516
Views
13
CrossRef citations to date
0
Altmetric
Theme: Nervous System Neoplasms - Review

Clinical trials in cellular immunotherapy for brain/CNS tumors

, , &
Pages 405-424 | Published online: 09 Jan 2014

References

  • Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005–2009. Neuro-oncology 14(Suppl. 5), v1–v49 (2012).
  • Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007).
  • Stupp R, Mason WP, van den Bent MJ et al.; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005).
  • Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer 110(1), 13–24 (2007).
  • Furnari FB, Fenton T, Bachoo RM et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21(21), 2683–2710 (2007).
  • Chi AS, Wen PY. Inhibiting kinases in malignant gliomas. Expert Opin. Ther. Targets 11(4), 473–496 (2007).
  • Wen PY, Kesari S. Malignant gliomas in adults. N. Engl. J. Med. 359(5), 492–507 (2008).
  • Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4), 753–764; discussion 264 (2008).
  • Hildebrand J, Gorlia T, Kros JM et al.; EORTC Brain Tumour Group investigators. Adjuvant dibromodulcitol and BCNU chemotherapy in anaplastic astrocytoma: results of a randomised European Organisation for Research and Treatment of Cancer Phase III study (EORTC study 26882). Eur. J. Cancer 44(9), 1210–1216 (2008).
  • Belka C, Budach W, Kortmann RD, Bamberg M. Radiation induced CNS toxicity – molecular and cellular mechanisms. Br. J. Cancer 85(9), 1233–1239 (2001).
  • Monje ML, Palmer T. Radiation injury and neurogenesis. Curr. Opin. Neurol. 16(2), 129–134 (2003).
  • Hall P, Adami HO, Trichopoulos D et al. Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. BMJ 328(7430), 19 (2004).
  • Rohrer TR, Beck JD, Grabenbauer GG, Fahlbusch R, Buchfelder M, Dörr HG. Late endocrine sequelae after radiotherapy of pediatric brain tumors are independent of tumor location. J. Endocrinol. Invest. 32(4), 294–297 (2009).
  • Nandagopal R, Laverdière C, Mulrooney D, Hudson MM, Meacham L. Endocrine late effects of childhood cancer therapy: a report from the Children’s Oncology Group. Horm. Res. 69(2), 65–74 (2008).
  • Pearce MS, Salotti JA, Little MP et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840), 499–505 (2012).
  • Kantoff PW, Higano CS, Shore ND et al.; IMPACT study investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010).
  • Huber ML, Haynes L, Parker C, Iversen P. Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J. Natl Cancer Inst. 104(4), 273–279 (2012).
  • Dillman RO. Cancer immunotherapy. Cancer Biother. Radiopharm. 26(1), 1–64 (2011).
  • Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: hiding in plain sight. Immunol. Rev. 213, 48–65 (2006).
  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol. Rev. 91(2), 461–553 (2011).
  • Quattrocchi KB, Miller CH, Cush S et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J. Neurooncol. 45(2), 141–157 (1999).
  • Hickey WF. Migration of hematogenous cells through the blood–brain barrier and the initiation of CNS inflammation. Brain Pathol. 1(2), 97–105 (1991).
  • Krakowski ML, Owens T. Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur. J. Immunol. 30(4), 1002–1009 (2000).
  • Nitta T, Hishii M, Sato K, Okumura K. Selective expression of interleukin-10 gene within glioblastoma multiforme. Brain Res. 649(1–2), 122–128 (1994).
  • Sawamura Y, Diserens AC, de Tribolet N. In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J. Neurooncol. 9(2), 125–130 (1990).
  • Couldwell WT, Yong VW, Dore-Duffy P, Freedman MS, Antel JP. Production of soluble autocrine inhibitory factors by human glioma cell lines. J. Neurol. Sci. 110(1–2), 178–185 (1992).
  • Yang BC, Lin HK, Hor WS et al. Mediation of enhanced transcription of the IL-10 gene in T cells, upon contact with human glioma cells, by Fas signaling through a protein kinase A-independent pathway. J. Immunol. 171(8), 3947–3954 (2003).
  • Rorive S, Belot N, Decaestecker C et al. Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia 33(3), 241–255 (2001).
  • Parsa AT, Waldron JS, Panner A et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 13(1), 84–88 (2007).
  • Facoetti A, Nano R, Zelini P et al. Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin. Cancer Res. 11(23), 8304–8311 (2005).
  • Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66(6), 3294–3302 (2006).
  • El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-oncology 8(3), 234–243 (2006).
  • Jacobs JF, Idema AJ, Bol KF et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro-oncology 11(4), 394–402 (2009).
  • Gustafson MP, Lin Y, New KC et al. Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro-oncology 12(7), 631–644 (2010).
  • Okada H, Pollack IF. Do we need novel radiologic response criteria for brain tumor immunotherapy? Expert Rev. Neurother. 11(5), 619–622 (2011).
  • Okada H, Kalinski P, Ueda R et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {α}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29(3), 330–336 (2011).
  • Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 41(11 Pt 1), 4420–4425 (1981).
  • Jacobs SK, Wilson DJ, Kornblith PL, Grimm EA. In vitro killing of human glioblastoma by interleukin-2-activated autologous lymphocytes. J. Neurosurg. 64(1), 114–117 (1986).
  • Jacobs SK, Wilson DJ, Kornblith PL, Grimm EA. Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: Phase I trial. Cancer Res. 46(4 Pt 2), 2101–2104 (1986).
  • Barba D, Saris SC, Holder C, Rosenberg SA, Oldfield EH. Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J. Neurosurg. 70(2), 175–182 (1989).
  • Blancher A, Roubinet F, Grancher AS et al. Local immunotherapy of recurrent glioblastoma multiforme by intracerebral perfusion of interleukin-2 and LAK cells. Eur. Cytokine Netw. 4(5), 331–341 (1993).
  • Boiardi A, Silvani A, Ruffini PA et al. Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunol. Immunother. 39(3), 193–197 (1994).
  • Merchant RE, Grant AJ, Merchant LH, Young HF. Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 62(4), 665–671 (1988).
  • Merchant RE, Merchant LH, Cook SH, McVicar DW, Young HF. Intralesional infusion of lymphokine-activated killer (LAK) cells and recombinant interleukin-2 (rIL-2) for the treatment of patients with malignant brain tumor. Neurosurgery 23(6), 725–732 (1988).
  • Sankhla SK, Nadkarni JS, Bhagwati SN. Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J. Neurooncol. 27(2), 133–140 (1996).
  • Jeffes EW 3rd, Beamer YB, Jacques S et al. Therapy of recurrent high grade gliomas with surgery, and autologous mitogen activated IL-2 stimulated killer (MAK) lymphocytes: I. Enhancement of MAK lytic activity and cytokine production by PHA and clinical use of PHA. J. Neurooncol. 15(2), 141–155 (1993).
  • Lillehei KO, Mitchell DH, Johnson SD, McCleary EL, Kruse CA. Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery 28(1), 16–23 (1991).
  • Yoshida S, Tanaka R, Takai N, Ono K. Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res. 48(17), 5011–5016 (1988).
  • Okamoto Y, Shimizu K, Tamura K et al. An adoptive immunotherapy of patients with medulloblastoma by lymphokine-activated killer cells (LAK). Acta Neurochirurgica 94(1–2), 47–52 (1988).
  • Hayes RL, Arbit E, Odaimi M et al. Adoptive cellular immunotherapy for the treatment of malignant gliomas. Critic. Rev. Oncol/Hematol. 39(1–2), 31–42 (2001).
  • Dillman RO, Duma CM, Schiltz PM et al. Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J. Immunother. 27(5), 398–404 (2004).
  • Dillman RO, Duma CM, Ellis RA et al. Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J. Immunother. 32(9), 914–919 (2009).
  • Kitahara T, Watanabe O, Yamaura A et al. Establishment of interleukin 2 dependent cytotoxic T lymphocyte cell line specific for autologous brain tumor and its intracranial administration for therapy of the tumor. J. Neurooncol. 4(4), 329–336 (1987).
  • Tsuboi K, Saijo K, Ishikawa E et al. Effects of local injection of ex vivo expanded autologous tumor-specific T lymphocytes in cases with recurrent malignant gliomas. Clin. Cancer Res. 9(9), 3294–3302 (2003).
  • Tsurushima H, Liu SQ, Tuboi K et al. Reduction of end-stage malignant glioma by injection with autologous cytotoxic T lymphocytes. Jpn J. Cancer Res. 90(5), 536–545 (1999).
  • Kruse CA, Cepeda L, Owens B, Johnson SD, Stears J, Lillehei KO. Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2. Cancer Immunol. Immunother. 45(2), 77–87 (1997).
  • Holladay FP, Heitz-Turner T, Bayer WL, Wood GW. Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with Grade III/IV astrocytoma. J. Neurooncol. 27(2), 179–189 (1996).
  • Plautz GE, Barnett GH, Miller DW et al. Systemic T cell adoptive immunotherapy of malignant gliomas. J. Neurosurg. 89(1), 42–51 (1998).
  • Plautz GE, Miller DW, Barnett GH et al. T cell adoptive immunotherapy of newly diagnosed gliomas. Clin. Cancer Res. 6(6), 2209–2218 (2000).
  • Sloan AE, Dansey R, Zamorano L et al. Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte–macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg. Focus 9(6), e9 (2000).
  • Wood GW, Holladay FP, Turner T, Wang YY, Chiga M. A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent Grade III/IV astrocytoma. J. Neurooncol. 48(2), 113–120 (2000).
  • Kronik N, Kogan Y, Vainstein V, Agur Z. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 57(3), 425–439 (2008).
  • Ahmed N, Salsman VS, Kew Y et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin. Cancer Res. 16(2), 474–485 (2010).
  • Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res. 64(24), 9160–9166 (2004).
  • Bullain SS, Sahin A, Szentirmai O et al. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J. Neurooncol. 94(3), 373–382 (2009).
  • Mitchell DA, Xie W, Schmittling R et al. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-oncology 10(1), 10–18 (2008).
  • Cobbs CS, Harkins L, Samanta M et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 62(12), 3347–3350 (2002).
  • Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R. Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol. 116(1), 79–86 (2008).
  • Dziurzynski K, Wei J, Qiao W et al. Glioma-associated cytomegalovirus mediates subversion of the monocyte lineage to a tumor propagating phenotype. Clin. Cancer Res. 17(14), 4642–4649 (2011).
  • Sampson JH, Mitchell DA. Is cytomegalovirus a therapeutic target in glioblastoma? Clin. Cancer Res. 17(14), 4619–4621 (2011).
  • Ishikawa E, Tsuboi K, Yamamoto T et al. Clinical trial of autologous formalin-fixed tumor vaccine for glioblastoma multiforme patients. Cancer Sci. 98(8), 1226–1233 (2007).
  • Clavreul A, Piard N, Tanguy JY et al. Autologous tumor cell vaccination plus infusion of GM-CSF by a programmable pump in the treatment of recurrent malignant gliomas. J. Clin. Neurosci. 17(7), 842–848 (2010).
  • Schneider T, Gerhards R, Kirches E, Firsching R. Preliminary results of active specific immunization with modified tumor cell vaccine in glioblastoma multiforme. J. Neurooncol. 53(1), 39–46 (2001).
  • Steiner HH, Bonsanto MM, Beckhove P et al. Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J. Clin. Oncol. 22(21), 4272–4281 (2004).
  • Andrews DW, Resnicoff M, Flanders AE et al. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J. Clin. Oncol. 19(8), 2189–2200 (2001).
  • Satoh J, Lee YB, Kim SU. T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture. Brain Res. 704(1), 92–96 (1995).
  • Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A. Differential expression of transforming growth factor-β 1, -β 2, and -β 3 by glioblastoma cells, astrocytes, and microglia. J. Immunol. 148(5), 1404–1410 (1992).
  • Benencia F, Sprague L, McGinty J, Pate M, Muccioli M. Dendritic cells the tumor microenvironment and the challenges for an effective antitumor vaccination. J. Biomed. Biotechnol. 2012, 425–476 (2012).
  • Decker WK, Xing D, Shpall EJ. Dendritic cell immunotherapy for the treatment of neoplastic disease. Biol. Blood Marrow Transplant. 12(2), 113–125 (2006).
  • Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T. Results of a Phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol. Immunother. 50(7), 337–344 (2001).
  • Kikuchi T, Akasaki Y, Abe T et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J. Immunother. 27(6), 452–459 (2004).
  • Liau LM, Prins RM, Kiertscher SM et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11(15), 5515–5525 (2005).
  • Yu JS, Wheeler CJ, Zeltzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 61(3), 842–847 (2001).
  • Chang CN, Huang YC, Yang DM et al. A Phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J. Clin. Neurosci. 18(8), 1048–1054 (2011).
  • Jie X, Hua L, Jiang W, Feng F, Feng G, Hua Z. Clinical application of a dendritic cell vaccine raised against heat-shocked glioblastoma. Cell Biochem. Biophys. 62(1), 91–99 (2012).
  • Walker DG, Laherty R, Tomlinson FH, Chuah T, Schmidt C. Results of a Phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy. J. Clin. Neurosci. 15(2), 114–121 (2008).
  • Caruso DA, Orme LM, Neale AM et al. Results of a Phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro-oncology 6(3), 236–246 (2004).
  • De Vleeschouwer S, Fieuws S, Rutkowski S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin. Cancer Res. 14(10), 3098–3104 (2008).
  • Okada H, Lieberman FS, Walter KA et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J. Transl. Med. 5, 67 (2007).
  • Rutkowski S, De Vleeschouwer S, Kaempgen E et al. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br. J. Cancer 91(9), 1656–1662 (2004).
  • Wheeler CJ, Black KL, Liu G et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res. 68(14), 5955–5964 (2008).
  • Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical Phase I/II trial. Br. J. Cancer 89(7), 1172–1179 (2003).
  • Yamanaka R, Homma J, Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II trial. Clin. Cancer Res. 11(11), 4160–4167 (2005).
  • Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 64(14), 4973–4979 (2004).
  • Ardon H, De Vleeschouwer S, Van Calenbergh F et al. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr. Blood Cancer 54(4), 519–525 (2010).
  • Ardon H, Van Gool S, Lopes IS et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J. Neurooncol. 99(2), 261–272 (2010).
  • Ardon H, Van Gool SW, Verschuere T et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 Phase I/II trial. Cancer Immunol. Immunother. 61(11), 2033–2044 (2012).
  • Cho DY, Yang WK, Lee HC et al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a Phase II clinical trial. World Neurosurg. 77(5–6), 736–744 (2012).
  • Fadul CE, Fisher JL, Hampton TH et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J. Immunother. 34(4), 382–389 (2011).
  • Prins RM, Soto H, Konkankit V et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin. Cancer Res. 17(6), 1603–1615 (2011).
  • Jonuleit H, Giesecke-Tuettenberg A, Tüting T et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer 93(2), 243–251 (2001).
  • Labeur MS, Roters B, Pers B et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J. Immunol. 162(1), 168–175 (1999).
  • Zhu X, Nishimura F, Sasaki K et al. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J. Transl. Med. 5, 10 (2007).
  • Sampson JH, Archer GE, Ashley DM et al. Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the ‘immunologically privileged’ central nervous system. Proc. Natl Acad. Sci. USA 93(19), 10399–10404 (1996).
  • Wheeler CJ, Das A, Liu G, Yu JS, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin. Cancer Res. 10(16), 5316–5326 (2004).
  • Amos SM, Duong CP, Westwood JA et al. Autoimmunity associated with immunotherapy of cancer. Blood 118(3), 499–509 (2011).
  • Caspi RR. Immunotherapy of autoimmunity and cancer: the penalty for success. Nat. Rev. Immunol. 8(12), 970–976 (2008).
  • Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 191(5), 795–804 (2000).
  • Yajima N, Yamanaka R, Mine T et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin. Cancer Res. 11(16), 5900–5911 (2005).
  • Terasaki M, Shibui S, Narita Y et al. Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen – A24 with recurrent or progressive glioblastoma multiforme. J. Clin. Oncol. 29(3), 337–344 (2011).
  • Izumoto S, Tsuboi A, Oka Y et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J. Neurosurg. 108(5), 963–971 (2008).
  • Morita S, Oka Y, Tsuboi A et al. A Phase I/II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the Phase I data. Jpn. J. Clin. Oncol. 36(4), 231–236 (2006).
  • Sampson JH, Aldape KD, Archer GE et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-oncology 13(3), 324–333 (2011).
  • Sampson JH, Heimberger AB, Archer GE et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28(31), 4722–4729 (2010).
  • Crane CA, Han SJ, Ahn B et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin. Cancer Res. 19(1), 205–214 (2013).
  • Phuphanich S, Wheeler CJ, Rudnick JD et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 62(1), 125–135 (2013).
  • Sampson JH, Archer GE, Mitchell DA et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol. Cancer Ther. 8(10), 2773–2779 (2009).
  • Shah N, Decker WK, Lapushin R et al. HLA homozygosity and haplotype bias among patients with chronic lymphocytic leukemia: implications for disease control by physiological immune surveillance. Leukemia 25(6), 1036–1039 (2011).
  • Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
  • Brahmer JR, Tykodi SS, Chow LQ et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366(26), 2455–2465 (2012).
  • Topalian SL, Hodi FS, Brahmer JR et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366(26), 2443–2454 (2012).
  • Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365(8), 725–733 (2011).
  • Mukherji B, Chakraborty NG, Yamasaki S et al. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc. Natl Acad. Sci. USA 92(17), 8078–8082 (1995).
  • Narayanan P, Lapteva N, Seethammagari M, Levitt JM, Slawin KM, Spencer DM. A composite MyD88/CD40 switch synergistically activates mouse and human dendritic cells for enhanced antitumor efficacy. J. Clin. Invest. 121(4), 1524–1534 (2011).
  • Gürsel DB, Schlaff CD, Boockvar JA. Trials and tribulations of cancer immunotherapy: the dendritic cell vaccine shows promise in a Phase I glioblastoma multiforme trial. Neurosurgery 71(6), N19–N21 (2012).
  • Nitta T, Sato K, Yagita H, Okumura K, Ishii S. Preliminary trial of specific targeting therapy against malignant glioma. Lancet 335(8686), 368–371 (1990).
  • Hayes RL, Koslow M, Hiesiger EM et al. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76(5), 840–852 (1995).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.