441
Views
96
CrossRef citations to date
0
Altmetric
Theme: Epilepsy - Review

A critical review of mTOR inhibitors and epilepsy: from basic science to clinical trials

Pages 657-669 | Published online: 09 Jan 2014

References

  • Kwan P, Brodie MJ. Refractory epilepsy: mechanisms and solutions. Expert Rev. Neurother. 6(3), 397–406 (2006).
  • Temkin NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42(4), 515–524 (2001).
  • Pitkänen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 10(2), 173–186 (2011).
  • Löscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52(4), 657–678 (2011).
  • Wong M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: from tuberous sclerosis to common acquired epilepsies. Epilepsia 51(1), 27–36 (2010).
  • McDaniel SS, Wong M. Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis. Neurosci. Lett. 497(3), 231–239 (2011).
  • Cho CH. Frontier of epilepsy research – mTOR signaling pathway. Exp. Mol. Med. 43(5), 231–274 (2011).
  • Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 53(7), 1119–1130 (2012).
  • Ryther RC, Wong M. Mammalian target of rapamycin (mTOR) inhibition: potential for antiseizure, antiepileptogenic, and epileptostatic therapy. Curr. Neurol. Neurosci. Rep. 12(4), 410–418 (2012).
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 149(2), 274–293 (2012).
  • Weber JD, Gutmann DH. Deconvoluting mTOR biology. Cell Cycle 11(2), 236–248 (2012).
  • Sarbassov DD, Ali SM, Sengupta S et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22(2), 159–168 (2006).
  • Bekinschtein P, Katche C, Slipczuk LN et al. mTOR signaling in the hippocampus is necessary for memory formation. Neurobiol. Learn. Mem. 87(2), 303–307 (2007).
  • Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl Acad. Sci. USA 99(1), 467–472 (2002).
  • Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. Control of dendritic arborization by the phosphoinositide-3′-kinase–Akt–mammalian target of rapamycin pathway. J. Neurosci. 25(49), 11300–11312 (2005).
  • Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY. Regulation of dendritic morphogenesis by Ras–PI3K–Akt–mTOR and Ras–MAPK signaling pathways. J. Neurosci. 25(49), 11288–11299 (2005).
  • Sherman DL, Krols M, Wu LM et al. Arrest of myelination and reduced axon growth when Schwann cells lack mTOR. J. Neurosci. 32(5), 1817–1825 (2012).
  • Raab-Graham KF, Haddick PC, Jan YN, Jan LY. Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314(5796), 144–148 (2006).
  • Wang Y, Barbaro MF, Baraban SC. A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci. Lett. 401(1–2), 35–39 (2006).
  • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12(1), 21–35 (2011).
  • Dazert E, Hall MN. mTOR signaling in disease. Curr. Opin. Cell Biol. 23(6), 744–755 (2011).
  • Bové J, Martínez-Vicente M, Vila M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat. Rev. Neurosci. 12(8), 437–452 (2011).
  • Orlova KA, Crino PB. The tuberous sclerosis complex. Ann. NY Acad. Sci. 1184, 87–105 (2010).
  • Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N. Engl. J. Med. 355(13), 1345–1356 (2006).
  • Franz DN, Leonard J, Tudor C et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann. Neurol. 59(3), 490–498 (2006).
  • Krueger DA, Care MM, Holland K et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med. 363(19), 1801–1811 (2010).
  • Bissler JJ, McCormack FX, Young LR et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358(2), 140–151 (2008).
  • Franz DN, Belousova E, Sparagana S et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled Phase 3 trial. Lancet 381(9861), 125–132 (2013).
  • Crino PB. Focal brain malformations: seizures, signaling, sequencing. Epilepsia 50(Suppl. 9), 3–8 (2009).
  • Crino PB. mTOR: A pathogenic signaling pathway in developmental brain malformations. Trends Mol. Med. 17(12), 734–742 (2011).
  • Wong M, Crino PB. mTOR and epileptogenesis in developmental brain malformations. In: Jasper’s Basic Mechanisms of the Epilepsies. Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (Eds). Oxford University Press, NY, USA (2012).
  • Lee JH, Huynh M, Silhavy JL et al. De novo somatic mutations in components of the PI3K–AKT3–mTOR pathway cause hemimegalencephaly. Nat. Genet. 44(8), 941–945 (2012).
  • Poduri A, Evrony GD, Cai X et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74(1), 41–48 (2012).
  • Orlova KA, Parker WE, Heuer GG et al. STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. J. Clin. Invest. 120(5), 1591–1602 (2010).
  • Baybis M, Yu J, Lee A et al. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann. Neurol. 56(4), 478–487 (2004).
  • Ljungberg MC, Bhattacharjee MB, Lu Y et al. Activation of mammalian target of rapamycin in cytomegalic neurons of human cortical dysplasia. Ann. Neurol. 60(4), 420–429 (2006).
  • Schick V, Majores M, Engels G et al. Differential PI3K-pathway activation in cortical tubers and focal cortical dysplasias with balloon cells. Brain Pathol. 17(2), 165–173 (2007).
  • Samadani U, Judkins AR, Akpalu A, Aronica E, Crino PB. Differential cellular gene expression in ganglioglioma. Epilepsia 48(4), 646–653 (2007).
  • Boer K, Troost D, Timmermans W, van Rijen PC, Spliet WG, Aronica E. PI3K–mTOR signaling and AMOG expression in epilepsy-associated glioneuronal tumors. Brain Pathol. 20(1), 234–244 (2010).
  • Daoud D, Scheld HH, Speckmann EJ, Gorji A. Rapamycin: brain excitability studied in vitro. Epilepsia 48(4), 834–836 (2007).
  • Rüegg S, Baybis M, Juul H, Dichter M, Crino PB. Effects of rapamycin on gene expression, morphology, and electrophysiological properties of rat hippocampal neurons. Epilepsy Res. 77(2–3), 85–92 (2007).
  • White HS. Preclinical development of antiepileptic drugs: past, present, and future directions. Epilepsia 44(Suppl. 7), 2–8 (2003).
  • Hartman AL, Santos P, Dolce A, Hardwick JM. The mTOR inhibitor rapamycin has limited acute anticonvulsant effects in mice. PLoS ONE 7(9), e45156 (2012).
  • Chachua T, Poon KL, Yum MS et al. Rapamycin has age-, treatment paradigm-, and model-specific anticonvulsant effects and modulates neuropeptide Y expression in rats. Epilepsia 53(11), 2015–2025 (2012).
  • Huang X, McMahon J, Yang J, Shin D, Huang Y. Rapamycin down-regulates KCC2 expression and increases seizure susceptibility to convulsants in immature rats. Neuroscience 219, 33–47 (2012).
  • Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulou AS. A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol. Dis. 43(2), 322–329 (2011).
  • Chachua T, Yum MS, Velíšková J, Velíšek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia 52(9), 1666–1677 (2011).
  • Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63(4), 444–453 (2008).
  • Kwon CH, Zhu X, Zhang J, Baker SJ. mTOR is required for hypertrophy of PTEN-deficient neuronal soma in vivo. Proc. Natl Acad. Sci. USA 100(22), 12923–12928 (2003).
  • Ljungberg MC, Sunnen CN, Lugo JN, Anderson AE, D’Arcangelo G. Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical dysplasia. Dis. Model. Mech. 2(7–8), 389–398 (2009).
  • Sunnen CN, Brewster AL, Lugo JN et al. Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia 52(11), 2065–2075 (2011).
  • Zhou J, Blundell J, Ogawa S et al. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J. Neurosci. 29(6), 1773–1783 (2009).
  • Muncy J, Butler IJ, Koenig MK. Rapamycin reduces seizure frequency in tuberous sclerosis complex. J. Child Neurol. 24(4), 477 (2009).
  • Perek-Polnik M, Józwiak S, Jurkiewicz E, Perek D, Kotulska K. Effective everolimus treatment of inoperable, life-threatening subependymal giant cell astrocytoma and intractable epilepsy in a patient with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 16(1), 83–85 (2012).
  • Krueger DA, Wilfong AA, Holland-Bouley K et al. Everolimus improves seizure control in tuberous sclerosis complex. Am. Epilepsy Soc. Annual Meeting Abstracts 1.237 (2012).
  • Russo E, Citraro R, Donato G et al. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology 69, 25–36 (2013).
  • Huang X, Zhang H, Yang J et al. Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol. Dis. 40(1), 193–199 (2010).
  • Parker WE, Orlova KA, Parker WH et al. Rapamycin prevents seizures after depletion of STRADA in a rare neurodevelopmental disorder. Sci. Transl. Med. 5, 182ra53 (2013).
  • Holmes GL, Stafstrom CE; Tuberous Sclerosis Study Group. Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 48(4), 617–630 (2007).
  • Meikle L, Pollizzi K, Egnor A et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J. Neurosci. 28(21), 5422–5432 (2008).
  • Goto J, Talos DM, Klein P et al. Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc. Natl Acad. Sci. USA 108(45), E1070–E1079 (2011).
  • Zeng LH, Rensing NR, Zhang B, Gutmann DH, Gambello MJ, Wong M. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum. Mol. Genet. 20(3), 445–454 (2011).
  • Carson RP, Van Nielen DL, Winzenburger PA, Ess KC. Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol. Dis. 45(1), 369–380 (2012).
  • Way SW, Rozas NS, Wu HC et al. The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Hum. Mol. Genet. 21(14), 3226–3236 (2012).
  • Ehninger D, Han S, Shilyansky C et al. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat. Med. 14(8), 843–848 (2008).
  • Pun RY, Rolle IJ, Lasarge CL et al. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron 75(6), 1022–1034 (2012).
  • Buckmaster PS, Ingram EA, Wen X. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J. Neurosci. 29(25), 8259–8269 (2009).
  • Tang H, Long H, Zeng C et al. Rapamycin suppresses the recurrent excitatory circuits of dentate gyrus in a mouse model of temporal lobe epilepsy. Biochem. Biophys. Res. Commun. 420(1), 199–204 (2012).
  • Sha LZ, Xing XL, Zhang D et al. Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy. PLoS ONE 7(6), e39152 (2012).
  • Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci. 29(21), 6964–6972 (2009).
  • van Vliet EA, Forte G, Holtman L et al. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood–brain barrier leakage but not microglia activation. Epilepsia 53(7), 1254–1263 (2012).
  • Buckmaster PS, Lew FH. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J. Neurosci. 31(6), 2337–2347 (2011).
  • Sliwa A, Plucinska G, Bednarczyk J, Lukasiuk K. Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci. Lett. 509(2), 105–109 (2012).
  • Lew FH, Buckmaster PS. Is there a critical period for mossy fiber sprouting in a mouse model of temporal lobe epilepsy? Epilepsia 52(12), 2326–2332 (2011).
  • Talos DM, Sun H, Zhou X et al. The interaction between early life epilepsy and autistic-like behavioral consequences: a role for the mammalian target of rapamycin (mTOR) pathway. PLoS ONE 7(5), e35885 (2012).
  • Chen S, Atkins CM, Liu CL, Alonso OF, Dietrich WD, Hu BR. Alterations in mammalian target of rapamycin signaling pathways after traumatic brain injury. J. Cereb. Blood Flow Metab. 27(5), 939–949 (2007).
  • Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis. 26(1), 86–93 (2007).
  • Park J, Zhang J, Qiu J et al. Combination therapy targeting Akt and mammalian target of rapamycin improves functional outcome after controlled cortical impact in mice. J. Cereb. Blood Flow Metab. 32(2), 330–340 (2012).
  • Guo D, Zeng LH, Brody DL, Wong M. mTOR inhibition has potential antiepileptogenic effects in a controlled cortical impact model of traumatic brain injury. Epilepsy Curr. 11(Suppl. 1), Abstract 1.014 (2011).
  • Berdichevsky Y, Saponjian Y, Mail M, Staley KJ. Organotypic culture model of post-traumatic epileptogenesis used as a medium-throughput screen of antiepileptic drugs. Epilepsy Curr. 12(Suppl. 1), Abstract 3.026 (2012).
  • Sosunov AA, Wu X, McGovern RA et al. The mTOR pathway is activated in glial cells in mesial temporal sclerosis. Epilepsia 53(Suppl. 1), 78–86 (2012).
  • Zhang B, Wong M. Pentylenetetrazole-induced seizures cause acute, but not chronic, mTOR pathway activation in rat. Epilepsia 53(3), 506–511 (2012).
  • Jaworski J, Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol. 34(3), 205–219 (2006).
  • Boulay A, Zumstein-Mecker S, Stephan C et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res. 64(1), 252–261 (2004).
  • Rivera VM, Squillace RM, Miller D et al. Ridaforolimus (AP23573; MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens. Mol. Cancer Ther. 10(6), 1059–1071 (2011).
  • Datta AN, Hahn CD, Sahin M. Clinical presentation and diagnosis of tuberous sclerosis complex in infancy. J. Child Neurol. 23(3), 268–273 (2008).
  • Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 51(7), 1236–1241 (2010).
  • Dazert E, Hall MN. mTOR signaling in disease. Curr. Opin. Cell Biol. 23(6), 744–755 (2011).
  • Bové J, Martínez-Vicente M, Vila M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat. Rev. Neurosci. 12(8), 437–452 (2011).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.