–442 (2002).
  • Rutkowski S, Bode U, Deinlein F et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 352(10), 978–986 (2005).
  • Leary SE, Zhou T, Holmes E, Geyer JR, Miller DC. Histology predicts a favorable outcome in young children with desmoplastic medulloblastoma: a report from the children’s oncology group. Cancer 117(14), 3262–3267 (2011).
  • von Bueren AO, von Hoff K, Pietsch T et al. Treatment of young children with localized medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro-oncology 13(6), 669–679 (2011).
  • Rutkowski S, von Hoff K, Emser A et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J. Clin. Oncol. 28(33), 4961–4968 (2010).
  • Northcott PA, Hielscher T, Dubuc A et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 122(2), 231–240 (2011).
  • von Hoff K, Hartmann W, von Bueren AO et al. Large cell/anaplastic medulloblastoma: outcome according to myc status, histopathological, and clinical risk factors. Pediatr. Blood Cancer 54(3), 369–376 (2010).
  • Lamont JM, McManamy CS, Pearson AD, Clifford SC, Ellison DW. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin. Cancer Res. 10(16), 5482–5493 (2004).
  • Bigner SH, Friedman HS, Vogelstein B, Oakes WJ, Bigner DD. Amplification of the c-myc gene in human medulloblastoma cell lines and xenografts. Cancer Res. 50(8), 2347–2350 (1990).
  • Badiali M, Pession A, Basso G et al. N-myc and c-myc oncogenes amplification in medulloblastomas. Evidence of particularly aggressive behavior of a tumor with c-myc amplification. Tumori 77(2), 118–121 (1991).
  • Eberhart CG, Kepner JL, Goldthwaite PT et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 94(2), 552–560 (2002).
  • von Hoff K, Hinkes B, Gerber NU et al. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT’91. Eur. J. Cancer 45(7), 1209–1217 (2009).
  • Gilbertson RJ. Finding the perfect partner for medulloblastoma prognostication. J. Clin. Oncol. 29(29), 3841–3842 (2011).
  • Korshunov A, Remke M, Werft W et al. Adult and pediatric medulloblastomas are genetically distinct and require different algorithms for molecular risk stratification. J. Clin. Oncol. 28(18), 3054–3060 (2010).
  • Brandes AA, Franceschi E, Tosoni A et al. Adult neuroectodermal tumors of posterior fossa (medulloblastoma) and of supratentorial sites (stPNET). Crit. Rev. Oncol. Hematol. 71(2), 165–179 (2009).
  • Spreafico F, Massimino M, Gandola L et al. Survival of adults treated for medulloblastoma using paediatric protocols. Eur. J. Cancer 41(9), 1304–1310 (2005).
  • Kool M, Korshunov A, Remke M et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123(4), 473–484 (2012).
  • Curran EK, Sainani KL, Le GM, Propp JM, Fisher PG. Gender affects survival for medulloblastoma only in older children and adults: a study from the Surveillance Epidemiology and End Results Registry. Pediatr. Blood Cancer 52(1), 60–64 (2009).
  • Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007).
  • Giangaspero F, Rigobello L, Badiali M et al. Large-cell medulloblastomas. A distinct variant with highly aggressive behavior. Am. J. Surg. Pathol. 16(7), 687–693 (1992).
  • Suresh TN, Santosh V, Yasha TC et al. Medulloblastoma with extensive nodularity: a variant occurring in the very young-clinicopathological and immunohistochemical study of four cases. Childs. Nerv. Syst. 20(1), 55–60 (2004).
  • Garrè ML, Cama A, Bagnasco F et al. Medulloblastoma variants: age-dependent occurrence and relation to Gorlin syndrome – a new clinical perspective. Clin. Cancer Res. 15(7), 2463–2471 (2009).
  • Giangaspero F, Perilongo G, Fondelli MP et al. Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J. Neurosurg. 91(6), 971–977 (1999).
  • Brugières L, Remenieras A, Pierron G et al. High frequency of germline SUFU mutations in children with desmoplastic/nodular medulloblastoma younger than 3 years of age. J. Clin. Oncol. 30(17), 2087–2093 (2012).
  • Eberhart CG, Kratz J, Wang Y et al. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J. Neuropathol. Exp. Neurol. 63(5), 441–449 (2004).
  • Stearns D, Chaudhry A, Abel TW, Burger PC, Dang CV, Eberhart CG. c-myc overexpression causes anaplasia in medulloblastoma. Cancer Res. 66(2), 673–681 (2006).
  • Phillips HS, Kharbanda S, Chen R et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3), 157–173 (2006).
  • Verhaak RG, Hoadley KA, Purdom E et al.; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010).
  • McLendon R, Friedman A, Bigner D et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068 (2008).
  • Fattet S, Haberler C, Legoix P et al. Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J. Pathol. 218(1), 86–94 (2009).
  • Al-Halabi H, Nantel A, Klekner A et al. Preponderance of sonic hedgehog pathway activation characterizes adult medulloblastoma. Acta Neuropathol. 121(2), 229–239 (2011).
  • Low JA, de Sauvage FJ. Clinical experience with Hedgehog pathway inhibitors. J. Clin. Oncol. 28(36), 5321–5326 (2010).
  • Metcalfe C, de Sauvage FJ. Hedgehog fights back: mechanisms of acquired resistance against Smoothened antagonists. Cancer Res. 71(15), 5057–5061 (2011).
  • Gilbertson RJ. Mapping cancer origins. Cell 145(1), 25–29 (2011).
  • Gibson P, Tong Y, Robinson G et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468(7327), 1095–1099 (2010).
  • Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. Annu. Rev. Pathol. 3, 341–365 (2008).
  • Northcott PA, Rutka JT, Taylor MD. Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurg. Focus 28(1), E6 (2010).
  • Dubuc AM, Northcott PA, Mack S, Witt H, Pfister S, Taylor MD. The genetics of pediatric brain tumors. Curr. Neurol. Neurosci. Rep. 10(3), 215–223 (2010).
  • Zurawel RH, Chiappa SA, Allen C, Raffel C. Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res. 58(5), 896–899 (1998).
  • Taylor MD, Mainprize TG, Rutka JT. Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery 47(4), 888–901 (2000).
  • Tabori U, Baskin B, Shago M et al. Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J. Clin. Oncol. 28(8), 1345–1350 (2010).
  • Pfaff E, Remke M, Sturm D et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J. Clin. Oncol. 28(35), 5188–5196 (2010).
  • Lindsey JC, Hill RM, Megahed H et al. TP53 mutations in favorable-risk Wnt/Wingless-subtype medulloblastomas. J. Clin. Oncol. 29(12), e344–e346; author reply e347 (2011).
  • Gessi M, von Bueren AO, Rutkowski S, Pietsch T. p53 expression predicts dismal outcome for medulloblastoma patients with metastatic disease. J. Neurooncol. 106(1), 135–141 (2012).
  • Taylor MD, Liu L, Raffel C et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet. 31(3), 306–310 (2002).
  • Yauch RL, Dijkgraaf GJ, Alicke B et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326(5952), 572–574 (2009).
  • Northcott PA, Nakahara Y, Wu X et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat. Genet. 41(4), 465–472 (2009).
  • Korshunov A, Remke M, Kool M et al. Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathol. 123(4), 515–527 (2012).
  • Ryan SL, Schwalbe EC, Cole M et al. MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathol. 123(4), 501–513 (2012).
  • Korshunov A, Remke M, Kool M et al. Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathol. 123(4), 515–527 (2011).
  • Parsons DW, Li M, Zhang X et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331(6016), 435–439 (2011).
  • Adamson DC, Shi Q, Wortham M et al. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res. 70(1), 181–191 (2010).
  • Bhatia B, Northcott PA, Hambardzumyan D et al. Tuberous sclerosis complex suppression in cerebellar development and medulloblastoma: separate regulation of mammalian target of rapamycin activity and p27 Kip1 localization. Cancer Res. 69(18), 7224–7234 (2009).
  • Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP. Subclass mapping: identifying common subtypes in independent disease data sets. PLoS ONE 2(11), e1195 (2007).
  • Tamayo P, Scanfeld D, Ebert BL, Gillette MA, Roberts CW, Mesirov JP. Metagene projection for cross-platform, cross-species characterization of global transcriptional states. Proc. Natl Acad. Sci. USA 104(14), 5959–5964 (2007).
  • Northcott PA, Shih DJ, Remke M et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 123(4), 615–626 (2012).
  • Rogers HA, Miller S, Lowe J, Brundler MA, Coyle B, Grundy RG. An investigation of WNT pathway activation and association with survival in central nervous system primitive neuroectodermal tumours (CNS PNET). Br. J. Cancer 100(8), 1292–1302 (2009).
  • Lau J, Schmidt C, Markant SL, Taylor MD, Wechsler-Reya RJ, Weiss WA. Matching mice to malignancy: molecular subgroups and models of medulloblastoma. Childs Nerv. Syst. 28(4), 521–532 (2012).
  • Zurawel RH, Allen C, Wechsler-Reya R, Scott MP, Raffel C. Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice. Genes. Chromosomes Cancer 28(1), 77–81 (2000).
  • Goodrich LV, Milenkovic L, Higgins KM, Scott MP. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277(5329), 1109–1113 (1997).
  • Wetmore C, Eberhart DE, Curran T. The normal patched allele is expressed in medulloblastomas from mice with heterozygous germ-line mutation of patched. Cancer Res. 60(8), 2239–2246 (2000).
  • Hatton BA, Villavicencio EH, Tsuchiya KD et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res. 68(6), 1768–1776 (2008).
  • Hallahan AR, Pritchard JI, Hansen S et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 64(21), 7794–7800 (2004).
  • Lee Y, Kawagoe R, Sasai K et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26(44), 6442–6447 (2007).
  • Yang ZJ, Ellis T, Markant SL et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14(2), 135–145 (2008).
  • Behesti H, Marino S. Cerebellar granule cells: insights into proliferation, differentiation, and role in medulloblastoma pathogenesis. Int. J. Biochem. Cell Biol. 41(3), 435–445 (2009).
  • Castellino RC, Barwick BG, Schniederjan M et al. Heterozygosity for Pten promotes tumorigenesis in a mouse model of medulloblastoma. PLoS ONE 5(5), e10849 (2010).
  • Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22(4), 436–448 (2008).
  • Swartling FJ, Grimmer MR, Hackett CS et al. Pleiotropic role for MYCN in medulloblastoma. Genes Dev. 24(10), 1059–1072 (2010).
  • Kawauchi D, Robinson G, Uziel T et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21(2), 168–180 (2012).
  • Pei Y, Moore CE, Wang J et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 21(2), 155–167 (2012).
  • Eberhart CG. Three down and one to go: modeling medulloblastoma subgroups. Cancer Cell 21(2), 137–138 (2012).
  • Wu X, Northcott PA, Dubuc A et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482(7386), 529–533 (2012).
  • Leary SE, Olson JM. The molecular classification of medulloblastoma: driving the next generation clinical trials. Curr. Opin. Pediatr. 24(1), 33–39 (2012).
  • Rudin CM, Hann CL, Laterra J et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361(12), 1173–1178 (2009).
  • Buonamici S, Williams J, Morrissey M et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2(51), 51ra70 (2010).
  • Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, Rajasekaran SA. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer 11, 144 (2011).
  • Spiller SE, Ditzler SH, Pullar BJ, Olson JM. Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA). J. Neurooncol. 87(2), 133–141 (2008).
  • Häcker S, Karl S, Mader I et al. Histone deacetylase inhibitors prime medulloblastoma cells for chemotherapy-induced apoptosis by enhancing p53-dependent Bax activation. Oncogene 30(19), 2275–2281 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.