322
Views
25
CrossRef citations to date
0
Altmetric
Theme: Alzheimer’s Disease - Review

Understanding the relationship between GSK-3 and Alzheimer’s disease: a focus on how GSK-3 can modulate synaptic plasticity processes

&
Pages 495-503 | Published online: 09 Jan 2014

References

  • Glycogen Synthase Kinase 3 (GSK-3) and Its Inhibitors: Drug discovery and Development. Martínez A, Castro A, Medina M. (Eds). Wiley Series in Drug Discovery and Development. Wiley-Interscience. John Wiley and Sons, NJ, USA (2006).
  • Medina M, Avila J. Glycogen synthase kinase-3 (GSK-3) inhibitors for the treatment of Alzheimer’s disease. Curr. Pharm. Des. 16(25), 2790–2798 (2010).
  • Medina M, Garrido JJ, Wandosell FG. Modulation of GSK-3 as a therapeutic strategy on tau pathologies. Front. Mol. Neurosci. 4, 24 (2011).
  • Kockeritz L, Doble B, Patel S, Woodgett JR. Glycogen synthase kinase-3 – an overview of an over-achieving protein kinase. Curr. Drug Targets 7(11), 1377–1388 (2006).
  • Mukai F, Ishiguro K, Sano Y, Fujita SC. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β. J. Neurochem. 81(5), 1073–1083 (2002).
  • Schaffer B, Wiedau-Pazos M, Geschwind DH. Gene structure and alternative splicing of glycogen synthase kinase 3β (GSK-3β) in neural and non-neural tissues. Gene 302(1–2), 73–81 (2003).
  • Medina M, Wandosell F. Deconstructing GSK-3: the fine regulation of its activity. Int. J. Alz. Dis. 2011, 479249 (2011).
  • Caricasole A, Copani A, Caraci F et al. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J. Neurosci. 24(26), 6021–6027 (2004).
  • Kaidanovich-Beilin O, Beaulieu JM, Jope RS, Woodgett JR. Neurological functions of the masterswitch protein kinase – GSK-3. Front. Mol. Neurosci. 5, 48 (2012).
  • Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates – Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20(3), 127–150 (2012).
  • Beaulieu JM. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J. Psychiatry Neurosci. 37(1), 7–16 (2012).
  • Liu KJ, Arron JR, Stankunas K, Crabtree GR, Longaker MT. Chemical rescue of cleft palate and midline defects in conditional GSK-3β mice. Nature 446(7131), 79–82 (2007).
  • O’Brien WT, Harper AD, Jové F et al. Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci. 24(30), 6791–6798 (2004).
  • Kimura T, Yamashita S, Nakao S et al. GSK-3β is required for memory reconsolidation in adult brain. PLoS ONE 3(10), e3540 (2008).
  • Beaulieu JM, Zhang X, Rodriguiz RM et al. Role of GSK3 β in behavioral abnormalities induced by serotonin deficiency. Proc. Natl Acad. Sci. USA 105(4), 1333–1338 (2008).
  • Prickaerts J, Moechars D, Cryns K et al. Transgenic mice overexpressing glycogen synthase kinase 3β: a putative model of hyperactivity and mania. J. Neurosci. 26(35), 9022–9029 (2006).
  • Latapy C, Rioux V, Guitton MJ, Beaulieu JM. Selective deletion of forebrain glycogen synthase kinase 3β reveals a central role in serotonin-sensitive anxiety and social behaviour. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367(1601), 2460–2474 (2012).
  • MacAulay K, Doble BW, Patel S et al. Glycogen synthase kinase 3α-specific regulation of murine hepatic glycogen metabolism. Cell Metab. 6(4), 329–337 (2007).
  • Kaidanovich-Beilin O, Lipina TV, Takao K et al. Abnormalities in brain structure and behavior in GSK-3α mutant mice. Mol. Brain 2, 35 (2009).
  • Hurtado DE, Molina-Porcel L, Carroll JC et al. Selectively silencing GSK-3 isoforms reduces plaques and tangles in mouse models of Alzheimer’s disease. J. Neurosci. 32(21), 7392–7402 (2012).
  • Patel SJ, Jindal R, King KR, Tilles AW, Yarmush ML. The inflammatory response to double stranded DNA in endothelial cells is mediated by NF-κB and TNFa. PLoS ONE 6(5), e19910 (2011).
  • Kim WY, Wang X, Wu Y et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat. Neurosci. 12(11), 1390–1397 (2009).
  • Eom TY, Jope RS. Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3α/β impairs in vivo neural precursor cell proliferation. Biol. Psychiatry 66(5), 494–502 (2009).
  • Polter AM, Yang S, Jope RS, Li X. Functional significance of glycogen synthase kinase-3 regulation by serotonin. Cell. Signal. 24(1), 265–271 (2012).
  • Leroy K, Boutajangout A, Authelet M, Woodgett JR, Anderton BH, Brion JP. The active form of glycogen synthase kinase-3β is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease. Acta Neuropathol. 103(2), 91–99 (2002).
  • Hernández F, Gómez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J. GSK3: a possible link between β amyloid peptide and tau protein. Exp. Neurol. 223(2), 322–325 (2010).
  • Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 104(6), 1433–1439 (2008).
  • Ittner LM, Götz J. Amyloid-β and tau – a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12(2), 65–72 (2011).
  • Muyllaert D, Kremer A, Jaworski T et al. Glycogen synthase kinase-3β, or a link between amyloid and tau pathology? Genes Brain Behav. 7(Suppl. 1), 57–66 (2008).
  • Hoshi M, Sato M, Matsumoto S et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl Acad. Sci. USA 100(11), 6370–6375 (2003).
  • Mateo I, Infante J, Llorca J, Rodríguez E, Berciano J, Combarros O. Association between glycogen synthase kinase-3β genetic polymorphism and late-onset alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 21(4), 228–232 (2006).
  • Zhang N, Yu JT, Yang Y, Yang J, Zhang W, Tan L. Association analysis of GSK3B and MAPT polymorphisms with Alzheimer’s disease in Han Chinese. Brain Res. 1391, 147–153 (2011).
  • Schaffer BA, Bertram L, Miller BL et al. Association of GSK3B with Alzheimer’s disease and frontotemporal dementia. Arch. Neurol. 65(10), 1368–1374 (2008).
  • Kwok JB, Loy CT, Hamilton G et al. Glycogen synthase kinase-3β and tau genes interact in Alzheimer’s disease. Ann. Neurol. 64(4), 446–454 (2008).
  • Mateo I, Vázquez-Higuera JL, Sánchez-Juan P et al. Epistasis between tau phosphorylation regulating genes (CDK5R1 and GSK-3β) and Alzheimer’s disease risk. Acta Neurol. Scand. 120(2), 130–133 (2009).
  • Kwok JB, Hallupp M, Loy CT et al. GSK3B polymorphisms alter transcription and splicing in Parkinson’s disease. Ann. Neurol. 58(6), 829–839 (2005).
  • Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol. Rev. 84(2), 361–384 (2004).
  • Jaworski T, Kügler S, Van Leuven F. Modeling of tau-mediated synaptic and neuronal degeneration in Alzheimer’s disease. Int. J. Alzheimers. Dis. 2010, pii: 573138 (2010).
  • Pérez M, Hernández F, Lim F, Díaz-Nido J, Avila J. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J. Alzheimers Dis. 5(4), 301–308 (2003).
  • Noble W, Planel E, Zehr C et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA 102(19), 6990–6995 (2005).
  • Alonso Adel C, Li B, Grundke-Iqbal I, Iqbal K. Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc. Natl Acad. Sci. USA 103(23), 8864–8869 (2006).
  • Brunden KR, Trojanowski JQ, Lee VM. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat. Rev. Drug Discov. 8(10), 783–793 (2009).
  • Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 118(1), 53–69 (2009).
  • Bretteville A, Planel E. Tau aggregates: toxic, inert, or protective species? J. Alzheimers Dis. 14(4), 431–436 (2008).
  • Congdon EE, Duff KE. Is tau aggregation toxic or protective? J. Alzheimers Dis. 14(4), 453–457 (2008).
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8(2), 101–112 (2007).
  • Walsh DM, Selkoe DJ. A beta-oligomers – a decade of discovery. J. Neurochem. 101(5), 1172–1184 (2007).
  • Gómez-Ramos A, Díaz-Hernández M, Cuadros R, Hernández F, Avila J. Extracellular tau is toxic to neuronal cells. FEBS Lett. 580(20), 4842–4850 (2006).
  • Gómez-Ramos A, Díaz-Hernández M, Rubio A, Miras-Portugal MT, Avila J. Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol. Cell. Neurosci. 37(4), 673–681 (2008).
  • Frost B, Jacks RL, Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284(19), 12845–12852 (2009).
  • Clavaguera F, Bolmont T, Crowther RA et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11(7), 909–913 (2009).
  • Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci. 30(49), 16559–16566 (2010).
  • Chai X, Wu S, Murray TK et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J. Biol. Chem. 286(39), 34457–34467 (2011).
  • Kayed R, Jackson GR. Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Curr. Opin. Immunol. 21(3), 359–363 (2009).
  • Medina M. Recent developments in tau-based therapeutics for neurodegenerative diseases. Recent Pat. CNS Drug Discov. 6(1), 20–30 (2011).
  • Sigurdsson EM. Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J. Alzheimers Dis. 15(2), 157–168 (2008).
  • De Ferrari GV, Papassotiropoulos A, Biechele T et al. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset alzheimer’s disease. Proc. Natl Acad. Sci. USA 104(22), 9434–9439 (2007).
  • Biessels GJ, Kappelle LJ; Utrecht Diabetic Encephalopathy Study Group. Increased risk of Alzheimer’s disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem. Soc. Trans. 33(Pt 5), 1041–1044 (2005).
  • Hamilton G, Proitsi P, Jehu L et al. Candidate gene association study of insulin signaling genes and Alzheimer’s disease: evidence for SOS2, PCK1, and PPARgamma as susceptibility loci. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B(4), 508–516 (2007).
  • Reiman EM, Webster JA, Myers AJ et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron 54(5), 713–720 (2007).
  • Sayas CL, Avila J, Wandosell F. Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochim. Biophys. Acta 1582(1–3), 144–153 (2002).
  • Jackson GR, Wiedau-Pazos M, Sang TK et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34(4), 509–519 (2002).
  • Cole A, Frame S, Cohen P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem. J. 377(Pt 1), 249–255 (2004).
  • Cole AR, Causeret F, Yadirgi G et al. Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J. Biol. Chem. 281(24), 16591–16598 (2006).
  • Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120(1), 137–149 (2005).
  • Jiang H, Guo W, Liang X, Rao Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell 120(1), 123–135 (2005).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580), 353–356 (2002).
  • Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 298(5594), 789–791 (2002).
  • Selkoe DJ. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192(1), 106–113 (2008).
  • Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423(6938), 435–439 (2003).
  • Su Y, Ryder J, Li B et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing. Biochemistry 43(22), 6899–6908 (2004).
  • Sun X, Sato S, Murayama O et al. Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci. Lett. 321(1–2), 61–64 (2002).
  • Jaworski T, Dewachter I, Lechat B et al. GSK-3a/β kinases and amyloid production in vivo. Nature 480(7376), E4–E5; discussion E6 (2011).
  • Palacino JJ, Murphy MP, Murayama O et al. Presenilin 1 regulates β-catenin-mediated transcription in a glycogen synthase kinase-3-independent fashion. J. Biol. Chem. 276(42), 38563–38569 (2001).
  • Tesco G, Tanzi RE. GSK3β forms a tetrameric complex with endogenous PS1-CTF/NTF and β-catenin. Effects of the D257/D385A and FAD-linked mutations. Ann. NY Acad. Sci. 920, 227–232 (2000).
  • Twomey C, McCarthy JV. Presenilin-1 is an unprimed glycogen synthase kinase-3β substrate. FEBS Lett. 580(17), 4015–4020 (2006).
  • Baki L, Shioi J, Wen P et al. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J. 23(13), 2586–2596 (2004).
  • Rockenstein E, Torrance M, Adame A et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci. 27(8), 1981–1991 (2007).
  • da Cruz e Silva EF, da Cruz e Silva OA. Protein phosphorylation and APP metabolism. Neurochem. Res. 28(10), 1553–1561 (2003).
  • Lee JH, Lau KF, Perkinton MS et al. The neuronal adaptor protein X11α reduces Aβ levels in the brains of Alzheimer’s APPswe Tg2576 transgenic mice. J. Biol. Chem. 278(47), 47025–47029 (2003).
  • Henriques AG, Vieira SI, da Cruz e Silva EF, da Cruz e Silva OA. Aβ hinders nuclear targeting of AICD and Fe65 in primary neuronal cultures. J. Mol. Neurosci. 39(1–2), 248–255 (2009).
  • Townsend M, Mehta T, Selkoe DJ. Soluble Aβ inhibits specific signal transduction cascades common to the insulin receptor pathway. J. Biol. Chem. 282(46), 33305–33312 (2007).
  • Magdesian MH, Carvalho MM, Mendes FA et al. Amyloid-β binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/β-catenin signaling. J. Biol. Chem. 283(14), 9359–9368 (2008).
  • Parr C, Carzaniga R, Gentleman SM, Van Leuven F, Walter J, Sastre M. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein. Mol. Cell. Biol. 32(21), 4410–4418 (2012).
  • Ly PT, Wu Y, Zou H et al. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J. Clin. Invest. 123(1), 224–235 (2013).
  • Sofola O, Kerr F, Rogers I et al. Inhibition of GSK-3 ameliorates Aβ pathology in an adult-onset Drosophila model of Alzheimer’s disease. PLoS Genet. 6(9), pii: e1001087 (2010).
  • Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J. Biol. Chem. 288(2), 1295–1306 (2013).
  • Hooper C, Markevich V, Plattner F et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur. J. Neurosci. 25(1), 81–86 (2007).
  • Peineau S, Taghibiglou C, Bradley C et al. LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron 53(5), 703–717 (2007).
  • Peineau S, Nicolas CS, Bortolotto ZA et al. A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases. Mol. Brain 2, 22 (2009).
  • Chen P, Gu Z, Liu W, Yan Z. Glycogen synthase kinase 3 regulates N-methyl-D-aspartate receptor channel trafficking and function in cortical neurons. Mol. Pharmacol. 72(1), 40–51 (2007).
  • Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J. 20(1–2), 27–39 (2001).
  • Peineau S, Bradley C, Taghibiglou C et al. The role of GSK-3 in synaptic plasticity. Br. J. Pharmacol. 153(Suppl. 1), S428–S437 (2008).
  • Wei J, Liu W, Yan Z. Regulation of AMPA receptor trafficking and function by glycogen synthase kinase 3. J. Biol. Chem. 285(34), 26369–26376 (2010).
  • Bradley CA, Peineau S, Taghibiglou C et al. A pivotal role of GSK-3 in synaptic plasticity. Front. Mol. Neurosci. 5, 13 (2012).
  • Tyagarajan SK, Ghosh H, Yévenes GE et al. Regulation of GABAergic synapse formation and plasticity by GSK3β-dependent phosphorylation of gephyrin. Proc. Natl Acad. Sci. USA 108(1), 379–384 (2011).
  • Goñi-Oliver P, Lucas JJ, Avila J, Hernández F. N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation. J. Biol. Chem. 282(31), 22406–22413 (2007).
  • Goñi-Oliver P, Avila J, Hernández F. Memantine inhibits calpain-mediated truncation of GSK-3 induced by NMDA: implications in Alzheimer’s disease. J. Alzheimers Dis. 18(4), 843–848 (2009).
  • Goñi-Oliver P, Avila J, Hernández F. Calpain regulates N-terminal interaction of GSK-3β with 14-3-3?, p53 and PKB but not with axin. Neurochem. Int. 59(2), 97–100 (2011).
  • Shie FS, LeBoeuf RC, Jin LW, LeBoeur RC. Early intraneuronal Aβ deposition in the hippocampus of APP transgenic mice. Neuroreport 14(1), 123–129 (2003).
  • Walsh DM, Klyubin I, Fadeeva JV et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880), 535–539 (2002).
  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N. Engl. J. Med. 362(4), 329–344 (2010).
  • Jo J, Whitcomb DJ, Olsen KM et al. Aβ(1–42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nat. Neurosci. 14(5), 545–547 (2011).
  • Ma T, Hoeffer CA, Capetillo-Zarate E et al. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PLoS ONE 5(9), pii: e12845 (2010).
  • Inoki K, Ouyang H, Zhu T et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5), 955–968 (2006).
  • Ittner LM, Ke YD, Delerue F et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 142(3), 387–397 (2010).
  • Mondragón-Rodríguez S, Trillaud-Doppia E, Dudilot A et al. Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. J. Biol. Chem. 287(38), 32040–32053 (2012).
  • Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1), 181–193 (2004).
  • Ho VM, Lee JA, Martin KC. The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011).
  • Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Nat. Rev. Neurosci. 11(7), 459–473 (2010).
  • Takashima A. GSK-3β and memory formation. Front. Mol. Neurosci. 5, 47 (2012).
  • Medina M, Castro A. Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic. Curr. Opin. Drug Discov. Devel. 11(4), 533–543 (2008).
  • del Ser T, Steinwachs KC, Gertz HJ et al. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J. Alzheimers Dis. 33(1), 205–215 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.