249
Views
9
CrossRef citations to date
0
Altmetric
Theme: Migraine & Headache - Review

Relevance of functional neuroimaging studies for understanding migraine mechanisms

, &
Pages 275-285 | Published online: 09 Jan 2014

References

  • Launer LJ, Terwindt GM, Ferrari MD. The prevalence and characteristics of migraine in a population-based cohort: the GEM study. Neurology 53(3), 537–542 (1999).
  • Ferrari MD. Migraine. Lancet 351(9108), 1043–1051 (1998).
  • Geppetti P, Rossi E, Chiarugi A, Benemei S. Antidromic vasodilatation and the migraine mechanism. J. Headache Pain 13(2), 103–111 (2012).
  • Terwindt GM, Ophoff RA, Haan J, Sandkuijl LA, Frants RR, Ferrari MD; Dutch Migraine Genetics Research Group. Migraine, ataxia and epilepsy: a challenging spectrum of genetically determined calcium channelopathies. Eur. J. Hum. Genet. 6(4), 297–307 (1998).
  • Olesen J. The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol. Ther. 120(2), 157–171 (2008).
  • Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR. Neurobiology of migraine. Neuroscience 161(2), 327–341 (2009).
  • Reyngoudt H, Achten E, Paemeleire K. Magnetic resonance spectroscopy in migraine: what have we learned so far? Cephalalgia 32(11), 845–859 (2012).
  • Reyngoudt H, Paemeleire K, Descamps B, De Deene Y, Achten E. 31P-MRS demonstrates a reduction in high-energy phosphates in the occipital lobe of migraine without aura patients. Cephalalgia 31(12), 1243–1253 (2011).
  • Tedeschi G, Russo A, Tessitore A. Functional neuroimaging in migraine: usefulness for the clinical neurologist. Neurol. Sci. 33(Suppl. 1), S91–S94 (2012).
  • Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann. Neurol. 9(4), 344–352 (1981).
  • May A. A review of diagnostic and functional imaging in headache. J. Headache Pain 7(4), 174–184 (2006).
  • Wolff HG. Headache and Other Head Pain (2nd Edition). Oxford University Press, New York, NY, USA (1963).
  • Leao AAP. Spreading depression of activity in cerebral cortex. J. Neurophysiol. 7, 359–390 (1944).
  • Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 8(7), 679–690 (2009).
  • Borsook D, Burstein R. The enigma of the dorsolateral pons as a migraine generator. Cephalalgia 32(11), 803–812 (2012).
  • Cohen AS, Goadsby PJ. Functional neuroimaging of primary headache disorders. Expert Rev. Neurother. 6(8), 1159–1171 (2006).
  • Sprenger T, Goadsby PJ. What has functional neuroimaging done for primary headache. and for the clinical neurologist? J. Clin. Neurosci. 17(5), 547–553 (2010).
  • Moulton EA, Burstein R, Tully S, Hargreaves R, Becerra L, Borsook D. Interictal dysfunction of a brainstem descending modulatory center in migraine patients. PLoS ONE 3(11), e3799 (2008).
  • Lakhan SE, Avramut M, Tepper SJ. Structural and functional neuroimaging in migraine: insights from 3 decades of research. Headache 53(1), 46–66 (2013).
  • Maizels M, Aurora S, Heinricher M. Beyond neurovascular: migraine as a dysfunctional neurolimbic pain network. Headache doi:10.1111/j.1526-4610.2012.02209.x (2012) (Epub ahead of print).
  • Maleki N, Linnman C, Brawn J, Burstein R, Becerra L, Borsook D. Her versus his migraine: multiple sex differences in brain function and structure. Brain 135(Pt 8), 2546–2559 (2012).
  • Russo A, Tessitore A, Giordano A et al. Executive resting-state network connectivity in migraine without aura. Cephalalgia 32(14), 1041–1048 (2012).
  • Herholz K, Herscovitch P, Heiss WD, Padelakos P, Kouloulias V. NeuroPET: Positron Emission Tomography in Neuroscience and Clinical Neurology. Springer-Verlag, NY, USA (2004).
  • Grupen C, Buvat I. PET imaging: basics and new trends. Handbook of Particle Detection and Imaging. Springer 935–971 (2012).
  • Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache 47(10), 1418–1426 (2007).
  • Weiller C, May A, Limmroth V et al. Brain stem activation in spontaneous human migraine attacks. Nat. Med. 1(7), 658–660 (1995).
  • Russo A, Tessitore A, Giordano A, Salemi F, Tedeschi G. The pain in migraine beyond the pain of migraine. Neurol. Sci. 33(Suppl. 1), S103–S106 (2012).
  • Afridi SK, Matharu MS, Lee L et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 128(Pt 4), 932–939 (2005).
  • Aurora SK, Barrodale PM, Tipton RL, Khodavirdi A. Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache 47(7), 996–1003; discussion 1004 (2007).
  • Chabriat H, Tehindrazanarivelo A, Vera P et al. 5HT2 receptors in cerebral cortex of migraineurs studied using PET and 18F-fluorosetoperone. Cephalalgia 15(2), 104–108; discussion 77 (1995).
  • Chugani DC, Niimura K, Chaturvedi S et al. Increased brain serotonin synthesis in migraine. Neurology 53(7), 1473–1479 (1999).
  • Demarquay G, Lothe A, Royet JP et al. Brainstem changes in 5-HT1A receptor availability during migraine attack. Cephalalgia 31(1), 84–94 (2011).
  • Afridi SK, Giffin NJ, Kaube H et al. A positron emission tomographic study in spontaneous migraine. Arch. Neurol. 62(8), 1270–1275 (2005).
  • Smith JM, Bradley DP, James MF, Huang CL. Physiological studies of cortical spreading depression. Biol. Rev. Camb. Philos. Soc. 81(4), 457–481 (2006).
  • Olesen J, Friberg L, Olsen TS et al. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann. Neurol. 28(6), 791–798 (1990).
  • Ayata C. Cortical spreading depression triggers migraine attack: pro. Headache 50(4), 725–730 (2010).
  • Hadjikhani N, Sanchez Del Rio M, Wu O et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl Acad. Sci. USA 98(8), 4687–4692 (2001).
  • Afridi S, Kaube H, Goadsby PJ. Occipital activation in glyceryl trinitrate induced migraine with visual aura. J. Neurol. Neurosurg. Psychiatr. 76(8), 1158–1160 (2005).
  • Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Posterior cerebral hypoperfusion in migraine without aura. Cephalalgia 28(8), 856–862 (2008).
  • Woods RP, Iacoboni M, Mazziotta JC. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N. Engl. J. Med. 331(25), 1689–1692 (1994).
  • Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Géraud G. A PET study of photophobia during spontaneous migraine attacks. Neurology 76(3), 213–218 (2011).
  • Boulloche N, Denuelle M, Payoux P, Fabre N, Trotter Y, Géraud G. Photophobia in migraine: an interictal PET study of cortical hyperexcitability and its modulation by pain. J. Neurol. Neurosurg. Psychiatr. 81(9), 978–984 (2010).
  • De Carlo D, Toldo I, Dal Zotto L et al. Osmophobia as an early marker of migraine: a follow-up study in juvenile patients. Cephalalgia 32(5), 401–406 (2012).
  • Demarquay G, Royet JP, Mick G, Ryvlin P. Olfactory hypersensitivity in migraineurs: a H(2)(15)O-PET study. Cephalalgia 28(10), 1069–1080 (2008).
  • Kassab M, Bakhtar O, Wack D, Bednarczyk E. Resting brain glucose uptake in headache-free migraineurs. Headache 49(1), 90–97 (2009).
  • Kim JH, Kim S, Suh SI, Koh SB, Park KW, Oh K. Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia 30(1), 53–61 (2010).
  • Okazawa H, Tsuchida T, Pagani M et al. Effects of 5-HT1B/1D receptor agonist rizatriptan on cerebral blood flow and blood volume in normal circulation. J. Cereb. Blood Flow Metab. 26(1), 92–98 (2006).
  • Wall A, Kågedal M, Bergström M et al. Distribution of zolmitriptan into the CNS in healthy volunteers: a positron emission tomography study. Drugs R. D. 6(3), 139–147 (2005).
  • Borsook D, May A, Goadsby PJ, Hargreaves R. Imaging activation in migraine. In: The Migraine Brain: Imaging Structure and Function. Oxford University Press, NY, USA, 245–250 (2012).
  • Bandettini PA. Seven topics in functional magnetic resonance imaging. J. Integr. Neurosci. 8(3), 371–403 (2009).
  • Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87(24), 9868–9872 (1990).
  • Menon RS, Ogawa S, Tank DW, Ugurbil K. Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn. Reson. Med. 30(3), 380–386 (1993).
  • Sand T. EEG in migraine: a review of the literature. Funct. Neurol. 6(1), 7–22 (1991).
  • Sand T, Zhitniy N, White LR, Stovner LJ. Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin. Neurophysiol. 119(5), 1020–1027 (2008).
  • Afra J, Cecchini AP, De Pasqua V, Albert A, Schoenen J. Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain 121(Pt 2), 233–241 (1998).
  • Afra J, Mascia A, Gérard P, Maertens de Noordhout A, Schoenen J. Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann. Neurol. 44(2), 209–215 (1998).
  • Polich J, Ehlers CL, Dalessio DJ. Pattern-shift visual evoked responses and EEG in migraine. Headache 26(9), 451–456 (1986).
  • van Dijk JG, Dorresteijn M, Haan J, Ferrari MD. Visual evoked potentials and background EEG activity in migraine. Headache 31(6), 392–395 (1991).
  • Tagliati M, Sabbadini M, Bernardi G, Silvestrini M. Multichannel visual evoked potentials in migraine. Electroencephalogr. Clin. Neurophysiol. 96(1), 1–5 (1995).
  • Diener HC, Scholz E, Dichgans J et al. Central effects of drugs used in migraine prophylaxis evaluated by visual evoked potentials. Ann. Neurol. 25(2), 125–130 (1989).
  • Connolly JF, Gawel M, Rose FC. Migraine patients exhibit abnormalities in the visual evoked potential. J. Neurol. Neurosurg. Psychiatr. 45(5), 464–467 (1982).
  • Lehtonen JB. Visual evoked cortical potentials for single flashes and flickering light in migraine. Headache 14(1), 1–12 (1974).
  • Aurora SK, Cao Y, Bowyer SM, Welch KM. The occipital cortex is hyperexcitable in migraine: experimental evidence. Headache 39(7), 469–476 (1999).
  • Coppola G, Ambrosini A, Di Clemente L et al. Interictal abnormalities of γ band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia 27(12), 1360–1367 (2007).
  • Bohotin V, Fumal A, Vandenheede M et al. Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain 125(Pt 4), 912–922 (2002).
  • Welch KM. Contemporary concepts of migraine pathogenesis. Neurology 61(8 Suppl. 4), S2–S8 (2003).
  • Battelli L, Black KR, Wray SH. Transcranial magnetic stimulation of visual area V5 in migraine. Neurology 58(7), 1066–1069 (2002).
  • Cao Y, Welch KM, Aurora S, Vikingstad EM. Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch. Neurol. 56(5), 548–554 (1999).
  • Antal A, Polania R, Saller K et al. Differential activation of the middle-temporal complex to visual stimulation in migraineurs. Cephalalgia 31(3), 338–345 (2011).
  • Vincent M, Pedra E, Mourão-Miranda J, Bramati IE, Henrique AR, Moll J. Enhanced interictal responsiveness of the migraineous visual cortex to incongruent bar stimulation: a functional MRI visual activation study. Cephalalgia 23(9), 860–868 (2003).
  • Welch KM, D’Andrea G, Tepley N, Barkley G, Ramadan NM. The concept of migraine as a state of central neuronal hyperexcitability. Neurol. Clin. 8(4), 817–828 (1990).
  • Bramanti P, Grugno R, Vitetta A, Marino S, Di Bella P, Nappi G. Ictal and interictal hypoactivation of the occipital cortex in migraine with aura. A neuroimaging and electrophysiological study. Funct. Neurol. 20(4), 169–171 (2005).
  • Huang J, DeLano M, Cao Y. Visual cortical inhibitory function in migraine is not generally impaired: evidence from a combined psychophysical test with an fMRI study. Cephalalgia 26(5), 554–560 (2006).
  • Asghar MS, Hansen AE, Larsson HB, Olesen J, Ashina M. Effect of CGRP and sumatriptan on the BOLD response in visual cortex. J. Headache Pain 13(2), 159–166 (2012).
  • Vanagaite J, Pareja JA, Støren O, White LR, Sand T, Stovner LJ. Light-induced discomfort and pain in migraine. Cephalalgia 17(7), 733–741 (1997).
  • Becker WJ. The premonitory phase of migraine and migraine management. Cephalalgia doi:10.1177/0333102412437390 (2012) (Epub ahead of print).
  • Aurora SK, Welch KM. Brain excitability in migraine: evidence from transcranial magnetic stimulation studies. Curr. Opin. Neurol. 11(3), 205–209 (1998).
  • Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50(4), 1111–1114 (1998).
  • Afra J, Proietti Cecchini A, Sándor PS, Schoenen J. Comparison of visual and auditory evoked cortical potentials in migraine patients between attacks. Clin. Neurophysiol. 111(6), 1124–1129 (2000).
  • Martín H, Sánchez del Río M, de Silanes CL, Álvarez-Linera J, Hernández JA, Pareja JA. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: pathophysiological implications. Headache 51(10), 1520–1528 (2011).
  • Stankewitz A, May A. Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology 77(5), 476–482 (2011).
  • Sánchez del Rio M, Alvarez Linera J. Functional neuroimaging of headaches. Lancet Neurol. 3(11), 645–651 (2004).
  • Leone M, Proietti Cecchini A, Mea E et al. Functional neuroimaging and headache pathophysiology: new findings and new prospects. Neurol. Sci. 28(Suppl. 2), S108–S113 (2007).
  • Weissman-Fogel I, Sprecher E, Granovsky Y, Yarnitsky D. Repeated noxious stimulation of the skin enhances cutaneous pain perception of migraine patients in-between attacks: clinical evidence for continuous sub-threshold increase in membrane excitability of central trigeminovascular neurons. Pain 104(3), 693–700 (2003).
  • Moulton EA, Becerra L, Maleki N et al. Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine states. Cereb. Cortex 21(2), 435–448 (2011).
  • Russo A, Tessitore A, Esposito F et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J. Neurol. 259(9), 1903–1912 (2012).
  • Aderjan D, Stankewitz A, May A. Neuronal mechanisms during repetitive trigemino-nociceptive stimulation in migraine patients. Pain 151(1), 97–103 (2010).
  • Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J. Neurosci. 31(6), 1937–1943 (2011).
  • Biswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 10(4-5), 165–170 (1997).
  • Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100(1), 253–258 (2003).
  • van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum. Brain Mapp. 22, 165–178 (2004).
  • Damoiseaux JS, Rombouts SA, Barkhof F et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103(37), 13848–13853 (2006).
  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl Acad. Sci. USA 104(32), 13170–13175 (2007).
  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc. Natl Acad. Sci. USA 98(2), 676–682 (2001).
  • Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3(3), 201–215 (2002).
  • Tedeschi G, Trojsi F, Tessitore A et al. Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis. Neurobiol. Aging 33(5), 886–898 (2012).
  • Greicius MD, Flores BH, Menon V et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62(5), 429–437 (2007).
  • Cauda F, Sacco K, Duca S et al. Altered resting state in diabetic neuropathic pain. PLoS ONE 4(2), e4542 (2009).
  • Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. Brain resting state is disrupted in chronic back pain patients. Neurosci. Lett. 485(1), 26–31 (2010).
  • Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 62(8), 2545–2555 (2010).
  • Yu D, Yuan K, Zhao L et al. Regional homogeneity abnormalities in patients with interictal migraine without aura: a resting-state study. NMR Biomed. 25(5), 806–812 (2012).
  • Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann. Neurol. 70(5), 838–845 (2011).
  • Hedborg K, Anderberg UM, Muhr C. Stress in migraine: personality-dependent vulnerability, life events, and gender are of significance. Ups. J. Med. Sci. 116(3), 187–199 (2011).
  • Yuan K, Qin W, Liu P et al. Reduced fractional anisotropy of corpus callosum modulates inter-hemispheric resting state functional connectivity in migraine patients without aura. PLoS ONE 7(9), e45476 (2012).
  • Cutrer FM, Smith JH. Human studies in the pathophysiology of migraine: genetics and functional neuroimaging. Headache doi:10.1111/head.12024 (2012) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.