166
Views
9
CrossRef citations to date
0
Altmetric
Theme: Nervous System Neoplasms - Special Report

Genetic and phenotypic variability of optic neuropathies

&
Pages 357-367 | Published online: 09 Jan 2014

References

  • Biousse V, Newman NJ. Hereditary optic neuropathies. Ophthalmol. Clin. North Am. 14(3), 547–568 (2001).
  • Kjer B, Eiberg H, Kjer P, Rosenberg T. Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects. Acta Ophthalmol. Scand. 74(1), 3–7 (1996).
  • Olichon A, Guillou E, Delettre C et al. Mitochondrial dynamics and disease, OPA1. Biochim. Biophys. Acta 1763(5–6), 500–509 (2006).
  • Newman NJ, Biousse V. Hereditary optic neuropathies. Eye (Lond.) 18(11), 1144–1160 (2004).
  • Züchner S, De Jonghe P, Jordanova A et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann. Neurol. 59(2), 276–281 (2006).
  • Züchner S, Mersiyanova IV, Muglia M et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat. Genet. 36(5), 449–451 (2004).
  • Kim HJ, Sohn KM, Shy ME et al. Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (cmtx5). Am. J. Hum. Genet. 81(3), 552–558 (2007).
  • Dong J, Edelmann L, Bajwa AM, Kornreich R, Desnick RJ. Familial dysautonomia: detection of the IKBKAP IVS20(+6T –> C) and R696P mutations and frequencies among Ashkenazi Jews. Am. J. Med. Genet. 110(3), 253–257 (2002).
  • Koeppen AH. The hereditary ataxias. J. Neuropathol. Exp. Neurol. 57(6), 531–543 (1998).
  • Perlman SJ, Mar S. Leukodystrophies. Adv. Exp. Med. Biol. 724, 154–171 (2012).
  • Renaud DL. Lysosomal disorders associated with leukoencephalopathy. Semin. Neurol. 32(1), 51–54 (2012).
  • Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum. Mutat. 33(1), 42–63 (2012).
  • Schneider SA, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 19(2), 57–66 (2012).
  • Hoyt CS. Autosomal dominant optic atrophy. A spectrum of disability. Ophthalmology 87(3), 245–251 (1980).
  • Newman NJ, Lott MT, Wallace DC. The clinical characteristics of pedigrees of Leber’s hereditary optic neuropathy with the 11778 mutation. Am. J. Ophthalmol. 111(6), 750–762 (1991).
  • Oostra RJ, Bolhuis PA, Wijburg FA, Zorn-Ende G, Bleeker-Wagemakers EM. Leber’s hereditary optic neuropathy: correlations between mitochondrial genotype and visual outcome. J. Med. Genet. 31(4), 280–286 (1994).
  • Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE. The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain 118(Pt 2), 319–337 (1995).
  • Votruba M, Aijaz S, Moore AT. A review of primary hereditary optic neuropathies. J. Inherit. Metab. Dis. 26(2–3), 209–227 (2003).
  • Votruba M, Fitzke FW, Holder GE, Carter A, Bhattacharya SS, Moore AT. Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch. Ophthalmol. 116(3), 351–358 (1998).
  • Berninger TA, Jaeger W, Krastel H. Electrophysiology and colour perimetry in dominant infantile optic atrophy. Br. J. Ophthalmol. 75(1), 49–52 (1991).
  • Holder GE, Votruba M, Carter AC, Bhattacharya SS, Fitzke FW, Moore AT. Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter. Doc. Ophthalmol. 95(3–4), 217–228 (1998).
  • Yu-Wai-Man P, Griffiths PG, Gorman GS et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain 133(Pt 3), 771–786 (2010).
  • Amati-Bonneau P, Valentino ML, Reynier P et al. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 131(Pt 2), 338–351 (2008).
  • Amati-Bonneau P, Guichet A, Olichon A et al. OPA1 R445H mutation in optic atrophy associated with sensorineural deafness. Ann. Neurol. 58(6), 958–963 (2005).
  • Hudson G, Amati-Bonneau P, Blakely EL et al. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131(Pt 2), 329–337 (2008).
  • Alexander C, Votruba M, Pesch UE et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26(2), 211–215 (2000).
  • Delettre C, Lenaers G, Griffoin JM et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26(2), 207–210 (2000).
  • Yu-Wai-Man P, Sitarz KS, Samuels DC et al. OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum. Mol. Genet. 19(15), 3043–3052 (2010).
  • Mascialino B, Leinonen M, Meier T. Meta-analysis of the prevalence of Leber hereditary optic neuropathy mtDNA mutations in Europe. Eur. J. Ophthalmol. 22(3), 461–465 (2012).
  • Nikoskelainen EK, Marttila RJ, Huoponen K et al. Leber’s “plus”: neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J. Neurol. Neurosurg. Psychiatr. 59(2), 160–164 (1995).
  • Flanigan KM, Johns DR. Association of the 11778 mitochondrial DNA mutation and demyelinating disease. Neurology 43(12), 2720–2722 (1993).
  • Bhatti MT, Newman NJ. A multiple sclerosis-like illness in a man harboring the mtDNA 14484 mutation. J. Neuroophthalmol. 19(1), 28–33 (1999).
  • Palace J. Multiple sclerosis associated with Leber’s hereditary optic neuropathy. J. Neurol. Sci. 286(1–2), 24–27 (2009).
  • Tarnopolsky MA, Baker SK, Myint T, Maxner CE, Robitaille J, Robinson BH. Clinical variability in maternally inherited leber hereditary optic neuropathy with the G14459A mutation. Am. J. Med. Genet. A 124A(4), 372–376 (2004).
  • Wallace DC, Singh G, Lott MT et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884), 1427–1430 (1988).
  • Johns DR, Neufeld MJ, Park RD. An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem. Biophys. Res. Commun. 187(3), 1551–1557 (1992).
  • Howell N, McCullough D, Bodis-Wollner I. Molecular genetic analysis of a sporadic case of Leber hereditary optic neuropathy. Am. J. Hum. Genet. 50(2), 443–446 (1992).
  • Chinnery PF, Andrews RM, Turnbull DM, Howell NN. Leber hereditary optic neuropathy: does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? Am. J. Med. Genet. 98(3), 235–243 (2001).
  • Hudson G, Carelli V, Spruijt L et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am. J. Hum. Genet. 81(2), 228–233 (2007).
  • Ji Y, Jia X, Li S, Xiao X, Guo X, Zhang Q. Evaluation of the X-linked modifier loci for Leber hereditary optic neuropathy with the G11778A mutation in Chinese. Mol. Vis. 16, 416–424 (2010).
  • Giordano C, Montopoli M, Perli E et al. Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy. Brain 134(Pt 1), 220–234 (2011).
  • Kirkman MA, Yu-Wai-Man P, Korsten A et al. Gene–environment interactions in Leber hereditary optic neuropathy. Brain 132(Pt 9), 2317–2326 (2009).
  • Klopstock T, Yu-Wai-Man P, Dimitriadis K et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 134(Pt 9), 2677–2686 (2011).
  • Sadun AA, Chicani CF, Ross-Cisneros FN et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch. Neurol. 69(3), 331–338 (2012).
  • Reynier P, Amati-Bonneau P, Verny C et al. OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract. J. Med. Genet. 41(9), e110 (2004).
  • Ayrignac X, Liauzun C, Lenaers G et al. OPA3-related autosomal dominant optic atrophy and cataract with ataxia and areflexia. Eur. Neurol. 68(2), 108–110 (2012).
  • Ryu SW, Jeong HJ, Choi M, Karbowski M, Choi C. Optic atrophy 3 as a protein of the mitochondrial outer membrane induces mitochondrial fragmentation. Cell. Mol. Life Sci. 67(16), 2839–2850 (2010).
  • Chevrollier A, Guillet V, Loiseau D et al. Hereditary optic neuropathies share a common mitochondrial coupling defect. Ann. Neurol. 63(6), 794–798 (2008).
  • Hanein S, Perrault I, Roche O et al. TMEM126A, encoding a mitochondrial protein, is mutated in autosomal-recessive nonsyndromic optic atrophy. Am. J. Hum. Genet. 84(4), 493–498 (2009).
  • Meyer E, Michaelides M, Tee LJ et al. Nonsense mutation in TMEM126A causing autosomal recessive optic atrophy and auditory neuropathy. Mol. Vis. 16, 650–664 (2010).
  • Barrett TG, Poulton K, Bundey S. DIDMOAD syndrome; further studies and muscle biochemistry. J. Inherit. Metab. Dis. 18(2), 218–220 (1995).
  • Barrett TG, Bundey SE, Macleod AF. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 346(8988), 1458–1463 (1995).
  • Eiberg H, Hansen L, Kjer B et al. Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene. J. Med. Genet. 43(5), 435–440 (2006).
  • Rendtorff ND, Lodahl M, Boulahbel H et al. Identification of p.A684V missense mutation in the WFS1 gene as a frequent cause of autosomal dominant optic atrophy and hearing impairment. Am. J. Med. Genet. A 155A(6), 1298–1313 (2011).
  • Assink JJ, Tijmes NT, ten Brink JB et al. A gene for X-linked optic atrophy is closely linked to the Xp11.4-Xp11.2 region of the X chromosome. Am. J. Hum. Genet. 61(4), 934–939 (1997).
  • Kerrison JB, Arnould VJ, Ferraz Sallum JM et al. Genetic heterogeneity of dominant optic atrophy, Kjer type: identification of a second locus on chromosome 18q12.2–12.3. Arch. Ophthalmol. 117(6), 805–810 (1999).
  • Barbet F, Hakiki S, Orssaud C et al. A third locus for dominant optic atrophy on chromosome 22q. J. Med. Genet. 42(1), e1 (2005).
  • Barbet F, Gerber S, Hakiki S et al. A first locus for isolated autosomal recessive optic atrophy (ROA1) maps to chromosome 8q. Eur. J. Hum. Genet. 11(12), 966–971 (2003).
  • Bindoff LA, Desnuelle C, Birch-Machin MA et al. Multiple defects of the mitochondrial respiratory chain in a mitochondrial encephalopathy (MERRF): a clinical, biochemical and molecular study. J. Neurol. Sci. 102(1), 17–24 (1991).
  • Blakely EL, Trip SA, Swalwell H et al. A new mitochondrial transfer RNAPro gene mutation associated with myoclonic epilepsy with ragged-red fibers and other neurological features. Arch. Neurol. 66(3), 399–402 (2009).
  • Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61(6), 931–937 (1990).
  • Voo I, Allf BE, Udar N, Silva-Garcia R, Vance J, Small KW. Hereditary motor and sensory neuropathy type VI with optic atrophy. Am. J. Ophthalmol. 136(4), 670–677 (2003).
  • Rouzier C, Bannwarth S, Chaussenot A et al. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain 135(Pt 1), 23–34 (2012).
  • Sitarz KS, Yu-Wai-Man P, Pyle A et al. MFN2 mutations cause compensatory mitochondrial DNA proliferation. Brain 135(Pt 8), e219.1–3; author reply e220.1 (2012).
  • Rosenberg RN, Chutorian A. Familial opticoacoustic nerve degeneration and polyneuropathy. Neurology 17(9), 827–832 (1967).
  • Becker MA, Meyer LJ, Seegmiller JE. Gout with purine overproduction due to increased phosphoribosylpyrophosphate synthetase activity. Am. J. Med. 55(2), 232–242 (1973).
  • Becker MA, Puig JG, Mateos FA, Jimenez ML, Kim M, Simmonds HA. Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am. J. Med. 85(3), 383–390 (1988).
  • de Brouwer AP, Williams KL, Duley JA et al. Arts syndrome is caused by loss-of-function mutations in PRPS1. Am. J. Hum. Genet. 81(3), 507–518 (2007).
  • Arts WF, Loonen MC, Sengers RC, Slooff JL. X-linked ataxia, weakness, deafness, and loss of vision in early childhood with a fatal course. Ann. Neurol. 33(5), 535–539 (1993).
  • Schnitzler A, Witte OW, Kunesch E, Freund HJ, Benecke R. Early-onset multisystem degeneration with central motor, autonomic and optic nerve disturbances: unusual Riley–Day syndrome or new clinical entity? J. Neurol. Sci. 154(2), 205–208 (1998).
  • Rizzo JF 3rd, Lessell S, Liebman SD. Optic atrophy in familial dysautonomia. Am. J. Ophthalmol. 102(4), 463–467 (1986).
  • Orr HT, Chung MY, Banfi S et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 4(3), 221–226 (1993).
  • Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW. Oculomotor phenotypes in autosomal dominant ataxias. Arch. Neurol. 55(10), 1353–1357 (1998).
  • Paulson H, Ammache Z. Ataxia and hereditary disorders. Neurol. Clin. 19(3), 759–782, viii (2001).
  • Gouw LG, Castañeda MA, McKenna CK et al. Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum. Mol. Genet. 7(3), 525–532 (1998).
  • Van De Warrenburg BP, Frenken CW, Ausems MG et al. Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype. J. Neurol. 248(10), 911–914 (2001).
  • Ansorge O, Giunti P, Michalik A et al. Ataxin-7 aggregation and ubiquitination in infantile SCA7 with 180 CAG repeats. Ann. Neurol. 56(3), 448–452 (2004).
  • Dürr A, Cossee M, Agid Y et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 335(16), 1169–1175 (1996).
  • Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104(3), 589–620 (1981).
  • Bidichandani SI, Garcia CA, Patel PI, Dimachkie MM. Very late-onset Friedreich ataxia despite large GAA triplet repeat expansions. Arch. Neurol. 57(2), 246–251 (2000).
  • Bhidayasiri R, Perlman SL, Pulst SM, Geschwind DH. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch. Neurol. 62(12), 1865–1869 (2005).
  • Galimanis A, Glutz L, Spiegel R, Burgunder JM, Kaelin-Lang A. Very-late-onset Friedreich ataxia with disturbing head tremor and without spinal atrophy – a case report. Mov. Disord. 23(7), 1058–1059 (2008).
  • Fortuna F, Barboni P, Liguori R et al. Visual system involvement in patients with Friedreich’s ataxia. Brain 132(Pt 1), 116–123 (2009).
  • Cossée M, Dürr A, Schmitt M et al. Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann. Neurol. 45(2), 200–206 (1999).
  • Porter N, Downes SM, Fratter C, Anslow P, Németh AH. Catastrophic visual loss in a patient with Friedreich ataxia. Arch. Ophthalmol. 125(2), 273–274 (2007).
  • Camacho LM, Wenzel W, Aschoff JC. The pattern-reversal visual evoked potential in the clinical study of lesions of the optic chiasm and visual pathway. Adv. Neurol. 32, 49–59 (1982).
  • Th BS, Chisholm AW, Mc KV. Cardiac aspects of Friedreich’s ataxia. Circulation 25, 493–505 (1962).
  • Chamberlain S, Shaw J, Rowland A et al. Mapping of mutation causing Friedreich’s ataxia to human chromosome 9. Nature 334(6179), 248–250 (1988).
  • Fujita R, Agid Y, Trouillas P et al. Confirmation of linkage of Friedreich ataxia to chromosome 9 and identification of a new closely linked marker. Genomics 4(1), 110–111 (1989).
  • Cossée M, Schmitt M, Campuzano V et al. Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and premutations. Proc. Natl Acad. Sci. USA 94(14), 7452–7457 (1997).
  • Montermini L, Andermann E, Labuda M et al. The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum. Mol. Genet. 6(8), 1261–1266 (1997).
  • Sharma R, De Biase I, Gómez M, Delatycki MB, Ashizawa T, Bidichandani SI. Friedreich ataxia in carriers of unstable borderline GAA triplet-repeat alleles. Ann. Neurol. 56(6), 898–901 (2004).
  • Forrest SM, Knight M, Delatycki MB et al. The correlation of clinical phenotype in Friedreich ataxia with the site of point mutations in the FRDA gene. Neurogenetics 1(4), 253–257 (1998).
  • Vermeer S, Van Den Warrenburg BP, Kamsteg EJ. ARSACS. In: Gene Reviews. Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP (Eds). University of Washington, WA, USA (2003).
  • Percy AK, Brady RO. Metachromatic leukodystrophy: diagnosis with samples of venous blood. Science 161(3841), 594–595 (1968).
  • Austin J, McAfee D, Armstrong D, O’Rourke M, Shearer L, Bachhawat B. Abnormal sulphatase activities in two human diseases (metachromatic leucodystrophy and gargoylism). Biochem. J. 93(2), 15C–17C (1964).
  • Bayever E, Ladisch S, Philippart M et al. Bone-marrow transplantation for metachromatic leucodystrophy. Lancet 2(8453), 471–473 (1985).
  • Krivit W, Shapiro E, Kennedy W et al. Treatment of late infantile metachromatic leukodystrophy by bone marrow transplantation. N. Engl. J. Med. 322(1), 28–32 (1990).
  • D’Agostino AN, Sayre GP, Hayles AB. Krabbe’s disease. Globoid cell type of leukodystrophy. Arch. Neurol. 8, 82–96 (1963).
  • Husain AM, Altuwaijri M, Aldosari M. Krabbe disease: neurophysiologic studies and MRI correlations. Neurology 63(4), 617–620 (2004).
  • Krivit W, Shapiro EG, Peters C et al. Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N. Engl. J. Med. 338(16), 1119–1126 (1998).
  • Renier WO, Gabreëls FJ, Hustinx TW et al. Connatal Pelizaeus–Merzbacher disease with congenital stridor in two maternal cousins. Acta Neuropathol. 54(1), 11–17 (1981).
  • Schaumburg HH, Powers JM, Raine CS, Suzuki K, Richardson EP Jr. Adrenoleukodystrophy. A clinical and pathological study of 17 cases. Arch. Neurol. 32(9), 577–591 (1975).
  • Moser HW, Moser AB, Frayer KK et al. Adrenoleukodystrophy: increased plasma content of saturated very long chain fatty acids. Neurology 31(10), 1241–1249 (1981).
  • Aubourg P, Chaussain JL, Dulac O, Arthuis M. Adrenoleukodystrophy in children. Apropos of 20 cases. Arch. Fr. Pediatr. 39(9), 663–669 (1982).
  • Neufeld EF. Natural history and inherited disorders of a lysosomal enzyme, beta-hexosaminidase. J. Biol. Chem. 264(19), 10927–10930 (1989).
  • Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J. Med. Genet. 46(2), 73–80 (2009).
  • Hartig MB, Hörtnagel K, Garavaglia B et al. Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann. Neurol. 59(2), 248–256 (2006).
  • Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome. Nat. Genet. 28(4), 345–349 (2001).
  • Morgan NV, Westaway SK, Morton JE et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat. Genet. 38(7), 752–754 (2006).
  • Curtis AR, Fey C, Morris CM et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat. Genet. 28(4), 350–354 (2001).
  • Hartig MB, Iuso A, Haack T et al. Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 89(4), 543–550 (2011).
  • Horvath R, Holinski-Feder E, Neeve VC et al. A new phenotype of brain iron accumulation with dystonia, optic atrophy, and peripheral neuropathy. Mov. Disord. 27(6), 789–793 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.